
Revisiting the role of melatonin in human melanocyte 
physiology: A skin context perspective

Alec Sevilla1, Jérémy Chéret1, Radomir M. Slominski2,3, Andrzej T. Slominski3,4,*, Ralf 
Paus1,5,6,*

1Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller 
School of Medicine, Miami, Florida, USA

2Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 
35294, USA

3Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA

4Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, 
Birmingham, AL35294, USA

5Monasterium Laboratory, Münster, Germany

6CUTANEON – Skin & Hair Innovations, Hamburg, Germany

Abstract

The evolutionarily ancient methoxyindoleamine, melatonin, has long perplexed investigators 

by its versatility of functions and mechanisms of action, which include the regulation of 

vertebrate pigmentation. Although first discovered through its potent skin-lightening effects in 

amphibians, melatonin’s role in human skin and hair follicle pigmentation and its impact on 

melanocyte physiology remain unclear. Synthesizing our limited current understanding of this 

role, we specifically examine its impact on melanogenesis, oxidative biology, mitochondrial 

function, melanocyte senescence, and pigmentation-related clock gene activity, with emphasis 

on human skin, yet without ignoring instructive pointers from non-human species. Given the 

strict dependence of melanocyte functions on the epithelial microenvironment, we underscore that 

melanocyte responses to melatonin are best interrogated in a physiological tissue context.

Current evidence suggests that melatonin and some of its metabolites inhibit both, melanogenesis 

(via reducing tyrosinase activity) and melanocyte proliferation by stimulating melatonin 

membrane receptors (MT1, MT2). We discuss whether putative melanogenesis-inhibitory effects 

of melatonin may occur via activation of Nrf2-mediated PI3K/AKT signaling, estrogen receptor-

mediated and/or melanocortin-1 receptor- and cAMP-dependent signaling, and/or via melatonin-

regulated changes in peripheral clock genes that regulate human melanogenesis, namely Bmal1 
and Per1. Melatonin and its metabolites also accumulate in melanocytes where they exert net cyto- 

and senescence-protective as well as anti-oxidative effects by operating as free radical scavengers, 
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stimulating the synthesis and activity of ROS scavenging enzymes and other antioxidants, 

promoting DNA repair, and enhancing mitochondrial function.

We argue that it is clinically and biologically important to definitively clarify whether melanocyte 

cell culture-based observations translate into melatonin-induced pigmentary changes in a 

physiological tissue context, i.e., in human epidermis and hair follicles ex vivo, and are confirmed 

by clinical trial results. After defining major open questions in this field, we close by suggesting 

how to begin answering them in clinically relevant, currently available preclinical in situ research 

models.

INTRODUCTION

The ancient amphipathic indolamine, melatonin, which is believed to exist in all living 

organisms on Earth1,2, not only is the key neurohormone that regulates the circadian clock3 

and antioxidant activities4,5, but also an astonishingly versatile molecule with a plethora of 

other complex biological functions6-8 (Table 1). Dermatologist Aaron B. Lerner discovered 

melatonin as the active molecule that exerts potent skin lightening effects on amphibian 

melanophores9. Since then, melatonin has long captured the attention of skin biologists 

and investigative dermatologists for its multitude of documented activities, many of which 

are relevant to human skin physiology and pathology, ranging from anti-aging10-13, UV-

protection14-17, immunomodulation18,19, and anti-melanoma activity21-23 to potential hair 

growth-promoting24,25 and pigmentation-modulatory effects25-27.

Yet, it remains unclear how exactly intracutaneously synthesized melatonin impacts on 

human skin and hair follicle pigmentation in situ and in vivo, how it affects other human 

melanocyte functions, and whether it protects these melanocytes from damage and/or 

senescence in situ. Even less is known about the relative contribution of insufficient 

melatonin synthesis and/or melatonin receptor expression in human skin in the context of 

melanocyte and skin pathology. Moreover, it is not yet entirely clear which of melatonin’s 

receptors or pathways mediate each of its functional effects in human skin, which receptors/

pathways are involved in its modification of mitochondria and cellular metabolism, or which 

nuclear receptors are plausible candidates for its bioregulation. To a considerable extent, 

this may be owed to the fact that the bulk of published melatonin studies have utilized cell 

culture methodology or animal models, while human skin and hair follicle organ culture 

has been under-employed, even though these assays would have been most instructive from 

a physiological perspective. Additionally, melatonin’s mechanisms of actions in human 

skin are very complex and have not been dissected as systematically as desired, perhaps 

due to few investigative dermatologists conducting such research in the past decades, 

limited industry and NIH funding, and challenging requirements (e.g., ethical rules and 

IRB approval) for conducting experiments with humans.

Therefore, the current review re-explores the role of melatonin in human melanocyte 

physiology. We argue that it is timely and both clinically important and biologically 

instructive to now clarify definitively whether the previously reported observations regarding 

melatonin’s effects on isolated human melanocytes in vitro (see below) really translate 

to a human tissue context, i.e. where melanocyte activities are closely controlled by 
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their intimate interactions with epidermal or hair follicle (HF) keratinocytes within the 

epidermal26,28,29 or HF pigmentary unit (EPU, HFPU)30-32.

This tissue context-perspective on human melanocyte biology is critically important, 

but too often ignored. Besides several pigmentation-regulatory growth factors, cytokines, 

and eicosanoids, keratinocytes produce and secrete major pigmentation-stimulatory 

neurohormones, such as α-melanocyte stimulating hormone (MSH), adrenocorticotropin 

(ACTH), corticotropin-releasing hormone (CRH) and thyroid-releasing hormone 

(TRH)18,19-23 and rigorously control melanocyte functions through interactions with 

corresponding G-protein coupled receptors26,39,40 and by regulating E- and P-cadherin 

expression on their cell surface41,42.

With recent insights into the impact of neurotransmitters (e.g. acetylcholine) released by 

sympathetic nerve fibers innervating the bulge, as in murine HF melanocyte stem cells43, 

a tissue context-dominated perspective on examining the role of melatonin in human 

pigmentation and melanocyte physiology has become even more important, but also more 

complex. Such a tissue context perspective must include the skin mesenchyme, since 

additional inputs on pigmentation originate from dermal fibroblasts in the human EPU39,40, 

inductive fibroblasts in the HF’s dermal papilla, and perifollicular dermal white adipose 

tissue which secrete HFPU- and melanogenesis-stimulatory hepatocyte growth factor46,47. 

These mesenchymal inputs rhythmically switch HF pigmentation on and off in a strictly 

hair cycle-dependent manner, with induction of HF melanocyte apoptosis during each phase 

of HF regression (catagen) and reconstruction of a new HFPU during each re-entry into 

the phase of active hair growth (anagen) from resident progenitor cells31,48. This dramatic 

remodeling of the HFPU, the cyclic mesodermal-neuroectodermal interactions that govern 

it, and the rhythmic extrapineal synthesis of melatonin within human HFs49 make the 

HFPU a fascinating and instructive model system for exploring the impact of melatonin on 

the complex controls of human hair pigmentation, which contrasts against the much less 

dynamic, constantly active EPU. This also illustrates why one cannot expect to recreate such 

a complex and dynamic cell-cell interaction system in melanocyte cell culture.

Importantly, melatonin and its precursors, serotonin and N-acetylserotonin (NAS), are 

synthesized within mammalian skin17,50-52, explicitly also in human skin, HFs, and resident 

cell populations of human epidermis or dermis52,53. Furthermore, the entire biochemical 

machinery necessary for transforming L-tryptophan into melatonin is expressed in all main 

tissue compartments of human skin, by epidermal and HF keratinocytes and melanocytes, 

dermal fibroblasts, and even mast cells17,53-55.

Since melatonin synthesis, metabolism, signal transduction (Figure 1), target genes, and 

mechanisms of action have been extensively reviewed elsewhere8,56-60, it suffice to 

summarize here some salient features. Melatonin is synthesized in a multistep process 

from tryptophan60 in the pineal gland and numerous “non-classical”, extrapineal tissues 

in the human body such as skin and HFs (see below)25,40, also in intact, wild-type 

rodent (including mice) skin14. While one key step in the classical (intrapineal) pathway 

of melatonin synthesis involves the conversion of serotonin to N-acetyl-serotonin (NAS, 

obligatory precursor to melatonin) by aralkylamine N-acetyltransferase (AANAT), there 
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exists an alternative pathway operating in peripheral organs , such as that found in the 

AANAT-mutant C57BL/6 mouse strain61. Serotonin within C57BL/6 mice skin can instead 

be acetylated to NAS by arylamine N-acetyltransferase (NAT)61, which can then be 

transformed to melatonin by the enzyme common to both classical and alternative pathways, 

hydroxyindole-O-methyltransferase (HIOMT)52. Therefore, it is misleading to characterize 

C57BL/6 mice as a ‘natural melatonin knockdown’ species14,49,61.

Due to melatonin’s amphiphilic nature, it can readily penetrate any cell, tissue and 

cellular compartment62-65. Here, melatonin exerts its complex effects dependent on the 

expression, localization and types of melatonin receptors involved66,67, i.e. the cell 

membrane-bound, G-protein coupled MT1 and MT2 receptors, and on several membrane-

bound receptor-independent mechanisms68 (Figure 1). It has been clarified that melatonin 

and its metabolites are not ligands for the nuclear receptor retinoid-related orphan receptor-α 
(ROR-α aka NR1F1), as shown by crystallography studies69,70, modeling and receptor 

functional assays71. However, melatonin may indirectly modulate ROR-α and other ROR 

activities70,72.

Moreover, facilitated by their dendritic morphology, which greatly augments their cell 

surface and thus contact area, melanocytes operate as multimodal sensory and stress-

response cells73-77. Melanocytes also engage in bidirectional communication with their 

tissue-specific intraepithelial habitat73, for example, by secreting catecholamines, cytokines, 

eicosanoids, acetylcholine, melanocortins, ACTH, CRH, endorphins, enkephalins, nitric 

oxide, serotonin, and reactive oxygen species produced during melanogenesis17,36,51,78-90. 

Thus, melanocytes contribute actively to shaping the signaling and metabolic milieu they 

reside in74,76. Transfer of melanosomes into keratinocytes likely promotes keratinocyte 

terminal differentiation and other functions39,54,55. Recently, aging melanocytes have even 

been reported to act as drivers of epidermal senescence91.

Taken together, the crucial tissue context in which melanocytes operate renders it impossible 

to fully grasp how melatonin regulates human pigmentation under mere cell culture 

conditions, even when primary human melanocytes are co-cultured with selected isolated 

other cell populations, since even such co-culture system cannot recapitulate the complexity 

of physiological interactions between neural crest-derived, epithelial and mesenchymal cells 

that control pigmentation in situ73-75.

This review synthesizes the currently available evidence regarding melatonin’s effect on 

melanogenesis, oxidative biology and damage responses, senescence, and peripheral clock 

genes in the wider context of human melanocyte physiology within their cutaneous habitat. 

These include conditions of excessive oxidative stress, which underly melanocyte pathology, 

e.g. in vitiligo92,93 and hair graying30,94,95. We define major open questions, suggest how to 

answer them using currently available preclinical assay systems, and discuss the clinical 

relevance of systematically characterizing the role of melatonin in human melanocyte 

function in health and disease from a tissue context perspective.
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SKIN AS A TARGET AND SOURCE OF MELATONIN BIOACTIVITY

Human skin possesses all key enzymes, substrates, and cofactors necessary for melatonin 

synthesis51,52, and melatonin synthesis in human scalp HFs ex vivo is stimulated by 

noradrenaline, just as in the pineal gland49. Given that this key psychoemotional stress-

associated neurotransmitter can promote the depletion of melanocytes stem cells from 

their niche in murine HFs43, one wonders whether noradrenaline-induced up-regulation 

of HF melatonin synthesis simultaneously activates melatonin-dependent cytoprotective 

mechanisms (see below). Importantly, both keratinocytes and melanocytes of the EPU 

can also synthesize catecholamines96,97 and thereby could, in theory, augment their own 

melatonin synthesis in an autocrine and paracrine manner, possibly in response to local 

tissue stressors.

Human skin and HFs also are important targets of melatonin bioactivity and express 

melatonin receptors (MT1/2)35,58,81. Animal studies involving pinealectomy or melatonin 

administration have demonstrated changes in HF growth, cycling, and pigmentation (Table 

2). The latter has raised the question how exactly melatonin affects human epidermal and 

HF melanocytes17,24,48 within their natural tissue habitat, rather than in culture isolated 

from their key communications with epidermal and HF keratinocytes, papillary dermal 

fibroblasts99, and HF dermal papilla fibroblasts30,31. Yet, dissecting how exactly endogenous 

melatonin alters human melanocyte biology in situ is challenged by melatonin’s complex 

interactions and rapid metabolism100,101, which make it exceptionally difficult to dissect 

precisely which phenotypic effects are regulated by melatonin itself versus its many 

metabolites, as well as by differential effects dependent on dose, cellular and hormonal 

environment, tissue, species, gender, age, race, and external (environmental) and internal 

stress levels24,98,102,103. Therefore, the results from in vitro and animal studies on the 

pigmentary impact of melatonin could be misleading as they cannot fully reflect the human 

in vivo condition. It is for this reason that we advocate the use of standardized, site- and 

gender-specific human skin and hair follicle organ culture models to definitively clarify the 

effects of melatonin on human skin pigmentation in UV-exposed versus non-exposed skin.

CLINICAL POINTERS

Clinical observations provide important pigmentary background information when 

interpreting in vitro and animal results under melatonin administration. Few studies 

have examined the effects of melatonin on pigmentation in humans without pigmentary 

disorders. In both former- and never-smoker postmenopausal women who received 

microdermabrasion, neither oral (2.5 mg/day) nor topical (0.5 mM) melatonin had 

significant effects on skin pigmentation104. Another pilot study saw no effects of oral 

melatonin on arm, leg, or back skin pigmentation of seven subjects105. This could have 

resulted from an insufficiently short observation period or the rapid metabolism of orally 

delivered melatonin upon liver passage.

There is an extreme scarcity of any documented potential cutaneous effects from the 

extensive ingestion of melatonin. This, in part, is likely best explained by ingested 

melatonin’s extensive and rapid metabolism during its first pass through the liver, where 
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it is rapidly hydroxylated to 6-hydroxymelatonin with further sulfation or glucuronidation 

before reaching the skin. These biochemical modifications minimize the impact of orally 

administered melatonin on human skin function. Therefore, to see cutaneous effects of 

melatonin, it is best for it to be synthesized in situ or applied topically.

Very few studies have investigated melatonin effects on human pigmentation disorders. In 

one patient with adrenal hyperplasia-associated diffuse skin hyperpigmentation, a month 

of high-dose (1 g/day) oral melatonin decreased skin pigmentation, yet failed to alter skin 

pigmentation in three other patients with idiopathic hyperpigmentation and one patient with 

Addison’s disease106. In a small cohort of patients with acanthosis nigricans, oral melatonin 

(3 mg/day) reportedly reduced hyperpigmentation107. In patients with melasma, topical 

(5% cream) and oral (3 mg/day) melatonin reportedly showed significant skin-lightening 

effects108. Other studies also reported decreased skin pigmentation and enhanced protection 

against photoaging after topical melatonin15,25,109,110. These limited clinical observations 

suggest that melatonin may exert (direct or indirect) melanogenesis-inhibitory activities in 

human epidermis in vivo, yet conclusive evidence remains to be provided.

Interestingly, patients with vitiligo had significantly lower immunohistochemically-assessed 

melatonin-associated immunoreactivity in both lesioned and non-lesioned skin when 

compared to skin of heathy controls, suggesting a role for melatonin deficiency in the 

pathogenesis of vitiligo111. However, serotonin, 5-hydroxyindoleacetic acid (5-HIAA) and 

melatonin serum levels have been reported to be increased in a relatively small cohort 

of vitiligo patients112. Yet, the pathobiological significance and therapeutic potential of 

melatonin in vitiligo113 remains unexplored and requires systematic additional investigation.

Serum melatonin levels decline with age10, which may contribute to the slow decline of 

organ function characteristic of aging114. Thus it is conceivable that a gradual loss of 

melatonin in aged or graying HFs along with an age-dependent accumulation of oxidative 

damage in the HFPU and correspondingly reduced oxidative damage protection of HF 

melanocytes by both systemic and intrafollicularly-produced melatonin levels contributes to 

hair graying30.

DIRECT IMPACT OF MELATONIN ON MELANOGENESIS

(1) Melatonin and its metabolites tend to inhibit melanogenesis, tyrosinase activity, 
and/or melanocyte proliferation in vitro

In normal human epidermis, melatonin and its metabolites, e.g., N1-Acetyl-5-

Methoxykynuramine (AMK), N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), 6-

hydroxymelatonin (6-OHM), and 5-methoxytryptamine (5-MT), accumulate in vivo103,115. 

In human epidermal melanocytes in vitro, melatonin and its metabolites inhibit melanocyte 

proliferation103 and some103 but not all115 metabolites inhibit melanogenesis by decreasing 

tyrosinase activity. Of all melatonin’s metabolites, 6-OHM showed the greatest inhibition 

(50%) of tyrosinase activity in normal human epidermal melanocytes in vitro103. In contrast, 

melatonin and its metabolites had no effect on melanogenesis in human SKMEL-188 

melanoma cells, except for 5-MT (at 10 μM) which even stimulated melanogenesis103. Yet, 
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in another human melanoma cell line, MNT-1, melatonin inhibited melanin production at 

high doses (1, 100, and 1000 μM)116.

Interestingly, in rodent melanoma cells, melatonin at low concentrations (0.1-10 nM) 

inhibited melanocyte proliferation but had no effect on melanogenesis, while at high 

concentrations (≥0.1 μM) it inhibited the induction of melanogenesis and tyrosinase activity 

but not proliferation23. Similarly high doses of melatonin were required to inhibit anagen-

associated tyrosinase activity in histocultured skin from C57BL-6 mouse, and two high 

and low affinity binding sites were detected in crude skin extracts117. These are consistent 

with high doses of melatonin required for phenotypic effects in normal human epidermal 

melanocytes103.

Thus, melatonin’s effects on melanogenesis and melanocyte proliferation appear be to be 

rather variable, dependent on dose, tissue type, species, and signaling environment24,98. This 

further underscores that understanding the physiological and pharmacological responses of 

human melanocytes to melatonin stimulation is best studied in a full-thickness human skin 

or HF organ culture (ex vivo) or in vivo, rather than in cultured isolated melanocytes (in 
vitro).

(2) Mechanisms of melatonin regulation of human melanogenesis

Besides targeting its specific membrane receptors on melanocytes, in human skin, several 

indirect or non-classical mechanisms by which melatonin may regulate melanogenesis 

deserve consideration. For example, melatonin can downregulate estrogen receptor 

expression in mouse HFs49, which could antagonize 17-ß-estradiol’s stimulatory effects 

on melanogenesis118. However, at ≤1 μM melatonin did not inhibit intrafollicular melanin 

synthesis in organ-cultured human anagen VI scalp HFs49. Of note, anti-melanogenic 

activity of melatonin in rodent melanomas and murine skin organ culture required higher 

than 1 μM concentration to observe the phenotypic effect23,117.

Though ROR is no longer a credible direct nuclear hormone receptor for melatonin, 

an indirect modulation of ROR signaling activity by melatonin which could impact on 

melanogenesis remains theoretically conceivable70. Additional indirect mechanisms of 

action must also be considered. The observed melanogenesis inhibition by melatonin 

in Siberian hamster HF melanocytes appears to have antagonized the pigmentation-

promoting effects of α-MSH119, likely by reducing expression of cognate α-MSH 

receptors (MC-1R), as described in mouse melanoma cells120, and/or counteracting the 

promotion of melanogenesis by α-MSH or L-tyrosine (based on in vitro data from hamster 

and murine melanoma cells)23. Since specific binding of tritiated-melatonin to purified 

membrane and nuclei melanocyte fractions were detected23,117, the anti-proliferative effect 

of melatonin was proposed to be mediated through interaction with MT receptors, while the 

melanogenesis-inhibitory effect might involve interaction with a putative nuclear receptor.

In normal human epidermal melanocytes, the central regulator of oxidative damage 

responses, nuclear factor erythroid 2-related factor 2 (Nrf2)121,122, is targeted by melatonin 

to upregulate antioxidant defenses15, but decreases melanogenesis through a pathway 

involving activation of PI3K/AKT. Activated PI3K/AKT signaling leads to inactivation of 
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glycogen synthase kinase-3 (GSK-3) and microphthalmia-associated transcription factor 

(MITF), which inhibits the transcription of TYR, TRP-1, and TRP-2 (melanogenesis-

associated enzymes) and decreases melanin synthesis123 (Figure 2). Thus, it is conceivable 

that melatonin may inhibit melanogenesis in normal human epidermal melanocytes also 

through activation of Nrf2 and subsequent activation of the PI3K/AKT pathway.

MELATONIN, OXIDATIVE STRESS, AND THE MELANOCYTE ECOSYSTEM

(1) Melatonin and its metabolites regulate antioxidant enzyme expression and direct free 
radical scavenging

Melatonin and its metabolites [e.g., cyclic-3-hydroxymelatonin (C-3HOM) and AMK]124 

are powerful direct scavengers of reactive oxygen (ROS) and nitrogen species (RNS)125,126 

that protect human melanocytes from oxidative damage15. Moreover, once melatonin binds 

to MT1/2 receptors, the downstream signaling cascade stimulates expression of numerous 

antioxidant enzymes125,127 (Figure 3). These properties of melatonin may play a key role in 

maintaining skin15 and HF128 pigmentation, given that melanogenesis itself is a cytotoxic 

process that generates ROS and quinone and semiquinone compounds, which are buffered 

by melanin itself as well as by other mechanisms129-131.

Furthermore, melatonin can activate Nrf2, a transcription factor regarded as the master 

regulator of antioxidant defenses [e.g., defense against ultraviolet (UV) B radiation-induced 

oxidative skin damage]15, in part by upregulating its expression in human epidermal 

melanocytes. Nrf2 is also significantly up-regulated in response to oxidative stress 

in human anagen HFs, namely in the HFPU132. Interestingly, the melatonin-induced 

activation of Nrf2 in human epidermal melanocytes exposed to oxidative stress occurs 

independently of melatonin receptors15, possibly by regulating the Keap/Nrf2/ARE pathway 

and suppressing the ubiquitin/proteasome system, thereby increasing Nrf2-ARE activation 

and expression and activity of antioxidant enzymes1,114. Furthermore, Nrf2-ARE activation 

is necessary for protecting human epidermal melanocytes from hydrogen peroxide- (H2O2) 

induced oxidative stress133, either by metabolically eliminating ROS or by reducing their 

generation1, thereby preventing DNA damage and premature senescence11,15.

Melatonin’s activation of NQO2, a detoxifying enzyme that directly reduces H2O2 and 

dangerous quinones, is another means of defense against oxidative stress134,135, which has 

not yet been identified in human HF melanocytes. However, NQO2 gene expression occurs 

widely in human skin7,98, including epidermal melanocytes15 and microarray data point 

towards its expression in murine HFs136. Also, intracellular melatonin at concentrations 

higher than 1 nM interacts with the calcium/calmodulin complex, which inhibits nitric oxide 

synthase 1 (NOS1 or nNOS) and its generation of RNS56,137-139. Furthermore, melatonin 

and its metabolites protect human epidermal melanocytes from UV-B-induced damage/

apoptosis (see (3) below) by enhancing p53-stimulated DNA repair15. The discussed 

antioxidant mechanisms of melatonin and its metabolites are described in further detail 

in figure 3.
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(2) Decreased melatonin levels related to ageing- or oxidative stress-related hair graying

Loss of human hair pigmentation (e.g., ageing- or stress-related graying) is thought to 

primarily result from oxidative damage that disrupts differentiated HF melanocytes of the 

HFPU and melanogenesis-related enzymes, with subsequent damage to HF melanocyte stem 

cells, eventually determining whether or not greying is reversible30,43,94,95.

A study using murine HFs demonstrated the protective effect that superoxide dismutase 

(SOD)140, an enzyme involved in melatonin’s antioxidant defense properties125,127, 

has against hair graying. Also, aged, gray HFs have increased reactivity to reducing 

and oxidizing agents when exposed to radiation-induced oxidative stress141, decreased 

antioxidant defense (e.g., decreased CAT activity and expression)142, and increased 

accumulation of tryptophan143. This invites two melatonin-related hypotheses: (a) decreased 

enzymatic conversion of tryptophan to melatonin in graying HFs, and/or (b) increased 

production of tryptophan used to enhance melatonin synthesis for combating oxidative stress 

within the HFPU.

The fine regulation of redox balance between free radicals and antioxidants is critical for 

maintaining normal functions in human epidermal129,131 and HF130 melanocytes. Without 

the melatonin-associated antioxidant defenses, it is possible that human epidermal and HF 

melanocytes may be substantially more susceptible to oxidative damage that results in 

cellular dysfunction, such as directly impaired tyrosinase activity by blunting methionine 

sulfoxide repair95, and apoptosis94,142,145 and. However, the potential association between 

reduced melatonin levels/expression in aging and graying HFs and other hypopigmentary 

conditions still needs to be clarified.

(3) Melatonin enhances protection of melanocytes against UV radiation

Oxidative stress generated by UV radiation (UVR) and visible light (VL) has the potential 

to induce cosmetically unappealing hyperpigmentation146. For this reason, the use of 

topical and oral antioxidants has become increasingly prevalent as therapy in adjunct to 

sun protection to prevent UVR- and VL-induced hyperpigmentation146,147. Pronounced 

photoprotective effects of “natural” and synthetic antioxidants were demonstrated in animal 

and human studies when applied topically before exposure to UVR, but no protective 

effects by antioxidants (e.g., melatonin, vitamins) were found by some authors when applied 

after exposure to UVR147. In contrast, others have demonstrated the protective action of 

melatonin and metabolites applied directly after UVB exposure15, such as their protection 

from and reversal of UVB-induced damage in cultured human epidermal melanocytes15. 

Similar effects were seen for vitamin D derivatives148-150. It must be noted, however, that 

active forms of vitamin D are more efficient in photoprotection than melatonin150,151.

(4) Melatonin regulates senescence progression and promotes mitochondrial 
homeostasis

Mitochondria play a vital role in skin and there exists increasing evidence that 

mitochondrial dysfunction and oxidative stress are key features in senescence and aging 

skin with direct links to skin and hair ageing phenotypes (e.g., uneven pigmentation 

and hair graying)30,152,153. Melatonin is found in especially high concentrations in 
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mitochondria154,155, where it is transported to156, synthesized157, or metabolised101. Within 

mitochondria, cytochrome c converts melatonin to its potent antioxidant metabolite, 

AFMK158, and its secondary product, AMK in the presence of H2O2
101.

The abundance of damaging free radicals generated by oxidative phosphorylation make the 

mitochondria an optimal location for such high concentrations of melatonin114. Various 

mechanisms have been proposed regarding melatonin’s ability to reduce mitochondrial 

oxidative stress and help maintain mitochondrial homeostasis, however, these remain to be 

fully studied in the context of human melanocytes

One proposed anti-aging mechanism that may be relevant in this context involves the 

stimulation of sirtuin3 (SIRT3) by melatonin in mitochondria, leading to the deacetylation 

and activation of superoxide dismutase-2 (SOD2), which enzymatically dismutates 

superoxide anion radicals159. Furthermore, melatonin can inhibit premature senescence 

by upregulating expression of sirtuin1 (SIRT1), which reduces oxidative stress, decreases 

expression and activation of p53, and inhibits NF-κB signaling11.

Melatonin may also act on mitochondrial uncoupling proteins to dissipate the proton 

gradient across the inner membrane to moderately reduce inner membrane potential, thereby 

increasing activities of complexes I and III, accelerating ETC electron transport, and 

decreasing electron leakage from the ETC; effects that reduce free radical formation160. 

Melatonin’s alleviation of oxidative damage in the mitochondrial matrix and intermembrane 

space2 has been proposed to decrease cardiolipin oxidation, mitochondrial permeability 

transition pore (MPTP) opening161, cytochrome c release, and mitochondria-related 

apoptosis, all of which are beneficial effects to slow aging and preserve cellular 

functioning114, likely also in human epidermal and HF melanocytes. Melatonin can also 

increase H2O2 scavenging114 and its metabolite 6-OHM can directly increase the electron 

flux through the respiratory chain and enhance ATP production by donating electrons162.

Finally, melatonin maintains the optimal mitochondrial membrane potential (Δψm)163 

through its abilities to block the MPTP in conditions of stress and activate uncoupling 

proteins in normal conditions160.

(5) Melatonin regulates melanocyte autophagic flux

Autophagy is a critical cellular process that, in part, involves the removal of misfolded 

or aggregated proteins and clearance of damaged organelles, such as mitochondria 

(mitophagy), endoplasmic reticulum and peroxisomes164. Autophagy is activated in 

conditions of oxidative stress165, including aging166, and plays a key role in protecting 

normal human epidermal melanocytes from oxidative stress-induced apoptosis, loss of 

mitochondrial membrane potential, and intracellular ROS generation167,168, as well as in 

the regulation of melanogenesis, melanosome formation and maturation, and melanosome 

degradation in normal melanocytes and keratinocytes169-172.

The key role of melatonin in the regulation of autophagy has been documented in 

the context of various organ systems and pathologies173. Melatonin can help maintain 

cellular homeostasis either through autophagy promotion or suppression, depending on 
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cellular requirements and oxidative stress levels174. Since autophagic flux is required for 

maintenance of anagen and thus pigment production in human HFs175, it is possible 

that the intrafollicular synthesis of melatonin49 contributes to adequate autophagy levels. 

However, it is unknown whether melatonin impacts on autophagy in human epidermal and 

HF melanocytes. Yet, since melatonin and autophagy are so closely related to oxidative 

stress in melanocytes, a relationship between them is anticipated166.

Melatonin prevents initiation of mitophagy through maintenance of the optimal Δψm176. 

Also, melatonin may reduce autophagy in epidermal and HF melanocytes indirectly by 

either reversing mitochondrial dysfunction through reduced oxidative stress or by improving 

endoplasmic reticulum efficiency, resulting in less misfolded proteins, which are effects 

exerted by melatonin in the context of other organs systems and pathologies173.

SIRT1 is an autophagy substrate and stimulator that works by preventing the acetylation 

of key autophagy proteins (via deacetylation) (e.g., ATG5, ATG7 and ATG8/LC3)177,178. 

SIRT1 levels are reduced through autophagic–lysosomal degradation in aging tissues, 

which could contribute to melanocyte cell cycle arrest and a pro-inflammatory senescence-

associated secretory phenotype during skin aging179. Considering melatonin’s ability to 

upregulate SIRT1 expression11 (see (4) above), intracutaneously produced melatonin may 

thus positively regulate autophagy and exert anti-aging properties by stabilizing SIRT1 

levels. The role of melatonin in skin aging has been recently extensively reviewed274.

MELATONIN AND PERIPHERAL CIRCADIAN CLOCK GENES

The peripheral clock genes Bmal1 and Per1 are known to control pigmentation in human 

epidermal and HF melanocytes while their silencing in human HFs ex vivo stimulates 

melanogenesis, tyrosinase expression and activity, TYRP1/2 expression, melanocyte 

dendricity121. It is unknown how melatonin, the key neuroendocrine regulator of the 

central circadian clock 6, impacts on the pigmentary activity of human epidermal and 

HF melanocytes through the peripheral clock. Yet, cell culture studies (e.g., human 

epidermal keratinocytes180 and mouse neuro2A cells181) provide instructive clues as 

follows: melatonin may regulate peripheral clock-associated pigmentary effects, probably 

through activation of Nrf2, which triggers PI3K/AKT signaling15. PI3K/AKT signaling 

leads to stimulation of both BMAL1181 and then PER1, which inhibits melanogenesis 

enzymes (tyrosinase, TRP-1, and TRP-2) and melanogenesis121,123, as hypothesized in 

figure 4 (for detailed discussion, see supplementary text 1).

OPEN KEY QUESTIONS AND MODELS TO ANSWER THEM

To decisively advance the field, several open questions in addition to those already posed 

above must be clarified.

(1) Does exogenous melatonin robustly inhibit melanogenesis in human epidermis 
and/or HFs, and if so, by which mechanism(s)?

The majority of melatonin effects on mammalian melanogenesis have been observed in 

cell culture studies, even though – for the reasons discussed above – it is most meaningful 

Sevilla et al. Page 11

J Pineal Res. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to study melanocyte activities within their natural tissue habitat, rather than in isolation. 

Therefore, to best determine melatonin’s therapeutic potential in pigmentary disorders, and 

to clarify definitively whether it indeed robustly inhibits human melanogenesis in situ, it is 

critical to study melatonin in human epidermal and HF melanocytes in skin and HF organ 

culture. In these ex vivo assays, besides pharmacological antagonist and blocking-antibody 

studies, gene silencing can be performed for mechanistic research to elucidate the exact 

mechanisms by which melatonin alters key regulatory elements of melanogenesis along the 

lines synthesized in Figures 1-4. It is important to do this in a strictly hair cycle-standardized 

manner as HF pigmentation is active only during active hair growth (anagen) and HF cycling 

impacts substantially on extrafollicular skin physiology (e.g., by a maximal HF production 

of melanotropic neuropeptides and growth factors during anagen), which may in turn also 

affect the response of intraepidermal melanocytes to melatonin.

(2) Does melatonin regulate human melanocyte proliferation, survival, and/or senescence 
under physiological circumstances and via which receptor or pathway?

Similarly, whether melatonin regulates the proliferation, survival and/or senescence of 

human epidermal and HF melanocytes under physiological conditions remains unclear. 

There is sufficient evidence that melatonin can affect these phenotypic traits in vitro. 

However, it remains to be established where melatonin ranks in the hierarchy of other 

local regulators of these melanocyte activities. Again, this is best studied in human skin 

and HF organ culture assays ex vivo. Ideally, this is complemented by studying human skin 

xenotransplants on SCID mice for long-term preclinical in vivo studies directly in the human 

target organ, and by knocking out or overexpressing cell type-dependent local production 

of melatonin, individual receptors (MT1 vs MT2), or different signaling pathways in 

defined human skin cell populations that are co-cultured under 3D conditions in human 

skin “equivalents”. This will also require the development of MT1-selective agents to match 

the abundance of available MT2-selective agents182.

(3) Can melatonin prevent and/or treat pigmentation disorders?

Ultimately, we need definitive answers to this question regarding which human pigmentary 

disorders can effectively be prevented or managed by melatonin administration, either 

topically or systemically. Above, we have delineated the rationale and preliminary clinical 

observations that encourage one to explore melatonin treatment in the pathophysiology 

and/or management of, for example, vitiligo, melasma, hair greying, and solar-related 

hyperpigmentation. However, more rigorous, well-controlled, prospective, randomized 

clinical trials are needed to determine utility and mode of application (systemic or topical) 

of melatonin, its metabolites, and its chemically synthesized derivatives, using optimally 

standardized and sensitive methods for recording changes in human skin/hair pigmentation. 

Also, skin or HF tissue samples from patients with such pigmentary disorders (perhaps 

beginning with vitiligo, melasma and hair greying) should be systematically screened for 

abnormalities in the cutaneous melatonin system, then organ-cultured, exposed to melatonin 

of varying concentrations, and analyzed for changes in key melanocyte biology read-outs in 
situ (e.g., melanin production, tyrosinase activity, expression of c-kit, gp100, MITF, TRP-1, 

TRP-2, Ki-67, senescence markers).
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THERAPEUTIC PERSPECTIVES

The multiple levels at which melatonin and its metabolites could intervene with human skin 

pigmentation invite therapeutic applications. In addition, melatonin’s safety, lack of or very 

low toxicity, and pleiotropic effects (e.g., UV protection, potent antioxidant activity, DNA 

repair, anti-aging, anti-inflammation, and melanogenesis inhibition) make melatonin an 

attractive therapeutic candidate for treatment of pigmentary disorders, such as melasma108 

and acanthosis nigrans-associated hyperpigmentation107.

Its photoprotective16,17, anti-photoaging11,110,183-186, anti-oxidative damage-

protective5,15,56,101,125,127,134 and DNA damage-repair15 properties also raise the possibility 

that melatonin may be useful to slow intrinsic and extrinsic skin aging and may exert 

melanocyte-protective properties in vitiligo and perhaps even aging-associated hair graying 

resulting from oxidative damage to the HFPU30. In fact, melatonin and its metabolites (e.g., 

AFMK) protect melanocytes in vitro15 from UV-induced DNA damage and apoptosis185,187 

when applied both before188 and immediately after UVB exposure15. This renders melatonin 

an effective therapeutic candidate for the prevention and management of solar radiation-

induced pigmentation disorders16,189-191. Finally, melatonin’s regulation of autophagy192 

(see above) might be exploited to treat pigmentary disorders with recognized autophagic 

defects such as vitiligo165,197, tuberous sclerosis193, and Cockayne syndrome194.

Due to its ability to penetrate the stratum corneum195 and to thus evade prominent first-pass 

metabolism of oral melatonin by the liver12, topical administration of melatonin may be 

superior to the oral route, and permits administration of high melatonin doses directly 

to human skin target cells, namely epidermal and HF melanocytes and their keratinocyte 

environment in the EPU and HFPU. Indeed, the use of topical sunscreen fortified with 

melatonin offers superior sun protection and the ability to counteract UV radiation-induced 

oxidative stress187. A topical sunscreen formulation fortified with melatonin and pumpkin 

seed oil reportedly had enhanced photoprotective effects196. Also, the application of 

12.5% melatonin cream protects skin from natural sunlight-induced erythema197. New 

topical formulations such as nanostructured lipid carriers198,199 and ethosomes200 promise 

optimized melatonin delivery in future clinical trials.

Given that theophylline (which is licensed for topical application as a cosmetic agent) 

can increase melatonin levels released by organ-cultured human skin into the medium201 

while noradrenaline stimulates melatonin synthesis within human scalp HFs ex vivo49, it is 

also possible that the intracutaneous synthesis of melatonin can be stimulated by topically 

applied agents that increase intracellular cAMP levels and thus intracutaneous production of 

endogenous melatonin.

To our knowledge, genetic disorders associated with melatonin deficiency and its receptor 

deficiencies have not yet been described but may well have been missed. In addition, 

melatonin’s nuclear receptors, as opposed to its membrane receptors (MT1 and MT2), 

still must be definitively identified. Of note, many of melatonin’s protective effects in 

melanocytes described above, such as melatonin’s role as a free radical scavenger125,126 and 

stimulator of DNA repair15 and antioxidant enzyme expression and activity1 are independent 
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of MT1 and MT2 signaling. Therefore, MT1 and/or MT2 genetic disorders would not 

directly alter receptor-independent protective effects in melanocytes. While deficiencies 

in melatonin synthesis or receptor expression levels in the human system, namely in 

human skin, clearly await more systematic scrutiny, this limits what can be deduced from 

the study of dysfunctional MT1/2, even if patients become identified, for example, with 

receptor mutations. Furthermore, no genetically mutant mice are currently known that have 

substantial melatonin synthesis or MT receptor deficiencies in their skin.

CONCLUSIONS

1. In normal human epidermal melanocytes, melatonin and its metabolites, such 

as AFMK, 6-OHM, and 5-MT, inhibit melanogenesis, tyrosinase activity, and 

melanocyte proliferation in vitro. Yet, it is unclear how robustly this translates to 

the physiological tissue context in human epidermis and HFs. Instructive organ 

culture assays are readily available to clarify this.

2. Melatonin may inhibit melanogenesis not only by stimulation of MT receptors 

(MT1/2), but also indirectly by cell desensitization to estrogens, reducing 

skin sensitivity to α-MSH stimulation, and activation of Nrf2 and PI3k/AKT 

pathways and/or MAPK signaling. Additional indirect mechanisms/targets by 

which melatonin may regulate human melanocyte physiology include calcium-

calmodulin complex, NOS1, p53, cytochrome c, ETC enzymes, SIRT3/SOD2, 

and possibly NQO2 (see Figures 1 and 2).

3. Besides accounting for dose-, application mode-, species-, gender-, age-, and 

ethnicity-dependent differences in the melatonin response of melanocytes in 

a given tissue location, much greater attention must be paid to the tissue 

context in which melatonin affects human melanocyte physiology, such as the 

specific hormonal tissue environment, internal and external stressors, and local 

determinants of melatonin metabolism through indolic and kynuric pathways.

4. There is good in vitro evidence that melatonin can unfold powerful oxidative 

damage-limiting effects on melanocytes, namely under skin photodamage 

conditions, through MT1/2 activation, direct ROS scavenging, Nrf2 activation, 

promotion of mitochondrial homeostasis, calcium/calmodulin complex-induced 

inhibition of NOS1, and possible action on NQO2. Yet, whether melatonin really 

does so under physiological conditions and inhibits melanocyte senescence in 

human epidermis and HFs in situ, remains to be conclusively demonstrated.

5. Dysfunctional mitochondria and inadequate autophagy may also contribute 

to premature senescence and accelerated aging in human epidermal and HF 

melanocytes. Melatonin’s high concentrations in mitochondria and ability to 

help maintain mitochondrial homeostasis and modulate mitophagy justify the 

expectation that melatonin will become useful not only in limiting melanocyte 

senescence, a potential driver overall skin aging, but also invites clinical 

melatonin applications in the emerging field of “mitochondrial dermatology”.

Sevilla et al. Page 14

J Pineal Res. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Since silencing of the core peripheral clock genes, Clock, Bmal1, and Per1 
stimulates melanogenesis in human epidermis and HFs in situ, melatonin 

may regulate peripheral clock-controlled pigmentary effects. One conceivable 

pathway is the activation of Nrf2 and PI3K/AKT signaling, which is expected to 

promote BMAL1 and PER1’s downstream melanogenesis-inhibitory effects, e.g., 

on tyrosinase activity.

7. The field is challenged to now move from in vitro to ex vivo and preclinical in 
vivo studies, using available human skin and HF organ culture assays as well 

as human skin xenotransplants on immunocompromised mice, to definitively 

clarify the relevance of melatonin in human melanocyte physiology and to 

more rigorously probe how therapeutically useful melatonin really is in selected 

human pigmentary disorders, ranging from hair greying to melasma and vitiligo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic summary of melatonin’s effects in human epidermal and HF melanocytes.
Exogenous or endogenously synthesized melatonin can regulate phenotype in these cells 

through interactions with membrane-bound MT1/2 receptors NQO2, and the calcium/

calmodulin complex or through stimulation of Nrf2 (reviewed in56). However, it is not 

fully understood if melatonin activates NQO2, a detoxifying enzyme7,261,262 Noteworthy 

phenotypic effects of melatonin include melanogenesis inhibition, and stimulation of DNA 

repair, and expression and activity of antioxidant enzymes (e.g., superoxide dismutase 

and catalase) (reviewed in8). Melatonin may also be transported to different subcellular 

compartments, but the detailed mechanism is not fully understood25. Furthermore, 

melatonin can be synthesized within these melanocytes. Melatonin and its metabolites, 

such as cyclic-3-hydroxymelatonin (C-3HOM) and N-acetyl-5-methoxyknuramine (AMK), 

directly scavenge ROS/RNS125,126 and help maintain mitochondrial homeostasis through 

interactions with cytochrome C and enzymes of the electron transport chain. Specifically, 

cytochrome C within mitochondria is thought to be involved in the conversion of melatonin 

to its potent antioxidant metabolite, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine 

(AFMK)158, and its secondary product, AMK, when in the presence of hydrogen 

peroxide101. Also, melatonin may interact with cytochrome C and electron transport chain 

(ETC) enzymes within mitochondria to promote mitochondrial homeostasis and decrease 
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free radical formation160. Furthermore, melatonin may affect the transcription of peripheral 

clock genes Bmal1 and Per1 with alterations in melanogenesis and other melanocyte 

activities27,123,181. Direct effects are shown by solid lines and multiple reactions and 

signaling are shown by dashed lines. Melatonin receptors 1 and 2 (MT1/2); hair follicle 

(HF); reactive oxygen species (ROS); reactive nitrogen species (RNS); nuclear factor 

erythroid 2-related factor 2 (Nrf2); N-Ribosyldihydronicotinamide:Quinone Reductase 2 

(NQO2).
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Figure 2. Schematic summary describing PI3K/AKT pathway modulation and its effects on 
melanogenesis.
In normal human melanocytes, melatonin stimulates Nrf215, which can activate the 

PI3K/AKT pathway to phosphorylate (i.e., inactivate) GSK-3. Without GSK-3, MITF 

remains unphosphorylated (i.e., inactive), leading to decreased transcription of tyrosinase, 

TRP-1, and TRP-2, thereby decreasing melanogenesis123.
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Figure 3. Schematic summary describing antioxidant defense mechanisms by melatonin and its 
metabolites in human melanocytes.
Melatonin can bind to MT1 and MT2 receptors on the cell membrane, triggering a signaling 

cascade that leads to expression of antioxidant enzymes (e.g., SOD, GPx, GR, and CAT) for 

defense against ROS and RNS125,127. Melatonin may also be transported to the cytoplasm, 

but the detailed mechanism is not fully understood25. Furthermore, melatonin can be 

synthesized within these melanocytes. Melatonin and its metabolites, such as C-3HOM and 

AMK, can directly scavenge ROS/RNS125,126. Furthermore, melatonin and its metabolites, 

including AFMK, 6-OHM, 5-MT, and NAS, protect human epidermal melanocytes from 

UV-B-induced damage/apoptosis by enhancing phosphorylation of p53 at Serine 15, 

thereby leading to activated p53 accumulation in the nucleus and stimulation of DNA 

repair15. Melatonin may activate NQO2, thereby reducing oxidative stress134,135, however 

this mechanism’s presence in these melanocytes is not fully understood7. Melatonin at 

concentrations higher than 1 nM within the cell can interact with the calcium/calmodulin 

complex leading to inhibition of NOS1-mediated generation of RNS, with potential 

reductions in RNS levels25. Melatonin may also inhibit the Keap1-E3 ligase complex and 

the ubiquitination and proteasomal degradation of Nrf2, thereby preserving high Nrf2 levels 

that translocate to the nucleus. In the nucleus, Nrf2 may couple with Maf, a transcription 
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factor, allowing Nrf2 to bind ARE on the promoter region of genes encoding antioxidant 

enzymes (e.g., SOD and GPx), resulting in their increased expression and activity, which 

then convert ROS and RNS to unreactive products1. Direct effects are shown by solid 

lines and multiple reactions and signaling are shown by dashed lines. Reactive oxygen 

species (ROS); reactive nitrogen species (RNS); superoxide dismutase (SOD); glutathione 

peroxidase (GPx); glutathione reductase (GR); catalase (CAT).
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Figure 4. Schematic summary describing hypothesized mechanisms by which melatonin may 
regulate melanogenesis in normal human epidermal and HF melanocytes.
Melatonin may activate the PI3K/AKT pathway, via Nrf2 activation15, to stimulate 

expression of Bmal1, thereby increasing BMAL1 levels181. BMAL1 may increase 

expression of Nrf2 to further stimulate this PI3K/AKT pathway263 and PER1 to 

inhibit MITF downstream121. PER1 also translocates to the nucleus and inhibits 

transcriptional activity of BMAL1264,265, thereby preventing BMAL1’s stimulation of MITF 

transcription266. Decreased MITF levels lead to decreased expression of melanogenesis 

enzymes tyrosinase, TRP-1, and TRP-2 and results in decreased melanogenesis123.
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Table 1.

A selection of recognized melatonin functions

Melatonin functions: Examples References

Aerobic glycolysis inhibition (glycolytic) 202 

Anti-aging 11,114,203

Anti-inflammatory 204-206

Anti-melanoma: anti-proliferative and anti-invasive effects 21,23,207,208

Anti-neoplastic: anti-proliferative and cell cycle arrest 209 

Antioxidant 190,210

Blood pressure regulation 211 

Body mass regulation 212 

Bone mass regulation 213,214

Cardioprotection 211,215

Circadian rhythm regulation 3,6

DNA repair 15 

Dopaminergic neuron development in the substantia nigra 216 

Estrogen receptor regulation 49 

Gastrointestinal tract protection 214 

Immune cell proliferation and cytokine release 18,19

Inner ear protection 217 

Insulin secretion regulation 218 

Liver disease protection 219 

Mitochondrial function and biogenesis 220 

Nephroprotection 221 

Neuroprotection 222 

Retina protection 223,224

Reproduction and sexual maturation regulation 225,226

Sensitization of cancers to radiation and chemotherapy 227-231

UV protection 98,145,185,190,232,233

Wound healing 234 
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Table 2.

Effects of melatonin on hair growth and pigmentation

Growth

Species Effect References

Mouse Influence on the hair cycle by the pineal gland 235 

Weasel Induction of molt 236 

Mink Induction of autumn molt 237 

Soay rams Stimulation of molting 238 

Limousine ram Increased HF activity and reduced prolactin plasma levels 239 

Mink Induction of winter fur growth (supposedly by inhibition of prolactin) 240 

Cashmere goat Increase of growth initializing activity of secondary HFs in springtime 241 

Red deer Premature molting of summer pelage and reduced serum prolactin concentrations 242 

Merino sheep No influence of pinealectomy on wool growth and hair density 243 

New Zealand goat Induction of pro-anagen phase 244 

Cashmere goat (cultured HFs) Increase of hair shaft elongation and DNA-synthesis 245 

Domestic pig Increase of pelage development and cycle frequency 246 

Ferret Earlier change of winter and consecutive spring coat 247 

Raccoon dogs More rapid shedding of mature underfur hairs and growth of new underfur hairs; suppression 
of prolactin levels

248 

Siberian Husky dogs No change in hair growth or anagen rate (topical administration) 249 

Rex Rabbit offspring Maternal melatonin supplementation increased HF density, reduced hairiness, and improved 
fur quality of offspring

250 

Cashmere goat Continuous subcutaneous implantation of melatonin promoted cashmere to enter the anagen 
2 months earlier and induce secondary hair follicle development.

251 

Human (cultured HFs) Increase of hair shaft elongation (30 μM); Decrease of hair shaft elongation (1–5 mM) 252 

Human (cultured HFs) No influence on hair shaft elongation, matrix keratinocyte proliferation/apoptosis and hair 
cycling (10−12–10−6 M)

49 

Human (trichograms) Slight increase of anagen hair rate in women with androgenetic and diffuse alopecia 253 

Human (clinical assessment) Topical melatonin loaded in antioxidant nanostructured lipid carriers significantly increased 
hair density and hair shaft diameter when compared to topical melatonin alone in men with 
androgenetic alopecia

198 

Pigmentation

Species Effect References

Weasel Induction of hair color change 236 

Mammalians Effects on hair color 254 

Djungarian hamster Pattern of melatonin release induced by experimentally induced photoperiods modifies molt 
into summer pelage

255 

Siberian hamster (cultured 
HFs)

Post-tyrosinase inhibition of melanogenesis (10−10–10−6 M) 256 

Yellow mice (C3H/He-A*vy) Slight reduction of coat darkening 257 

Mountain hares Season-dependent effects of melatonin on fur color 258 

Djungarian hamster Induction of the winter molt and pelage color change 259 
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Growth

Species Effect References

Djungarian hamster Change of fur color 260 

Mouse Inhibition of melanogenesis 117 

Human (cultured HFs) No effect on pigmentation (10−12–10−6 M) 49 

Hair follicle (HF).
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