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Cardiometabolic diseases are the leading cause of death worldwide. Despite a known genetic 

component, our understanding of these diseases remains incomplete. Here we analyzed the 

contribution of rare variants to 57 diseases and 26 cardiometabolic traits, using data from 

200,337 UK Biobank participants with whole-exome sequencing. We identified 57 gene-based 

associations, with broad replication of novel signals in Geisinger MyCode. There was a striking 

risk associated with mutations in known Mendelian disease genes, including MYBPC3, LDLR, 

GCK, PKD1 and TTN. Many genes showed independent convergence of rare and common 

variant evidence, including an association between GIGYF1 and type 2 diabetes. We identified 

several large-effect associations for height, and 18 unique genes associated with blood lipid or 

glucose levels. Finally, we found that between 1.0 and 2.4% of participants carried rare potentially 

pathogenic variants for cardiometabolic disorders. These findings may facilitate studies aimed at 

therapeutics and screening of these common disorders.

Over the past decade, genome-wide association studies (GWAS) have provided critical 

insights into the genetic architecture of cardiometabolic traits and diseases, through the 

identification of thousands of associated genomic loci1-7. Typically, these studies focused on 

common variants, which individually often confer small effect sizes and do not always 

directly implicate causal genes. Familial linkage and targeted sequencing studies have 

identified numerous Mendelian causes of cardiovascular disease8-11, although such studies 

have been limited by small sample size. A handful of larger case-control studies have had 

some success in discovery of genes harboring large-effect variants for adult-onset disease, 

for example, for myocardial infarction12 and diabetes13.

Analysis of large-scale population-based sequencing data offers multiple advantages over 

conventional common variant association studies. First, sequencing provides the opportunity 

to identify rare and ultra-rare genetic variants, which often would not have been genotyped, 

or typed inaccurately, by array genotyping and imputation14. Second, exome sequencing—

which is focused on the protein-coding regions of the genome—may directly implicate 

genes in phenotype variability through burden testing of multiple rare protein-coding 

variants15. Third, analysis of rare coding variation can help establish the directionality of 

impaired gene function through the analysis of loss-of-function alleles, a feature that can 

be informative both for understanding disease mechanisms and for potential therapeutic 

targeting. In cardiovascular research, a paradigmatic example of this approach is PCSK9, 

which progressed from gene discovery to an available therapeutic in just over a decade16-18. 

Finally, sequencing at scale enables assessment of penetrance, risk, and carrier frequencies 

for rare deleterious genetic variation14,19.

Here we present an analysis of the second release of whole-exome sequencing data 

from the UK Biobank, a population-based study, consisting of sequencing data on 

approximately 200,000 individuals20. Through exome-wide gene-based analyses, we 

evaluate the contributions of rare (minor allele frequency (MAF) < 0.1%) damaging variants 

to 83 traits, including anthropometric traits, cardiometabolic diseases, metabolic blood 

biomarkers, electrocardiographic traits and cardiac magnetic resonance imaging traits. We 

replicate novel signals in the Geisinger MyCode cohort (also known as the DiscovEHR 

study), comprising 166,000 participants with exome sequencing data. Finally, we describe 
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the frequency of mutations in genes underlying cardiovascular diseases and monogenic 

diabetes.

Results

Exome-wide rare variant analysis of 83 traits identifies 57 significant associations.

After sample level quality control procedures, we identified 200,337 UK Biobank 

participants with a mean age of 57 years at enrollment and 68 years at last follow-up, of 

which 55% were female and 87% were of white-British European ancestry (Supplementary 

Fig. 1). Table 1 provides the baseline characteristics and case number for each representative 

disease phenotype. A total of 12,756,075 distinct autosomal genetic variants were available 

from the exome sequencing data after quality control, of which 12,553,131 had a MAF < 

0.1%.

We performed exome-wide gene-based tests across 57 medical conditions (Supplementary 

Tables 1 and 2) and 26 quantitative cardiometabolic traits (Supplementary Table 3), 

testing rare loss-of-function (LOF) and missense variants. Exome-wide gene-based analyses 

showed good calibration of P-values across all performed tests (Supplementary Figs. 2-4 

and Supplementary Note), although three traits (height, weight and QTc) showed moderate 

inflation of test statistics (1.1 ≤ λ < 1.25; Supplementary Fig. 4). In an attempt to identify 

the cause of the inflation, we analyzed rare synonymous variants. Exome-wide analysis 

of rare synonymous variation produced good calibration of test statistics (Supplementary 

Fig. 5), indicating that a large proportion of the observed inflation was due to polygenicity 

rather than bias. We then performed a number of additional sensitivity analyses. When 

we restricted our analyses to individuals of homogeneous white-British European ancestry, 

all identified gene-phenotype associations still showed strong evidence of association with 

comparable effect size estimates (Supplementary Tables 4 and 5 Supplementary Figs. 6 and 

7). Furthermore, when restricting to LOF variants only, we generally observed comparable 

effect size estimates across the significant associations (Supplementary Figs. 8 and 9). One 

notable exception was the association between GCK and type 2 diabetes, for which effect 

sizes were attenuated by the inclusion of predicted-deleterious missense variants.

In total, we identified 57 significant associations across 83 traits at an overall FDR Q < 

0.01, which was equivalent to P < 5.44 x 10−7. All tests reaching Q < 0.05 are displayed 

in Supplementary Tables 4 and 5. Of the 57 significant associations, 42 were known, while 

15 represented novel associations (Tables 2 and 3). Given the many parallel analyses of the 

same dataset, we define ‘novel’ to indicate rare variant associations that were not described 

prior to the release of the UK Biobank exomes. Across the disease associations where 

rare variants were associated with increased disease risk, the median OR was large at 5.6 

(Q1-Q3: 2.4-13.0). The median absolute beta for significant quantitative associations was 

0.63 s.d. (Q1-Q3: 0.43-0.85).

Jurgens et al. Page 3

Nat Genet. Author manuscript; available in PMC 2022 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Identified associations represent burdens of multiple rare variants and are independent of 
common variation.

To assess the stability of our results to changes in the analytic approach, we performed 

a leave-one-variant-out (LOVO) analyses for each of the significant associations. For 

example, when analyzing the relation between TSHR and hypothyroidism, the highest 

LOVO P-value attained for the significant binary associations was P = 7.9 x 10−4 after 

removing p.Trp546Ter (Supplementary Tables 4 and 6). Similarly, the highest LOVO P-

value for the significant quantitative associations was P = 5.7 x 10−4 for LCAT/high-density 

lipoprotein after removing p.Tyr107Ter (Supplementary Tables 5 and 7). Importantly, the 

novel associations that we identified remained robust in a LOVO analysis (Supplementary 

Fig. 10). Thus, the genes significantly associated with diseases or traits were identified due 

to a burden of multiple contributing rare variants, although in certain cases—such as the 

associations of ANGPTL2 with height and NR1H3 with high-density-lipoprotein—single 

variants were important. The complete LOVO results for all variants, as well as variant 

frequencies and annotations, are presented in Supplementary Tables 6 and 7.

We then aimed to evaluate whether the identified rare variant signals were independent 

of nearby common variants. We first performed common variant analyses for common 

(MAF > 0.5%) imputed variants within ± 500 kb of the gene; we then performed the rare 

variant association tests with the index common variants as additional covariates (Methods). 

Overall, we found that the effect size estimates, and P-values, were not significantly 

changed after conditioning on nearby common variants (Supplementary Tables 8 and 9). 

Interestingly, the association of LPA with lipoprotein(a) became more significant (P = 4.3 

x 10−10, β = −0.35; Pconditional = 7.7 x 10−23, βconditional = −0.45), as did the suggestive 

associations KCNQ1 with QTc, BSN with BMI, and BSN with weight (Pconditional < 5.44 x 

10−7; Supplementary Table 9).

Independent replication in the Geisinger MyCode cohort.

To replicate gene-based associations that we identified in the UK Biobank, we utilized data 

from the Geisinger MyCode cohort from the Geisinger health system21 (also known as the 

DiscovEHR cohort). MyCode is a healthcare-based cohort with high quality whole-exome 

sequencing data for 166,661 adults (aged 57 ± 18 years, 61% female) of primarily European 

ancestry (95%) linked to longitudinal electronic health records. We put forward the 15 

associations that were unreported prior to the release of UK Biobank exomes. Of 14 testable 

associations, 13 (93%) replicated in MyCode at P < 0.05 with consistent direction of effect 

(Table 4).

Rare variants confer substantial risk and penetrance for cardiometabolic and other 
disorders.

From the exome-wide analyses of 57 curated medical conditions in the UK Biobank, 

we observed a number of well-described gene-disease associations (Fig. 1 and Table 

2). For cardiac diseases, these include the association between dilated and hypertrophic 

cardiomyopathy with the genes TTN and MYBPC3, respectively. For metabolic disorders 

involving cholesterol transport, glucose regulation, and thyroid disorders, associations were 

noted with LDLR, APOB, PCSK9, GCK, TSHR and TG. Interestingly, biallelic mutations in 
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TSHR and TG are known to cause penetrant congenital thyroid disease (MIM 275200 and 

274700), while our findings indicate that heterozygote carriers may also be at 2 to 3-fold 

increased odds of hypothyroidism. Accordingly, large-effect missense variants in both genes 

have been found to affect thyroid stimulating hormone levels22, and common variants near 

both genes are associated with thyroid disease, including autoimmune thyroiditis23.

In many cases, the phenotypic penetrance of deleterious variants and the increased 

risk of disease was striking. For example, 71% of LDLR mutation carriers had 

hypercholesterolemia (OR 13.1, 95%CI 8.3-21.3), 45% of MIP variant carriers had cataracts 

(OR 7.6, 95%CI 3.4-16.7) and 47% of PKD1 variant carriers had chronic kidney disease 

(OR 40.3, 95%CI 21.3-76.2) (Supplementary Table 10 and Supplementary Figs. 11 and 12). 

Indeed, PKD1 mutations, while known for penetrant autosomal dominant polycystic kidney 

disease, have recently been suggested to exhibit incomplete penetrance24 (Supplementary 

Note). GCK mutation carriers had over 14-fold increased odds (95%CI 8.3-23.4) of type 2 

diabetes, with over 48% of carriers having a diagnosis. GCK variants are known to cause 

maturity-onset diabetes of the young25 and have also previously been found enriched in 

type 2 diabetes cases26,27 (Supplementary Note). TTN mutations were associated with a 

several-fold increased risk of multiple cardiovascular disorders, including an over 11-fold 

increased odds of dilated cardiomyopathy (MIM 604145), and a more than doubling in the 

risk of heart failure, atrial fibrillation19, and ventricular arrhythmia28. TTN variants also 

had novel associations with the risk of supraventricular tachycardia (OR 2.5, P = 2.9 x 

10−9) and mitral valve disease (OR 2.3, P = 2.6 x 10−11), findings which were replicated 

in MyCode (OR 1.4, P = 0.01 and OR 1.5, P = 8.3 x 10−4, respectively). While these 

specific associations have not been reported before, they may be related to diagnoses of 

atrial fibrillation or dilated cardiomyopathy. Of note, all known and novel TTN associations 

became stronger (markedly higher ORs and lower P-values) after restricting to exons highly 

expressed in cardiac left ventricular tissue (Supplementary Note).

Rare variants in GIGYF1 are associated with diabetes risk.

We further identified two gene associations for diabetes, which were not reported prior to 

the release of UK Biobank exomes. Rare mutations in GIGYF1 were significantly associated 

with an increased risk of type 2 diabetes (55 carriers, OR 5.6, P = 3.0 x 10−7), and also 

associated significantly with higher blood glucose levels (β = 0.8 s.d., P = 9.5 x 10−9) 

and lower low-density lipoprotein levels (β = −0.8 s.d., P = 9.02 x 10−9) (Tables 2 and 3 

and Fig. 3). GIGYF1 further showed suggestive evidence of association with lower insulin-

like growth factor-1 levels (Fig. 3). Common variants near GIGYF1 also associated with 

diabetes risk and glucose levels7 (Supplementary Table 11). Using GTEx, we found that the 

top common variants in this locus were strong expression-QTLs for GIGYF1 in multiple 

relevant tissues (adipose tissue, pancreas, thyroid, skeletal muscle), with the expression-

lowering alleles showing consistency with the observed LOF association (Supplementary 

Note and Supplementary Table 12). The protein product of GIGYF1 regulates insulin-like-

growth factor signaling29 and interacts with Grb10, a protein that has been implicated in 

insulin signaling, glucose tolerance and insulin resistance30. GIGYF1 LOFs have previously 

been linked to autism31, although none of the carriers in the present study had ICD code 

diagnoses relevant to autism or developmental delay. In MyCode, the association between 

Jurgens et al. Page 5

Nat Genet. Author manuscript; available in PMC 2022 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rare variants in GIGYF1 and type 2 diabetes was replicated (OR 3.2, P = 2.0 x 10−9), as 

was the association with glucose (β = 0.5, P = 1.4 x 10−9). We further leveraged summary 

data from a previous exome sequencing study of diabetes13, and found additional evidence 

of independent replication for GIGYF1 LOF variants (9 carriers, OR 8.6, P = 7.8 x 10−3). 

Across all three studies, GIGYF1 variants were robustly associated with type 2 diabetes (OR 

3.8, P = 4.1 x 10−16; Extended Data Fig. 1).

Mutations in CCAR2, also known as KIAA1967 and DBC1, were also associated with 

diabetes risk in the UK Biobank (26 carriers, OR 12.8, P = 5.4 x 10−8). Common variants 

near CCAR2 associated with diabetes risk as well7 (Supplementary Table 11), and the top 

common variant in this locus was found to be a significant expression-QTL for CCAR2 
in multiple relevant tissues (Supplementary Table 12 and Supplementary Note). Previous 

studies have suggested that CCAR2 regulates a glucose metabolic gene network, and that the 

gene is downregulated in cells from diabetic patients32. Furthermore, Ccar2 knockout mice 

develop a metabolic phenotype, including obesity, elevated glucose and insulin resistance33. 

However, we were not able to replicate the association between CCAR2 rare variants and 

diabetes in MyCode (P = 0.62). Therefore, the role for CCAR2 remains uncertain, and 

further studies are necessary to dissect the contribution of CCAR2 mutations to human 

diabetes.

Rare variants confer large effect sizes for quantitative cardiometabolic and anthropometric 
traits.

In our primary analyses, we identified 18 unique genes that were significantly associated 

with blood lipid or glucose levels (Table 3 and Fig. 2). Rare variants conferred large effect 

sizes, ranging from 0.3 to 2.2 s.d., and in many cases showed pleiotropy across multiple 

metabolic traits (Fig. 3 and Supplementary Table 13). As expected, APOB (β = −2.2 s.d. 

for low-density lipoprotein and β = −1.4 s.d. for triglycerides), APOC3 (β = −1.2 s.d. for 

triglycerides) and GCK (β = 1.2 s.d. for glucose) were among genes conferring the largest 

effect sizes.

Our analysis revealed several genes that have been proposed as potential therapeutic 

targets or for which lipid-lowering therapeutics are in development, such as ANGPTL334, 

ANGPTL435 and PCSK916-18. Other notable findings included PDE3B, in which damaging 

variants were associated with lower triglyceride levels (β = −0.3 s.d., P = 3.6 x 10−7), 

consistent with previous reports4. PDE3B variants have also been associated with improved 

body fat distribution, making it an interesting therapeutic target36. Of note, our findings are 

independent of previous UK Biobank analyses for this gene, as the functional4,36 stop-gain 

variant p.Arg783Ter was not included in the current analysis based on MAF filters. Indeed, 

conditioning on p.Arg783Ter, and nearby common variants, did not strongly affect the 

results (β = −0.3 s.d., P = 4.3 x 10−6) (Supplementary Table 9).

We further found that rare mutations in PLIN1 were associated with elevated high-density 

lipoprotein levels (β = 0.4 s.d., P = 8.01 x 10−15), an association that was confirmed 

in MyCode (β = 0.4 s.d., P = 9.29 x 10−5). Furthermore, PLIN1 variants associated 

suggestively with decreased triglyceride levels (β = −0.2 s.d., P =1.6 x 10−5) and nominally 

with lower risk of hypercholesterolemia (OR 0.69, P = 9.0 x 10−3) and lower risk of 
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coronary artery disease (OR 0.56, P = 0.03) (Fig. 3 and Supplementary Table 13). PLIN1 
frameshift variants have paradoxically been linked to a phenotype of partial lipodystrophy 

with low levels of high-density lipoprotein and high triglycerides37. Our findings, however, 

are consistent with the notion that PLIN1 haploinsufficiency does not cause partial 

lipodystrophy38 and indicate that PLIN1 inhibition39 might represent a potential target for 

lipid therapeutics.

Among the many associations between rare variants and cardiometabolic traits, lipid 

associations for GIGYF1 (low-density lipoprotein; β = −0.8 s.d., P = 9.02 x 10−9) and 

NR1H3 (high-density lipoprotein; β = 0.4 s.d., P = 3.27 x 10−16) were also novel, and 

replicated in MyCode (GIGYF1: β = −0.3 s.d., P = 1.76 x 10−3; NR1H3: β = 0.4 s.d., P = 

2.97 x 10−6, respectively). Common variants near both genes show concordant associations 

with blood lipid levels40,41 (Supplementary Table 11). Furthermore, top common variants 

in both loci are significant expression- or splice-QTLs for these genes in relevant tissues 

(Supplementary Table 12 and Supplementary Note). NR1H3 encodes the liver X receptor 

alpha, a regulator of cholesterol homeostasis in the liver42. For GIGYF1, our findings 

indicate that damaging variants may be beneficial for blood lipids (e.g. lower low-density 

lipoprotein), yet harmful for glucose homeostasis (e.g. higher glucose and increased risk 

of diabetes). Interestingly, an inverse association between cholesterol and diabetes risk 

has been observed previously for common variants43,44, and for lipid medications such 

as statins45,46. A multivariate GWAS analyzing diabetes and concurrent lower low-density 

lipoprotein in the UK Biobank previously identified a locus overlapping GIGYF147.

We further found 7 novel rare variant associations for height (Table 3 and Fig. 2), all of 

which replicated at P < 0.05 in MyCode (Table 4). While common and low-frequency 

variant analyses have already implicated DTL, ZFAT, PIEZO1, SCUBE3, ANGPTL2, IRS1 
and PAPPA in standing height48-50 (Supplementary Table 11 and Supplementary Note), 

our results indicate that rare variation in these genes may confer substantial effects, with 

absolute effect sizes ranging from 0.2 to 1.0 s.d. (Tables 3 and 4). Interestingly, IRS1 and 

ANGPTL2 represent genes of possible interest to cardiometabolic health. Irs1 knockout 

mice exhibit both impaired growth and insulin resistance51, while ANGPTL2 is involved in 

many metabolic processes, including cardiac energy metabolism and heart failure52.

Over 1% of individuals carry putatively pathogenic rare variants for cardiometabolic 
disease.

Given the high prevalence and morbidity of cardiometabolic disease in the general 

population, we then sought to quantify carrier frequencies and disease associations for 

putatively pathogenic variation in the UK Biobank. Among 71 cardiovascular disease 

associated genes included on typical sequencing panels for arrhythmias, cardiomyopathies 

and hypercholesterolemia, we identified 55 genes that were reported for autosomal dominant 

Mendelian inheritance (Supplementary Table 14). Similarly, we found 13 genes reported for 

dominant forms of adult-onset diabetes. For each gene, we collapsed carrier status for rare 

LOF, pathogenic and likely pathogenic variants (Methods) and performed association tests 

with relevant diseases. Genes associated with a relevant disease at Q < 0.01 (P < 3.0 x 10−4) 

included TTN, MYBPC3, MYH7, LDLR, DSP, SCN5A, PKP2, GCK and HNF1A (Fig. 4 
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and Extended Data Fig. 2). The median OR for significant associations was 4.5 (Q1-Q3: 

3.9-18.8) and became OR 8.2 (Q1-Q3: 4.1-22.9) after excluding TTN associations.

As expected, variants in TTN were most common, as 0.42% of the samples (840 carriers) 

carried a truncating variant located in one of the cardiac exons (Fig. 4 and Supplementary 

Table 15). MYBPC3 variants, which associated with hypertrophic cardiomyopathy (OR 

88.9, P = 2.2 x 10−26) and several related phenotypes (Supplementary Table 16), were 

carried by 0.12% (244 carriers). Putatively pathogenic variants in LDLR were observed 

in 0.12% of individuals (236 carriers) and showed associations with coronary artery 

disease (OR 3.7, P = 6.8 x 10−8), and myocardial infarction (OR 4.0, P = 1.5 x 10−6). 

PKP2 variants, carried by 0.12% of individuals (235 carriers), showed an association with 

ventricular arrhythmias (OR 4.4, P = 2.21 x 10−4). SCN5A (0.10%) and DSP (0.06%) 

showed associations with conduction defects and dilated cardiomyopathy, respectively. GCK 
(0.02%) and HNF1A (0.01%) both were associated with type 2 diabetes (Extended Data Fig. 

2).

The penetrance of putatively pathogenic cardiovascular disease variants was generally 

modest (<15%), especially when compared to previous estimates from family-member based 

analyses, although GCK and HNF1A variants conferred high absolute risks of diabetes (64 

and 44% penetrance, respectively) (Supplementary Note, Supplementary Tables 10 and 15, 

and Supplementary Fig. 13). The yield of relevant LOFs and known pathogenic variants 

among disease cases was low for common diseases such as diabetes and atrial fibrillation 

(generally <5%), while dilated and hypertrophic cardiomyopathy both had rare variant yields 

of greater than 10% (Supplementary Note, Supplementary Fig. 14 and Supplementary Table 

17).

Overall, 2.4% of samples (n = 4,855) carried a putatively pathogenic variant in any of the 

68 panel genes included in our analysis (Fig. 4, Extended Data Fig. 2 and Supplementary 

Table 15). This statistic includes a number of genes with limited or disputed evidence of 

pathogenicity (e.g KCNE2), as well as LOFs for a number of genes where truncation is not 

an established mechanism of dominant disease (e.g. MYL2, MYL3, MYL4). As such, this 

number represents an upper-bound estimate. We then restricted our analysis to genes which 

associated significantly with a relevant phenotype at Q < 0.01. When restricting only to 

associated genes, we arrive at a lower-bound estimate of 2,098 carriers, or 1.0% of samples, 

as carriers of putatively pathogenic variants for cardiometabolic disease.

Discussion

The availability of exome sequencing data in nearly 200,000 individuals from the UK 

Biobank has provided an unparalleled opportunity to explore the genetic basis of common 

diseases using many distinct analytic approaches53-55. Through exome-wide gene-based 

analysis of very rare genetic variants, we replicate many known Mendelian gene-trait 

associations for cardiometabolic disorders in the UK Biobank. We also identify several 

large-effect associations that were not previously reported prior to the release of the UK 

Biobank exome data, and which were broadly replicated in the independent Geisinger 

MyCode cohort. We further quantify the frequency of rare pathogenic variation and 
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show that between 1.0% and 2.4% of individuals carry potentially high-impact putatively 

pathogenic rare variants for cardiovascular diseases and diabetes.

Our findings permit a number of conclusions. First, our findings show the value of large-

scale population sequencing for identifying key contributors to cardiometabolic disease, as 

well as the relative odds of disease associated with Mendelian mutations. For example, 

through exome-wide analyses, we identified large effect associations for rare MYBPC3 
variants with hypertrophic cardiomyopathy (OR 120, MIM 115197), LDLR mutations with 

hypercholesterolemia (OR 13, MIM 143890), PKD1 mutations with chronic kidney disease 

(OR 40, MIM 173900) and GCK with diabetes (OR 14, MIM 125853). In a targeted analysis 

of panel genes, we further found markedly increased disease risk (OR > 5) for multiple 

genes, including TTN, MYH7, DSP, SCN5A and HNF1A. Our data also allowed estimation 

of rare variant penetrance, strengths and limitations of which are discussed in detail in the 

Supplementary Note. These results highlight the potential of large-scale population-based 

sequencing for assessment of risk and pathogenicity associated with genes and variants.

Second, we identified associations for large-effect coding variants with cardiometabolic 

traits, which were not reported prior to the release of large-scale exome data. Rare variants 

in GIGYF1 were associated with marked increased risk of type 2 diabetes in discovery 

and replication datasets, with ORs ranging from 3.2 to 8.6. While GIGYF1 is among the 

hundreds of loci identified for diabetes through GWAS7, previous human genetic studies 

have not explicitly prioritized this gene prior to release of the UK Biobank exomes. 

In contrast, our findings directly implicate GIGYF1, a known regulator of insulin-like 

growth factor signalling29, in the pathogenesis of human diabetes. We also highlight novel 

large-effect associations for standing height, which showed similar convergence between 

evidence from rare and common genetic variants. We further identified several rare variant 

associations for blood lipids that have not been previously described through population-

based association testing, including GIGYF1, NR1H3 and PLIN1, as well as genes which 

have been put forward as potential therapeutic targets or for which therapeutics are under 

development, such as PDE3B, ANGPTL3 and ANGPTL4. Taken together, these results 

show the added value of exome sequencing for identifying genes with important roles in 

disease pathogenesis and therapeutic targeting.

Third, we quantify carrier frequencies of rare pathogenic variants for cardiometabolic 

diseases and show that a meaningful proportion of individuals carry genetic variants 

underlying cardiovascular disease and diabetes. LOF, pathogenic or likely pathogenic 

variants in cardiomyopathy, arrhythmia, hypercholesterolemia or diabetes genes were carried 

by 2.4% of individuals. Even when restricting to genes that show evidence of association 

with relevant outcomes, we identify 1.0% of UK Biobank participants as carriers of disease-

causing variation. Consistent with previous reports, TTN LOF variants were relatively 

common, accounting for nearly half of this group or 0.42% of individuals19,56,57. However, 

another ~0.5-2% of individuals may carry deleterious variation in other cardiometabolic 

disease genes. A previous analysis in a smaller subset of the UK Biobank already showed 

that ~2% of individuals carry clinically-actionable variants in 59 important Mendelian 

disease genes14. Our results were focused on a larger list of cardiometabolic disease genes, 

while incorporating population-based associations. These studies show the potential for 
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large-scale sequencing to identify a meaningful proportion of individuals at high risk of 

disease morbidity and mortality.

Fourth, our results have several analytical implications for rare variant analysis in large 

biobanks. We found that our rare variant associations were not negatively affected by 

adjustment for nearby common variation, likely due to our strict variant filter at MAF < 

0.1% in both the UK Biobank and gnomAD58, as employed previously15. In addition, effect 

sizes for LOF and missense variants were comparable to the effect sizes for LOF variants 

alone, which is likely a reflection of both variant frequency filters and strict inclusion 

filters based on 30 in silico missense prediction tools. Finally, we note that our gene-

based implementation of the saddle point approximation controlled well for test statistic 

inflation, even for extremely imbalanced phenotypes; we employed Firth’s regression to 

yield accurate OR estimates for rare variants. Indeed, recent analytical developments have 

shown the value of these methods for genetic analyses in large biobanks59,60. We have 

made our code for gene-based burden testing using the saddle point approximation, based 

on GENESIS code61, available through the repository https://github.com/seanjosephjurgens/

UKBB_200KWES_CVD.

In spite of the large sample size of over 200,000 sequenced individuals, we note that rare 

variant discovery power was still limited. For example, we identified only 3 associations 

for type 2 diabetes and 1 for atrial fibrillation at test-wide significance, despite having over 

12,000 cases for both phenotypes. This may reflect a modest contribution of rare variants 

to phenotypic variability, or of a distributed contribution over many genes. In support of 

the latter, a previous exome sequencing study of type 2 diabetes13 estimated that over 

75,000 sequenced cases, or over 600,000 samples from population-based biobanks, would 

be necessary to identify known diabetes drug targets at 80% statistical power. Therefore, UK 

Biobank analyses utilizing data from all 500,000 samples may prove particularly fruitful for 

complex diseases in the future.

Our study has several other potential limitations. First, participants in the UK Biobank 

are largely middle-aged individuals of European ancestry. As such, our findings may not 

be broadly applicable to all age strata and ancestries. Second, disease status in the UK 

Biobank relies on self-reports, ICD codes, operation codes, and death registry codes. As a 

consequence, some misclassification for disease phenotypes is possible. However, previous 

efforts using the same phenotypic definitions in GWAS for a number of analyzed diseases 

replicated well-described genetic loci for common variants2,62,63. Furthermore, many of 

the exome-wide significant rare variant associations presented here are well-described 

Mendelian gene-trait associations. Third, there is potential for ascertainment bias among 

participants in the UK Biobank, making it unlikely that the study perfectly reflects the 

overall middle-aged UK population. The ascertainment of UK Biobank participants would 

be anticipated to attenuate rather than inflate effect sizes and penetrance estimates, as 

discussed in detail in the Supplementary Note. Fourth, we acknowledge that alternate 

methods for defining diseases or traits are feasible such as analyzing all ICD or Phecodes. 

However, we used a set of curated disease definitions that builds from prior work and has in 

many cases been validated and replicated5,19,64.
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In conclusion, large-scale sequencing has enabled the dissection of the rare genetic 

contributors to cardiometabolic traits and diseases. We confirm many Mendelian gene-

disease associations in an unselected, population-based cohort. Furthermore, we also 

identified and replicated novel large-effect associations for several traits, including diabetes, 

blood lipids and standing height. Finally, we found that a considerable portion of individuals 

carry putatively pathogenic variants in cardiomyopathy, arrhythmia, hypercholesterolemia 

and diabetes genes. In the future, our findings may facilitate studies aimed at therapeutics 

and screening of cardiovascular and metabolic disorders.

Methods

Study population and phenotypes.

The UK Biobank is a large population-based prospective cohort study from the United 

Kingdom with deep phenotypic and genetic data on approximately 500,000 individuals aged 

40-69 at enrollment103. Curated disease phenotypes were defined using reports from medical 

history interviews, in- and outpatient ICD-9 and -10 codes, operation codes, and death 

registry records (Supplementary Table 1). For diseases and medical conditions, case status 

was determined at last follow-up. The breakdown of prevalent and incident cases, as well as 

the mean age at disease onset, are presented in Supplementary Table 2. Age at disease onset 

was defined as the earliest of either (i) age when electronic health records or death registry 

records first reported billing codes, or (ii) age at second or third visit if defined during a UK 

Biobank visit. Phenotypes defined at the first (baseline) UK Biobank visit were considered 

missing for age at onset. The UK Biobank further provides access to a wide range of other 

phenotypic data, including anthropometric measurements, electrocardiographic intervals, 

metabolic biomarkers, and cardiac magnetic resonance imaging data. The UK Biobank 

resource was approved by the UK Biobank Research Ethics Committee and all participants 

provided written informed consent to participate. Use of UK Biobank data was performed 

under application number 17488 and was approved by the local Massachusetts General 

Hospital Institutional Review Board.

Sequencing and quality control.

Whole-exome sequencing was performed on over 200,000 participants from the UK 

Biobank20, for which the methods have been described for the earlier release of data from 

approximately 50,000 individuals14. The revised version of the IDT xGen Exome Research 

Panel v1.0 was used to capture exomes with over 20X coverage at 95% of sites. Because 

the 200K dataset released by the UK Biobank had been subject to limited quality-control 

and filtering, we applied an extensive genotype, variant and sample level pipeline to produce 

a high-quality dataset for analysis, for which the methods are described in detail in the 

Supplementary Note. Briefly, we set low-quality genotypes to missing, after which we 

removed variants based on call rate (<90%), Hardy-Weinberg equilibrium test (P < 1 x 

10−15), presence in low-complexity regions, and minor allele count (≥1). Sample-level 

quality-control consisted of removal of samples that had withdrawn their consent, were 

duplicates, had a mismatch between exome sequencing and genotyping array data, had a 

mismatch between genetically inferred and self-reported sex, had low call rates or were 

outliers (outside 8 standard deviations from the mean) for a number of additional metrics 
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(Supplementary Note). Of the 200,642 individuals with exome sequencing who passed the 

internal quality-control, we excluded an additional 305 samples based on our filters, leaving 

200,337 individuals. We also defined an unrelated subset of this cohort (Supplementary 

Note), which included 185,990 individuals.

Variant annotation.

The protein consequences of variants were annotated using dbNSFP104 (version 4.1a) and 

the Loss-of-Function Transcript Effect Estimator58 (LOFTEE) plug-in implemented in the 

Variant Effect Predictor105 (VEP; version 95) (https://github.com/konradjk/loftee). VEP was 

used to ascertain the most severe consequence of a given variant for each gene transcript. 

LOFTEE was implemented to identify high-confidence loss-of-function variants (LOF), 

which include frameshift indels, stopgain variants and splice site disrupting variants. We 

also removed any LOFs flagged by LOFTEE as dubious, such as LOFs affecting poorly 

conserved exons and splice variants affecting NAGNAG sites or non-canonical splice 

regions. Missense variants were annotated using 30 in silico prediction tools included 

in the dbNSFP database. We collapsed information from the 30 tools into a single 

value, representing the percentage of tools which predicted a given missense variant was 

deleterious (Supplementary Note). A missense variant was considered damaging if at least 

90% of in silico prediction tools predicted it to be deleterious.

Rare variant burden analyses.

To identify genes and rare genetic variation relevant to cardiometabolic diseases and traits, 

we performed association tests between a curated binary or quantitative phenotype and 

rare variants using gene-based collapsing tests. Variants were considered rare if they had 

minor allele frequency (MAF) <0.1% in the UK Biobank exome sequencing dataset, and 

<0.1% in each major continental population in gnomAD58 (version 2 exomes). In our 

primary analysis, we collapsed carriers of LOF variants and predicted-damaging missense 

variants into a single variable by sample, for each gene. For a given binary phenotype, 

genes with ≥20 rare variant carriers were analyzed using a logistic mixed-effects model 

implemented in GENESIS61 (version 2.18.0), adjusting for age, sex, sequencing batch 

(first 50K vs remaining 150K) and significantly associated (P < 0.05) ancestral principal 

components (Supplementary Note). For analyses of MRI data, we additionally adjusted 

for MRI serial number. Missing genetic data were imputed to zero. We accounted for 

relatedness by including a sparse kinship matrix as a random effect (Supplementary Note), 

and P-values were computed using the saddle point approximation to account for case-

control imbalance106. Odds ratios (OR) and confidence intervals for binary traits were 

estimated using Firth’s bias-reduced logistic regression107 in the unrelated subset of the 

cohort. Quantitative traits were inverse-rank normalized and analyzed using a linear mixed-

effects model in GENESIS, implementing the same fixed and random effects and using 

score tests. For two traits, high-density lipoprotein and lipoprotein(a), the mixed-effects 

nullmodel failed to converge. We therefore ran these traits using standard linear regression in 

the unrelated subset of the cohort.

We conducted exome-wide association tests for a curated set of 57 binary disease 

phenotypes and 26 quantitative traits. The binary disease phenotypes have an emphasis 
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on cardiac diseases, vascular disease, metabolic disorders, and also include a range of 

additional conditions (Supplementary Table 2). We further analyzed 26 quantitative traits, 

including anthropometric measurements, metabolic blood markers, electrocardiographic 

intervals and magnetic resonance imaging traits. Anthropometric (including height, weight, 

body mass index, systolic blood pressure and diastolic blood pressure), metabolic 

biomarker data (high-density lipoprotein, low-density lipoprotein, triglycerides, glucose, 

insulin-like-growth-factor 1) and pulse rate measurements were available in a range 

of 150,000 and 200,000 individuals. Approximately 22,700 individuals had 12-lead 

resting electrocardiographic data available, including the RR interval, P-wave duration, 

QRS complex duration and Bazett-corrected QT interval. Previously derived magnetic 

resonance imaging measurements for left ventricle5 and thoracic aorta108 were available for 

approximately 21,000 and 20,000 individuals, respectively. The exact breakdown of samples 

for each trait is presented in Supplementary Table 3. All performed tests were two-sided 

unless otherwise specified. To determine statistical significance, we applied a Benjamini-

Hochberg false discovery rate (FDR) to compute Q-values from two-sided P-values across 

all performed tests (all genes for all traits combined). Tests with Q < 0.01 were considered 

significant. Associations with 0.01 ≤ Q < 0.05 were considered suggestive.

Sensitivity analyses for variant annotation and ancestry.

For all identified significant associations, we ran a number of sensitivity analyses. First, 

we restricted analyses to LOF variants only to evaluate the consistency of effect sizes for 

the combined set of LOFs and damaging missense variants as compared to LOFs only. 

Second, we restricted analyses to individuals of white-British European ancestry only, as 

determined by previous principal component analysis63, to evaluate whether results were 

affected strongly by our multi-ancestry approach.

Leave-one-variant-out analysis.

To assess the robustness of our gene-based results to changes in the variant mask, we 

performed leave-one-variant-out (LOVO) analyses. For all significant associations, we 

iteratively reran the association test for each variant included in the original mask, after 

removing that variant from the mask. We defined the maximum LOVO P-value as the 

highest P-value attained for a given gene-phenotype association by this procedure. The 

variant that was removed to attain the maximum LOVO P-value was considered the most 

important variant for the gene-phenotype association.

Conditional analyses adjusting for nearby common variation.

To show that the identified rare variant signals were independent of nearby common 

variants, we reran the significant gene-phenotype associations while conditioning on 

common variants in the region. For a given gene-phenotype association, we first ran 

common variant (MAF > 0.5%) association analyses in the genomic region 500 kb 

downstream and upstream of the identified gene, using UK Biobank imputed data 

(Supplementary Note). We then clumped and thresholded the results to identify independent 

index common variants within the region using the --clump function in PLINK109, utilizing 

cutoffs of P < 1 x 10−5 and r2< 0.01. Gene-based rare variant association analyses were then 
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rerun within individuals who had both exome sequencing and imputed data available, adding 

each of the clumped common variants to the model as fixed-effect covariates.

Replication of novel rare variant signals.

We sought to replicate novel rare variant associations within the Geisinger MyCode cohort. 

The MyCode Community Health Initiative is a research study of the Geisinger health system 

in central and northeastern Pennsylvania21,110. Started in 2007, the study is open to any 

Geisinger patient—through opt-in informed consent—including both primary and specialty 

care clinics, and has enrolled over 280,000 participants to date. Through the DiscovEHR 

collaboration with Regeneron Genetics Center, whole-exome sequencing from collected 

blood samples has been completed for approximately 175,000 participants to date, and 

linked with health information from the Geisinger electronic health record (1996–present). 

This study leveraged exome data for over 166,661 adult (≥18) individuals uniformly 

sequenced using an IDT exome capture platform and who passed subsequent central quality 

control procedures. The Geisinger Institutional Review Board approved the MyCode project 

and the present analysis.

Given the many parallel analyses of our discovery dataset, we define ‘novel’ to indicate rare 

variant associations not described prior to the release of the UK Biobank exome data. Using 

this definition, we identified 15 novel associations, of which 14 were testable in MyCode 

(those with adequate number of samples available). Gene-based collapsing tests were 

performed in this cohort, including rare LOF and predicted-deleterious missense variants, 

as described for the UK Biobank discovery analysis (except for the use of LOFTEE). We 

tested the 14 novel gene-phenotype associations using REGENIE59, implementing a logistic 

whole-genome ridge regression model (which accounts for the relatedness among study 

samples) and further including age, sex, and associated PCs (1-4) as additional fixed-effects. 

The null model was fit using genome-wide genotype data (MAF > 0.05) from the same 

patients acquired on the Illumina GSA v2 chip. We additionally replicated the association 

between PLIN1 and high-density lipoprotein, because the direction of effect for PLIN1 
LOF variants was different to the reported effect from small studies focused on partial 

lipodystrophy37. Therefore, in sum, we attempted replication for 15 rare variant associations 

in the MyCode cohort.

We further utilized the Type 2 Diabetes Knowledge Portal (T2DKP)111 to seek direct 

replication of novel rare variant associations for type 2 diabetes. We focused on the dataset 

described in a previous large scale whole exome sequencing analysis of type 2 diabetes 

(n = 20,791 cases and 24,440 controls)13, using the portal to look up results for rare LOF 

variants.

Pathogenic variation for cardiometabolic genes in the population.

Given the high prevalence of cardiometabolic disease, we then sought to quantify carrier 

frequencies for putatively pathogenic variation in cardiovascular genes in the population. 

We analyzed genes included on typical sequencing panels for Mendelian cardiovascular 

disease, namely the Invitae Arrhythmia and Cardiomyopathy panel and the Invitae 
Hypercholesterolemia panel (accessed on 10 November 2020). We then restricted to genes 
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reported for autosomal dominant modes of inheritance in the Online Mendelian Inheritance 
in Man (OMIM) database (accessed on 10 November 2020). Using ClinVar, we identified 

carriers of rare (MAF < 0.1% in the exome sequencing dataset and MAF < 0.1% in 

the continental gnomAD populations) pathogenic or likely pathogenic variants in each 

genes in the UK Biobank (Supplementary Note). We collapsed carrier status for LOFs 

(affecting canonical gene transcripts), pathogenic and likely pathogenic variants for each 

gene, with a few exceptions: for TTN, we restricted to LOF variants located in exons 

highly expressed in cardiac tissue112 (Supplementary Note); for RYR2, PCSK9, APOB, 

MYH7 and TTR, analyses were restricted to pathogenic and likely pathogenic variants only 

given well-characterized gain-of-function or non-truncating mechanisms causing dominant 

cardiovascular disease113-116. After collapsing as described, individuals harboring these 

variants were considered carriers of putatively pathogenic rare variants. Next, we calculated 

the percentage of the study sample that carried putatively pathogenic variants in each gene.

We also analyzed monogenic diabetes genes in a similar manner. We used genes included 

on the Invitae Monogenic Diabetes panel that were reported in the OMIM database to be 

associated with autosomal dominant forms of type 2 diabetes, insulin-dependent diabetes, 

or Maturity-Onset Diabetes of the Young. Again, we collapsed carrier status for LOF, 

pathogenic and likely pathogenic variants for each included gene, with a few exceptions. For 

ABCC8 and KCNJ11, we restricted to pathogenic and likely pathogenic variants only, based 

on known gain-of-function mechanisms causing dominant diabetes117,118.

We then employed the same logistic mixed-model approach described above to identify 

associations between putatively pathogenic variants in genes and a range of relevant diseases 

and outcomes (20 diseases for the cardiovascular analysis and 3 diseases for the diabetes 

analysis). Significance was determined using a separate FDR correction, taking into account 

all tests performed for the cardiovascular and diabetes analysis combined. Associations at Q 

< 0.01 were considered significant. Firth’s regression was used to estimate ORs and CIs in 

the unrelated subset of the sample.

Data Availability

Summary results for the main analyses have been made available through the Cardiovascular 

Disease Knowledge Portal (https://cvd.hugeamp.org/downloads.html; direct download 

using https://personal.broadinstitute.org/ryank/Ellinor_ukbb_200k_exome.zip). Access to 

individual-level UK Biobank data, both phenotypic and genetic, is available to bona fide 

researchers through application on the UK Biobank website (https://www.ukbiobank.ac.uk). 

The exome sequencing data can be found in the UK Biobank showcase portal https://

biobank.ndph.ox.ac.uk/showcase/label.cgi?id=170. Additional information about registration 

for access to the data is available at http://www.ukbiobank.ac.uk/register-apply/. Use of UK 

Biobank data was performed under application number 17488.

Summary statistics from previous GWAS which were utilized in this study are publicly 

available through the Type 2 Diabetes Knowledge Portal (https://t2d.hugeamp.org); 

MAGMA results referenced in this manuscript were downloaded on 7 December 2020, 

while index single variant results were downloaded on 7 June 2021.

Jurgens et al. Page 15

Nat Genet. Author manuscript; available in PMC 2022 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cvd.hugeamp.org/downloads.html
https://personal.broadinstitute.org/ryank/Ellinor_ukbb_200k_exome.zip
https://www.ukbiobank.ac.uk
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=170
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=170
http://www.ukbiobank.ac.uk/register-apply/
https://t2d.hugeamp.org


Other datasets utilized in this manuscript include: the dbNSFP database version 

4.1a (https://sites.google.com/site/jpopgen/dbNSFP); gnomAD exomes version 2.1 (https://

gnomad.broadinstitute.org/downloads); the ClinVar database (https://www.ncbi.nlm.nih.gov/

clinvar/) downloaded in November 2020; the Invitae Arrhythmia and Cardiomyopathy panel 

(https://www.invitae.com/en/physician/tests/02101/) and the Invitae Hypercholesterolemia 

panel (https://www.invitae.com/en/physician/tests/02401/) accessed on 10 November 

2020; the Invitae Monogenic Diabetes panel (https://www.invitae.com/pt/physician/tests/

55001/) accessed in January 2021; the Online Mendelian Inheritance in Man 

(OMIM) database (omim.org) accessed on 10 November 2020; Ensembl release 95 

(https://gnomad.broadinstitute.org/downloads); and the GTEx dataset version 8 (https://

gtexportal.org/home/).

Code Availability

The code used for gene-based analyses is an adaptation of the R package GENESIS version 

2.18 (https://rdrr.io/bioc/GENESIS/man/GENESIS-package.html), and has been made 

available through the following GitHub repository: https://github.com/seanjosephjurgens/

UKBB_200KWES_CVD. Quality-control of individual level data was performed using 

Hail version 0.2 (https://hail.is), PLINK version 2.0.a (https://www.cog-genomics.org/

plink/2.0/), and KING version 2.2.5 (https://www.kingrelatedness.com/Download.shtml). 

Variant annotation was performed using VEP version 95 (https://github.com/Ensembl/

ensembl-vep) with the LOFTEE plug-in (https://github.com/konradjk/loftee). All analyses 

that were run in R were run in R version 4.0 (https://www.r-project.org).

Extended Data

Extended Data Fig. 1. Meta-analysis results for GIGYF1 rare variants and type 2 diabetes across 
three cohorts
Data are presented in a forest plot, with study specific odds ratios (OR) with 95% 

confidence intervals (95% CI), and a meta-analysis OR shown with a diamond where the 

edges of the diamond show the meta-analysis 95% CI. Meta-analysis results are obtained 

from an inverse-variance weighted fixed-effects meta-analysis approach. Study-specific 

and meta-analysis P-values are two-sided and unadjusted for multiple testing. To evaluate 

heterogeneity between studies, an I2 index for heterogeneity and a P-value from Cochran’s 

Q test are provided, which show limited evidence of heterogeneity.
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Extended Data Fig. 2. Carrier frequencies of putatively pathogenic variants in monogenic 
diabetes genes
The top of the graph is a bar chart showing carrier frequencies for loss-of-function (LOF) 

variants and pathogenic/likely pathogenic (P/LP) variants for genes in which variants are 

known to cause dominant type 2 diabetes or maturity-onset diabetes of the young (MODY). 

For ABCC8 and KCNJ11, analyses were restricted to previously reported P/LP variants 

only. The bottom of the graph is a pruned heatmap showing associations between such 

variants with diabetes and chronic kidney disease, where blue indicates lower risk of disease 

and red indicates increased risk of the disease. P-values were computed using saddle point 

approximation and were obtained from logistic mixed effects models, adjusting for sex, age, 

sequencing batch, associated principal components (PCs), a sparse kinship matrix. P-values 

shown are two-sided and unadjusted for multiple testing. Odds ratios (OR) were obtained 

from Firth’s regression models adjusting for sex, age, sequencing batch and associated PCs 

among unrelated samples. For clarity, associations with P > 0.05 and 0.7 < OR < 1.43 

have been made white. Only GCK (45 carriers) and HNF1A (29 carriers) showed robust 

associations with diabetes. Of note, PDX1 carriers are driven by a single likely pathogenic 

missense variant, p.Cys18Arg (n = 112 carriers). Our results therefore indicate that this 

allele specifically does not represent a highly penetrant pathogenic variant, but do not 

necessarily translate to the 13 carriers of LOF variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 ∣. Rare genetic variation for 57 cardiometabolic and other medical disorders in the UK 
Biobank.
Multiple-trait Manhattan plot representing the results from exome-wide gene-based tests 

for each phenotype. Phenotypes are labelled on the x-axis and the −log10 of the P-value 

for each test on the y-axis. Variants included in the gene-based test are restricted to loss-

of-function and predicted-deleterious missense variants. P-values were computed using the 

saddle point approximation and were obtained from logistic mixed effects models, adjusting 

for sex, age, sequencing batch, associated principal components (PCs) and a sparse kinship 

matrix. P-values shown are two-sided and unadjusted for multiple testing. The red line 

indicates the significance threshold at a Benjamini-Hochberg false-discovery-rate (FDR) of 

1% across all tests across all binary and quantitative traits, while the blue line represents 

the suggestive threshold at FDR 5%. An arrow pointing upwards indicates that rare variants 

were associated with increased risk of disease, while arrows pointing downward indicate 

decreased risk.
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Figure 2 ∣. Rare genetic variation for 26 quantitative cardiometabolic traits in the UK Biobank.
Multiple-trait Manhattan plot representing the results from exome-wide gene-based tests 

for each phenotype. Phenotypes are labelled on the x-axis and the −log10 of the P-value 

for each test on the y-axis. Variants included in the gene-based test are restricted to loss-of-

function and predicted-deleterious missense variants. P-values were obtained from score 

tests from linear mixed effects models, adjusting for sex, age, sequencing batch, associated 

principal components (PCs), MRI serial number (for MRI traits) and a sparse kinship matrix. 

P-values shown are two-sided and unadjusted for multiple testing. The red line indicates the 

significance threshold at a Benjamini-Hochberg false-discovery rate (FDR) of 1% across all 

tests across all binary and quantitative traits, while the blue line represents the suggestive 

threshold at FDR 5%. For height, suggestively associated genes are not annotated with gene 

names for clarity. An arrow pointing upwards indicates that rare variants were associated 

with higher value for a given quantitative trait, while arrows pointing downward indicate 

lower value. BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density 

lipoprotein; Igf-1, insulin-like growth factor 1; RR, RR interval; Pdur, P-wave duration; 

PQ, PQ interval; QRS, QRS-complex duration; QTc, Bazett-corrected QT interval; LVEDV, 

left ventricular end-diastolic volume; LVEDVi, body-surface-area indexed left ventricular 

end-diastolic volume; LVESV, left ventricular end-systolic volume; LVESVi, body-surface-

area indexed left ventricular end-systolic volume; SV, stroke volume; SVi, body-surface-area 

indexed stroke volume; LVEF, left ventricular ejection fraction.
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Figure 3 ∣. Pleiotropy of rare variants in metabolic genes.
This heatmap shows association results for genes associated at false-discovery rate (FDR) 

Q-value < 0.05 with any metabolic trait in our primary analysis, across a range of relevant 

metabolic traits. P-values were obtained from score tests in linear mixed effects models 

(quantitative traits) or saddle point approximation in logistic mixed effects models (binary 

traits), adjusting for sex, age, sequencing batch, associated principal components (PCs) 

and a sparse kinship matrix. P-values shown are two-sided and unadjusted for multiple 

testing, while Q-values represent false-discovery rate (FDR) adjusted two-sided P-values 

by Benjamini-Hochberg method. Effect sizes for quantitative traits (β) were obtained from 

the same linear model, while odds ratios (OR) for binary traits were obtained from Firth’s 

regression models adjusting for sex, age, sequencing batch and associated PCs among 

unrelated samples. A small dot indicates nominal significance (P < 0.05), a large dot 

indicates P < 0.00014 (0.05/ 350 tests), while a black square indicates FDR Q-value < 
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0.01 in the primary discovery phase. Red indicates β > 0 (quantitative traits) or OR > 1 

(binary traits), while blue indicates β < 0 (quantitative traits) or OR < 1 (binary traits). LDL, 

low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; Lp(a), lipoprotein 

(a); Igf-1, insulin-like growth factor 1; Hyperchol, hypercholesterolemia; CAD, coronary 

artery disease; PVD, peripheral vascular disease; Isch. Stroke, ischemic stroke; T2D, type 2 

diabetes.
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Figure 4 ∣. Putatively pathogenic variants in Mendelian cardiovascular disease genes in the UK 
Biobank.
The top of the figure is a bar chart showing carrier frequencies for rare LOF, pathogenic 

and likely pathogenic variants in genes reported for dominant inheritance of arrhythmia, 

cardiomyopathy or hypercholesterolemia. The absolute number of carriers in the UK 

Biobank is shown above each bar. Bar charts are stacked to visualize carriers of LOFs 

reported in ClinVar as likely pathogenic or pathogenic (P/LP), carriers of LOFs not 

reported in ClinVar as P/LP, and carriers of other P/LP variants (missense, inframe 

indels, noncanonical or low-confidence LOFs, etc). The bottom of the figure is a pruned 

heatmap showing association results between these variants and cardiovascular outcomes 

that reach nominal significance (P < 0.05). P-values were computed using the saddle 

point approximation and were obtained from logistic mixed effects models, adjusting for 

sex, age, sequencing batch, associated principal components (PCs) and a sparse kinship 

matrix. P-values shown are two-sided and unadjusted for multiple testing. Odds ratios (OR) 

were obtained from Firth’s regression models adjusting for sex, age, sequencing batch 

and associated PCs among unrelated samples. A small dot represents nominal significance 

(P < 0.05), while a large dot represents P < 0.005. A square represents significant at 

an FDR Q-value of < 0.01. Blue indicates OR < 1, while red indicates OR > 1. For 

clarity, tests with P > 0.05 or an OR between 0.7 and 1.43 have been made white. HF, 

heart failure; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; AF, 

atrial fibrillation; SVT, supraventricular tachycardia; AV, atrioventricular; ICD, implantable 
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cardioverter-defibrillator; CHD, congenital heart disease; PVD, peripheral vascular disease; 

Isch., Ischemic; CAD, coronary artery disease; MI, myocardial infarction.
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Table 1 ∣

Baseline characteristics of participants in the UK Biobank with exome sequencing data

Participants, n 200,337

 Female, n (%) 110,359 (55.1)

 European ancestry, n (%) 174,879 (87.3)

 Age at baseline, mean (s.d.) 56.97 (8.10)

 Age at last follow-up, mean (s.d.) 67.82 (8.07)

 Height in cm, mean (s.d.) 168.47 (9.27)

 Body mass index, median (IQR) 26.70 (5.72)

Cardiovascular and metabolic diseases

 Atrial fibrillation, n (%) 12,277 (6.1)

 Supraventricular arrhythmia, n (%) 2,075 (1.0)

 Ventricular arrhythmia, n (%) 2,072 (1.0)

 Mitral valve disease, n (%) 3,898 (1.9)

 Hypertension, n (%) 74,347 (37.1)

 Heart failure, n (%) 5,344 (2.7)

 Dilated cardiomyopathy, n (%) 377 (0.2)

 Hypertrophic cardiomyopathy, n (%) 220 (0.1)

 Myocardial Infarction, n (%) 6,238 (3.1)

 Hypercholesterolemia, n (%) 42,799 (21.4)

 Diabetes type 2, n (%) 14,607 (7.3)

 Hypothyroidism, n (%) 14,097 (7.0)

Malignancy

 Breast cancer, n (%) 8,112 (7.4)

 Colorectal cancer, n (%) 2,733 (1.4)

Other medical conditions

 Chronic kidney disease, n (%) 6,415 (3.2)

 Cataracts, n (%) 21,762 (10.9)

Values are presented as number (percentage) unless otherwise specified. s.d., standard deviation; IQR, interquartile range.
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Table 3 ∣

Gene associations for quantitative cardiometabolic traits at FDR Q-value < 0.01

Trait Gene Carriers Effect in s.d. [95% CI] P-value Ref

Known associations

 Height, cm

ADAMTS17 173 −0.34 [−0.45, −0.24] 6.14 x 10−11 82,83

ACAN 42 −1.17 [−1.38, −0.96] 6.86 x 10−28 84 

NPR2 114 −0.62 [−0.75, −0.49] 1.26 x 10−21 85-87

IGF1R 51 −0.49 [−0.68, −0.30] 4.56 x 10−7 88 

ADAMTS10 24 −0.76 [−1.03, −0.48] 9.35 x 10−8 89,90

 Glucose GCK 56 1.22 [0.96, 1.48] 1.91 x 10−20 91 

 HDL

ABCA1 236 −0.92 [−1.03, −0.80] 5.90 x 10−55 92 

APOA5 156 −0.57 [−0.71, −0.43] 4.30 x 10−15 12 

ANGPTL3 310 −0.35 [−0.45, −0.25] 1.47 x 10−11 93 

PLIN1 315 0.40 [0.30, 0.49] 8.01 x 10−15 37 

LCAT 27 −1.05 [−1.39, −0.71] 1.34 x 10−9 94 

LPL 78 −0.83 [−1.03, −0.63] 3.68 x 10−16 92 

LIPC 320 0.51 [0.41, 0.60] 1.23 x 10−23 95 

APOB 201 0.37 [0.25, 0.50] 5.28 x 10−9 96 

CETP 58 0.89 [0.66, 1.12] 6.80 x 10−14 97 

 LDL

PCSK9 245 −0.94 [−1.06, −0.81] 9.19 x 10−49 16 

ANGPTL3 363 −0.42 [−0.52, −0.32] 7.98 x 10−16 93 

APOB 237 −2.24 [−2.37, −2.11] 2.94 x 10−262 98 

LDLR 98 0.66 [0.47, 0.86] 4.06 x 10−11 99 

 Triglycerides

APOA5 180 0.91 [0.77, 1.05] 2.31 x 10−36 12,100

ANGPTL3 363 −0.67 [−0.77, −0.57] 2.03 x 10−39 93 

ANGPTL4 173 −0.45 [−0.59, −0.30] 1.32 x 10−9 35 

APOB 237 −1.45 [−1.57, −1.32] 3.21 x 10−117 77 

LPL 86 0.65 [0.45, 0.85] 4.68 x 10−10 100 

APOC3 22 −1.17 [−1.58, −0.77] 1.42 x 10−8 101 

PDE3B 224 −0.33 [−0.46, −0.20] 3.63 x 10−7 4 

 Lipoprotein (a) LPA 307 −0.35 [−0.46, −0.24] 4.30 x 10−10 102 

 LVEF TTN 179 −0.44 [−0.57, −0.30] 5.01 x 10−10 56,64

 Pulse rate TTN 1,707 0.20 [0.15, 0.25] 8.82 x 10−17 19 

Novel associations *

 Height, cm

SCUBE3 71 −0.57 [−0.73, −0.41] 5.02 x 10−12

PIEZO1 574 −0.20 [−0.25, −0.14] 1.39 x 10−11

IRS1 47 −0.58 [−0.78, −0.38] 7.81 x 10−9

ANGPTL2 119 −0.44 [−0.57, −0.32] 4.88 x 10−12
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Trait Gene Carriers Effect in s.d. [95% CI] P-value Ref

PAPPA 36 −0.66 [−0.89, −0.43] 1.28 x 10−8

ZFAT 53 0.58 [0.40, 0.77] 1.04 x 10−9

DTL 72 −0.67 [−0.83, −0.51] 3.42 x 10−16

 Igf-1 JAK2 70 −0.77 [−1.00, −0.55] 1.64 x 10−11

 Glucose GIGYF1 51 0.79 [0.52, 1.06] 9.45 x 10−9

 HDL NR1H3 352 0.39 [0.30, 0.49] 3.27 x 10−16

 LDL GIGYF1 52 −0.79 [−1.06, −0.52] 9.02 x 10−9

P-values, effect sizes and 95% confidence intervals (95% CI) were obtained from score tests from linear mixed effects models, adjusting for sex, 
age, sequencing batch, associated principal components (PCs), MRI serial number (for MRI traits) and a sparse kinship matrix. P-values shown are 
unadjusted for multiple testing.

*
Novel indicates that rare variant associations were not reported prior to the release of UK Biobank exomes. s.d., standard deviation; Ref, 

reference; LVEF, left ventricular ejection fraction; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Igf-1, insulin-like growth factor 1.
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Table 4 ∣

Replication of novel associations in the Geisinger MyCode cohort

Binary traits

Trait Gene Carriers OR [95% CI] P-value

Diabetes type 2
GIGYF1 152 3.18 [2.22, 4.54] 1.98 x 10−9

CCAR2 24 0.75 [0.24, 2.33] 0.62

 Supraventricular tachycardia TTN 3,059 1.35 [1.08, 1.70] 0.01

 Mitral valve disease TTN 3,059 1.45 [1.18, 1.78] 8.26 x 10−4

Quantitative traits

Trait Gene Carriers Effect in s.d. [95% CI] P-value

 Height, cm

SCUBE3 153 −0.67 [−0.95, −0.39] 3.90 x 10−6

PIEZO1 577 −0.35 [−0.50, −0.21] 1.97 x 10−6

IRS1 36 −0.67 [−1.24, −0.11] 0.02

ANGPTL2 78 −1.02 [−1.41, −0.64] 2.45 x 10−7

PAPPA 69 −0.47 [−0.89, −0.05] 0.03

ZFAT 42 0.79 [0.24, 1.34] 5.04 x 10−3

DTL 45 −0.90 [−1.41, −0.39] 5.69 x 10−4

 Glucose GIGYF1 102 0.55 [0.37, 0.73] 1.37 x 10−9

 HDL
NR1H3 122 0.38 [0.22, 0.54] 2.97 x 10−6

PLIN1 * 97 0.36 [0.18, 0.54] 9.29 x 10−5

 LDL GIGYF1 105 −0.29 [−0.47, −0.11] 1.76 x 10−3

P-values, odds ratios (OR) and 95% confidence intervals (95% CI) were obtained from whole-genome ridge-regression models implemented in 
REGENIE, further adjusting for sex, age and associated principal components (PCs). P-values shown are unadjusted for multiple testing. Novel 
indicates that rare variant associations were not reported prior to the release of UK Biobank exomes. Association test between Igf-1 and JAK2 was 
not performed due to low cumulative minor allele counts (cMAC); cMAC among individuals with Igf-1 was 2.

*
The association between PLIN1 and HDL was added to replication because the direction of effect (increased HDL) was different to the direction 

reported in family-based studies of partial lipodystrophy.
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