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Abstract

The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes 

for degradation and include macroautophagy, chaperone-mediated autophagy and microautophagy. 

Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional 

organelles like mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons 
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cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system 

is particularly dependent on autophagic pathways. This dependence may be a vulnerability as 

people age and these processes become less effective in the brain. Here we will review how the 

different autophagic pathways may protect against neurodegeneration, giving examples of both 

polygenic and monogenic diseases. We have considered how autophagy may have roles in normal 

CNS functions and the relationships between these degradative pathways and different types of 

programmed cell death. Finally, we will provide an overview of recently described strategies for 

upregulating autophagic pathways for therapeutic purposes.

Graphical Abstract

The term autophagy encompasses different pathways enabling lysosomal degradation of 

cytoplasmic material, like macroautophagy, chaperone-mediated autophagy and microautophagy. 

Fleming et al. review how different autophagic pathways protect against neurodegeneration, and 

consider recently described therapeutic strategies exploiting autophagic upregulation.

A. Overview of different autophagy pathways

The term autophagy describes a set of mechanistically distinct processes that diverse 

cells use to deliver cytoplasmic contents to lysosomes for degradation that includes 

macroautophagy, chaperone-mediated autophagy (CMA) and microautophagy. In this 

review, we will briefly describe these pathways, how they impact neurological functions 

in health and disease and the current pharmacological efforts to boost autophagic activities 

as therapeutic strategies in neurodegenerative diseases.

Macroautophagy core pathway

The first morphologically distinct structure in macroautophagy is the cup-shaped, double-

membraned phagophore, whose edges extend and fuse to become an autophagosome (Fig. 

1). Autophagosome biogenesis is complex and involves multiple proteins and lipids from 

various membrane sources, including the endoplasmic reticulum (ER), ER/mitochondria 

contact sites (MAM), ER exit sites, recycling endosomes, Golgi and plasma membrane (Axe 

et al., 2008; Ge and Schekman, 2014; Puri et al., 2013).

The molecular components of macroautophagy were originally described in yeast, where 

genetic screens identified more than 40 ATG (autophagy related) proteins, most of them with 

mammalian orthologues, that regulate macroautophagy at its different stages (Mizushima 

et al., 2011). A key event in the formation of phagophores is the conjugation of members 

of the ubiquitin-like ATG8 family (Fig. 1), including the LC3 and GABARAP (gamma-

aminobutyric acid receptor-associated protein) subfamilies, to phosphatidylethanolamine 

in precursor membranes. This event occurs on RAB11A-positive recycling endosomes 

in a wide range of cells, including primary neurons (Puri et al., 2018). Thereafter, the 

autophagosomes are closed by ESCRT machinery (Takahashi et al., 2018) then released in a 

step mediated by DNM2 (Puri et al., 2020).

It is likely that there is lipid transfer to growing autophagosomes via the ATG2-WIPI4 

complex (Maeda et al., 2019) and that some lipid remodelling occurs on nascent 
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autophagosomes mediated by the scramblase function of ATG9 that assists membrane 

expansion (Matoba et al., 2020). Most of the cell biology and biochemistry of mammalian 

autophagy has been studied in fibroblasts and cancer cell lines. While the pathway 

conservation across species suggests that the core biology will be essentially similar in 

all cells, there may be neuron- or glial-specific adaptions.

Selective Macroautophagy (mitophagy, ER-phagy, pexophagy, aggrephagy)

Macroautophagy degrades long-lived, aggregate-prone proteins, protein complexes, and 

dysfunctional or damaged organelles. Substrate degradation can be facilitated by machinery 

that enables their preferential sequestration via adaptor proteins that bridge components 

of the substrate (generally surface proteins which are ubiquitinated) and elements of the 

nascent autophagosome, typically LC3 (Fig. 1). These forms of selective autophagy include 

mitophagy (mitochondria), pexophagy (peroxisomes), ribophagy (ribosomes), ER-phagy 

(ER) and aggrephagy (aggregate-prone proteins), among others.

Mitophagy—Mitophagy exists in several forms, depending on the mechanism of 

recruitment of the phagophore membrane to mitochondria. The most well-studied 

form relies on the phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN)-induced 

putative kinase 1 (PINK1) and the ubiquitin ligase Parkin. After mitochondrial damage, 

PINK1 levels, normally low, increase and PINK1 auto-phosphorylates to recruit cytosolic 

Parkin to the mitochondrial membrane, triggering mitophagy (Matsuda, 2016). In PINK1-

Parkin-dependent mitophagy, autophagy receptors such as optineurin (OPTN), NDP52 

(nuclear domain 10 protein 52) and TAX1BP1 (Trans-activating transcriptional regulatory 

protein of HTLV-1 (TAX1) binding protein 1) recruit the autophagosome biogenesis 

machinery to mitochondria. (Geisler et al., 2010; Narendra et al., 2010). Neuronal PINK1 

or Parkin deletions in mice cause only mild phenotypes, highlighting the existence of 

alternative mitophagy processes, including receptor-mediated (NIX/BNIP3L), ubiquitin-

mediated (MUL1-dependent) and lipid-mediated (through exposure of the inner membrane 

mitochondrial lipid cardiolipin) pathways (Evans and Holzbaur, 2020).

ER-phagy (reticulophagy)—Constitutive ER turnover is required to maintain proper 

cellular function. Autophagy contributes to ER remodelling via ER-phagy or reticulophagy. 

The ER-phagy adaptor FAM134B (family with sequence similarity 134, member B), 

interacts directly with LC3 or GABARAP and cooperates with Reticulon 3 (RTN3- RHD-

containing protein) on the ER membrane to trigger the recruitment of the specific area of 

the ER that need to be degraded inside the autophagosome (Grumati et al., 2017). Other 

ER-phagy receptors, include cell-cycle progression gene 1 (CCPG1), Sec62, Atlastin-3 

(ATL3) and testis expressed 264 (TEX264) (Chino et al., 2019; Fumagalli et al., 2016). 

The existence of multiple receptors suggests a redundancy or selectivity for types of ER. 

FAM134B and RTN3L are involved in starvation-induced ER-phagy, while CCPG1 is 

induced during ER stress and Sec62 participates in the recovery of ER stress (recovER-

phagy). Mutations in FAM134B and ATL3 have been linked to peripheral neuropathy, but 

the other ER-receptors have not been studied yet in the nervous system.
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Pexophagy—Damaged or excess peroxisomes are degraded through autophagy via 

pexophagy, where ubiquitination of PEX3 or PMP34 on the cytosolic face of peroxisomes 

enables recognition by autophagy adaptors P62 or NBR1, which target peroxisomes for 

autophagic degradation (Jo et al., 2020).

Aggrephagy—Most neurodegenerative diseases manifest with the accumulation of 

aggregates in vulnerable cell populations in the brain. Selective degradation of protein 

aggregates is called aggrephagy. Misfolded, aggregate-prone proteins are ubiquitinated, 

recognized and linked to the autophagy machinery by adaptors like P62, NBR1, Tollip 

(Cue5 in yeast), OPTN (Shen et al., 2017) and TAX1BP1 (Sarraf et al., 2020).

Lysophagy—Damaged lysosomes are degraded by selective autophagy via lysophagy, 

which protects cells from lysosomal cell death. Lysophagy appears to be ubiquitination-

dependent and involves various canonical autophagy receptors, like TAX1BP1 (Eapen et al., 

2021) and TBK1 (Eapen et al., 2021), a protein mutated in various diseases, including forms 

of ALS.

Major regulators

Macroautophagy can be stimulated by stresses including nutrient depletion, growth factor 

deprivation, oxidative stress and protein aggregation (Menzies et al., 2017). Nutrient 

starvation inhibits mTORC1 (mechanistic target of rapamycin complex 1), a highly 

conserved negative regulator of autophagy (Saxton and Sabatini, 2017). In nutrient-rich 

conditions, mTORC1 interacts and phosphorylates ULK1, to inhibit autophagy. Upon 

starvation, mTORC1 sites on ULK1 are dephosphorylated and ULK1 dissociates from 

mTORC1, thereby activating ULK1 kinase activity (Hosokawa et al., 2009). In mammals, 

mTORC1 activity is stimulated by growth factors through inhibition of the tuberous 

sclerosis complex (TSC) 1 and 2 (Dibble and Manning, 2013). Amino acids signal to 

mTORC1 through Rag GTPases independently of the TSC complex (Sancak et al., 2008). 

Recently, leucine was shown to signal to mTORC1 in most cells, including neurons and 

glia, via its metabolite Acetyl-coenzyme A (Ac-CoA), which stimulates acetylation of 

raptor and subsequent activation of mTORC1 and inhibition of autophagy (Son et al., 

2020). Autophagy can also be induced by low cellular energy levels/low glucose (increased 

AMP/ATP) sensed by AMP-activated protein kinase (AMPK). In glucose-deprived cells, 

AMPK activates ULK1, which then phosphorylates and activates the lipid kinase PIKfyve 

(FYVE finger-containing phosphoinositide kinase), thereby increasing synthesis of the 

phosphatidylinositol 5-phosphate PI(5)P (Karabiyik et al., 2021). PI(5)P upregulates 

autophagosome synthesis and induces autophagic flux in the absence of PI(3)P in a VPS34-

independent manner (Vicinanza et al., 2015). Another key regulator of autophagy and 

lysosomal biogenesis is transcription factor EB (TFEB) (Settembre et al., 2013).

Non autophagic role of the ATG protein conjugation system

Some ATGs have autophagy-independent functions. In LC3-associated phagocytosis (LAP), 

ATGs contribute to immune regulation and inflammatory responses, particularly in 

phagocytic cells. In LAP, LC3 is conjugated to phagosome single membranes (LAPosomes) 

that directly fuse to lysosomes (Galluzzi and Green, 2019). LAP is independent on 
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the ULK1/FIP200/ATG13/ATG101 macroautophagy complex and is unresponsive to 

starvation or intracellular stress (Heckmann et al., 2017). Toll-like receptors (TLRs) 

and immunoglobulin (Ig) receptors participate in cargo recognition to activate LAP. The 

recognition of opsonized foreign particles leads to the recruitment of LAP regulatory 

machinery to the phagosome and the engulfed substrates are degraded following fusion 

with lysosomes (Heckmann et al., 2019).

LC3 can also be conjugated to RAB5-, clathrin-positive endosomes that contain amyloid-β. 

This new function, called LANDO (LC3-associated endocytosis), requires ATGs, such as 

LC3, Rubicon and ATG5, but not FIP200. LANDO was described in microglia, where it 

enables removal of amyloid-β and ameliorates pathology in a murine model of Alzheimer’s 

Disease (AD) (Heckmann et al., 2019).

Non-canonical macroautophagy

Macroautophagy-like processes can also occur in the absence of some key ATG proteins, 

in what is called non-canonical macroautophagy. Some cell types lacking Atg5 or 

Atg7, essential for canonical macroautophagy, still perform macroautophagy in response 

to specific stressors (Nishida et al., 2009). Autophagosome formation in this case is 

independent of the ubiquitin-like protein systems ATG5-ATG12, ATG7-ATG8, ATG16 and 

ATG9, but requires ULK1 and PI3K-Beclin 1-VPS34 complexes (Nishida et al., 2009). 

ATG5-ATG7-independent autophagosomes originate from the trans-Golgi membrane in a 

RAB9-dependent manner (Honda et al., 2020). Non-canonical macroautophagy has been 

shown to contribute to mitochondrial clearance during erythroid maturation or iPSC cell 

differentiation and to the degradation of proinsulin granules in glucose-deprived β-cells 

(Honda et al., 2020). Neuronal non-canonical autophagy is required for the degradation of 

ceruloplasmin to prevent iron deposition (Yamaguchi et al., 2020).

Chaperone-mediated autophagy

In CMA, substrate proteins are translocated across the lysosomal membrane, where they 

are targeted following the recognition of a KFERQ-like targeting motif in their sequences 

by the heat shock cognate 71kDa protein (HSC70) (Fig. 2). The HSC70/substrate complex 

binds the cytosolic tail of the lysosome-associated membrane protein type 2A (LAMP-2A) 

(Cuervo and Dice, 1996), triggering its multimerization into a translocation complex. After 

unfolding, the substrate is internalized into the lysosomal lumen assisted by a lysosome 

resident HSC70, and the LAMP-2A complex is disassembled (Kaushik and Cuervo, 2018). 

LAMP-2A levels and its assembly/disassembly in the lysosomal membrane are rate-limiting 

for CMA.

HSC70 is the only chaperone required for CMA cargo recognition (Chiang et al., 

1989), while HSP90, HSP40, the HSP70-HSP90 organizing protein (Hop), the HSP70-

interacting protein (Hip), and the BCL2-associated athanogene-1 protein (BAG-1), facilitate 

substrate unfolding, enhance substrate/LAMP2A binding and stabilize LAMP2A during its 

multimerization (Kaushik and Cuervo, 2018). In all cell types studied to date, LAMP2A 

translocation complex stability is regulated by the monomeric form of the intermediate 

filament protein glial fibrillary (GFAP) and the elongation factor-1 α (EF1α) in a GTP-
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dependent manner (Bandyopadhyay et al., 2010), and by lysosomal AKT (Arias et al., 

2015). Phosphorylation of lysosomal membrane AKT by mTORC2 is inhibitory for CMA, 

whereas its dephosphorylation by the PHLPP1 kinase-phosphatase that binds to lysosomes 

in a Rac-1 dependent manner, leads to maximal CMA activation (Arias et al., 2015). The 

CMA target of AKT is GFAP, also recently shown to be phosphorylated by class I PI3K with 

a similar inhibitory effect on CMA (Endicott et al., 2020). CMA is also transcriptionally 

upregulated by NFAT, NRF2 and TPD52, whereas signalling through retinoic acid receptor 

alpha (RARα) and growth hormone signalling transcriptionally repress CMA (Anguiano et 

al., 2013).

The KFERQ-like motif is necessary and sufficient for CMA targeting, but because 

binding to HSC70 is dependent on the chemical properties of the motif (i.e. charge and 

polarity) (Kaushik and Cuervo, 2018), multiple amino acid combinations can build a 

functional (canonical) KFERQ-like motif. Post-translational modifications (PTMs), such 

as phosphorylation or acetylation (Fig. 2), can also generate functional motifs (by adding 

the missing charges) or disrupt a motif (i.e. through ubiquitination of the residue’s lysine). 

Around 46% of the proteome contains canonical motifs and an additional 30% can be 

generated via PTMs (Kirchner et al., 2019), but CMA degradation of those proteins only 

occurs when their motif becomes accessible to the chaperone (i.e. by protein conformational 

changes or dissociation of protein-protein interactions).

Microautophagy and endosomal microautophagy

Microautophagy involves lysosomal degradation of cellular components via membrane 

invaginations in compartments of the endolysosomal system (Fig. 3). Beside proteins, 

microautophagy can also degrade organelles in yeast such as mitochondria, lipid droplets, 

ER, peroxisomes and even nuclear fragments (Schuck, 2020); although thus far, only micro-

ER-phagy has been identified in mammalian systems (Loi et al., 2019).

Mammalian microautophagy pathways all target their cargo to late endosomes/

multivesicular bodies (LE/MVBs) (Krause and Cuervo, 2021). The term endosomal 

microautophagy (eMI) refers to the degradation of cytosolic proteins in LE/MVBs and can 

be further sub-classified based on the selectivity of the cargo and the molecular machinery 

involved. The first type of eMI identified requires, as in CMA, recognition of a KFERQ-

like motif by HSC70 (Fig. 2) (Kirchner et al., 2019; Sahu et al., 2011). HSC70 binds to 

phosphatidylserine in LE/MVB membranes (Morozova et al., 2016), triggering substrate 

internalization into the lumen via membrane invaginations that form in an ESCRT-dependent 

manner. Cargo degradation protein can occur in the LE/MVB compartment itself, although 

the bulk of degradation occurs after LE/MVB-lysosome fusion. An additional type of 

mammalian eMI, independent of HSC70 but dependent on some of the ESCRT proteins 

involved in eMI, has been identified as part of the early response to amino acid starvation 

(Mejlvang et al., 2018). This pathway degrades several macroautophagy receptors, possibly 

regulating the switch between selective and in bulk macroautophagy.

Little is known about the regulation and functional implications of eMI in mammals. In 

Drosophila, eMI is upregulated in response to oxidative and genotoxic stress (Mesquita et 

al., 2020) and to nutrient deprivation (Jacomin et al., 2021; Mukherjee et al., 2016). Basal 
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eMI has been shown to contribute to local turnover of proteins in Drosophila neuromuscular 

junction synapses and its blockage leads to impaired neurotransmission (Uytterhoeven et al., 

2015).

Autophagic crosstalk

The ubiquitin-proteasome system (UPS), mostly responsible for degradation of soluble and 

short-lived proteins, shares some key players with autophagy, like ubiquitin. This small 

protein can modulate the degradation rates of proteins or organelles through the UPS 

or macroautophagy (Komander and Rape, 2012). Moreover, ubiquitination of the core 

macroautophagic machinery serves as an important regulatory mechanism (reviewed in 

(Yin et al., 2020). The macroautophagy receptor, P62, has also been reported to escort 

ubiquitinated proteins for proteasomal degradation (Seibenhener et al., 2004), depending on 

its oligomerization state (Lu et al., 2017).

Accumulating evidence suggests a compensatory balance between these two degradation 

pathways, whereby UPS inhibition upregulates macroautophagic proteins by mechanisms 

still not fully understood (reviewed in (Sun-Wang et al., 2020). Proteasome inhibition 

enhances nuclear translocation of TFEB (Li et al., 2019a), and other transcription factors 

that induce autophagy, like Nrf1 and Nrf2 (nuclear factor erythroid-2-like 1 and 2) (Pajares 

et al., 2016; Sha et al., 2018). The proteasome itself can be a substrate of macroautophagy 

under stress conditions in the process called proteaphagy (Cohen-Kaplan et al., 2016; 

Cuervo et al., 1995). Although macroautophagy-deficient cells appear to accumulate 

proteasomes due to decreased proteaphagy and increased expression of the proteasome 

subunits (Wang et al., 2013), degradation of proteasome substrates seems to be compromised 

in these cells, without changes in proteasome activity (Korolchuk et al., 2009).

Different types of autophagy, although not redundant, are capable of compensating for 

each other. Early studies revealed that mouse fibroblasts with defective macroautophagy 

displayed elevated constitutive CMA activity. Compensatory activation of macroautophagy 

and the UPS occurs in a variety of non-neuronal tissues in CMA-deficient mouse models 

(mouse fibroblasts, liver, T cells) (Kaushik and Cuervo, 2018). However, this compensation 

is not universal as it was not observed, for example, in the retina or in hematopoietic 

stem cells (Dong et al., 2021; Rodriguez-Muela et al., 2013). Likewise, compensatory 

activation of macroautophagy was not observed in CMA-defective neurons, leading to an 

early phenotype of proteostasis failure (already evident at 6 months) (Bourdenx et al., 

2021). In fact, a direct comparison of insoluble fractions isolated from the brains of CMA- 

(Lamp2A−/−) and macroautophagy-deficient (Atg7−/−) mice highlighted that these two 

pathways handle different portions of the proteome in neurons (only ~50% of the aggregated 

proteins were similar). Understanding the mechanisms behind reciprocal macroautophagy 

and CMA compensation in non-neuronal cells could identify novel therapeutic targets to 

upregulate these pathways in neurons in neurodegenerative conditions.
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B. Roles of autophagic pathways in the healthy nervous system

Maintaining neuronal function

Neurons are post-mitotic, long-lived cells that require robust protein and organelle quality 

control mechanisms. Neuronal loss of ATGs results in accumulation of ubiquitin-positive 

protein aggregates, axonal swellings and neuronal degeneration, demonstrating that basal 

macroautophagy is critically important for neuronal health (Menzies et al., 2017). Similarly, 

loss of the CMA receptor LAMP2A disrupts neuronal proteostasis and function (Bourdenx 

et al., 2021). While impaired macroautophagy and CMA accelerate the accumulation 

of aggregate-prone proteins (a hallmark of most neurodegenerative diseases), they likely 

protect neuronal health via several additional mechanisms.

Neurons need to maintain a healthy pool of mitochondria, as they have high energy 

demands. The strong genetic connection between mitophagy and neurodegeneration 

emphasizes the importance of this pathway in neurons. However, the role of neuronal 

mitophagy in non-pathological conditions is unclear. Mice deficient for proteins involved in 

selective mitophagy, such as P62, PINK1 and Parkin, do not show accumulation of defective 

mitochondria or neuronal loss (Martinez-Vicente, 2017). In contrast, PINK1 knock-out rats 

or PINK1/Parkin deficient flies display mitochondrial abnormalities and neurodegeneration 

(Martinez-Vicente, 2017). The mitochondrial defects in the PINK1/Parkin depleted 

models may be independent of mitophagy. For example, PARIS (ZNF746), a substrate 

of PINK1-mediated phosphorylation and Parkin-mediated ubiquitination, accusmulates 

following Parkin deletion and leads to repression of the peroxisome proliferator-activated 

receptor gamma coactivator 1α (PGC-1α), a master coregulator of mitochondrial function, 

biogenesis, and mitochondrial oxidative stress management (Pirooznia et al., 2020; Shin et 

al., 2011; Stevens et al., 2015).

Mice with neuronal loss of WIPI4, FIP200 and ATG9A, involved in early stages 

of autophagosome formation, or WIPI3, involved in alternative macroautophagy, show 

accumulation of damaged mitochondria (Liang et al., 2010; Yamaguchi et al., 2020; 

Yamaguchi et al., 2018; Zhao et al., 2015). Furthermore, neurons may have upregulated 

other mitochondria quality control pathways, such as mitochondrial-derived vesicles 

(MDVs) that carry oxidised proteins to lysosomes for degradation, thereby saving the entire 

organelle from clearance (Misgeld and Schwarz, 2017). Hence, bulk macroautophagy or 

MDVs may provide a quality control mechanism that is constantly active in non-pathologic 

conditions, whereas mitophagy is trigged upon mild or severe mitochondrial stress (Misgeld 

and Schwarz, 2017; Yao et al., 2020).

Synapses are dynamic structures highly dependent on controlled turnover of their 

components. Autophagy is emerging as a crucial player in synapse formation, pruning and 

plasticity (Birdsall and Waites, 2019; Stavoe and Holzbaur, 2019). Loss-of-ATG7 studies 

revealed that autophagy is required in motor neurons for presynaptic terminal formation, 

innervation of the neuromuscular junction (Rudnick et al., 2017), and in dopaminergic 

neurons for synaptic vesicle degradation regulated by active zone proteins, like Bassoon 

and Piccolo (Hernandez et al., 2012; Okerlund et al., 2017). Subsequent studies in mice 

lacking neuronal ATG5 revealed defective selective degradation of tubular ER in axons and 
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increased excitatory neurotransmission through excessive calcium release from ER stores 

(Kuijpers et al., 2021). The relative contribution of the failure to degrade synaptic vesicles 

versus calcium storage dysregulation to the observed enhanced neurotransmission requires 

future investigation. At the postsynaptic terminal, macroautophagy is required for spine 

pruning, as cortical neurons lacking ATG7 have an excessive number of dendritic spines 

(Tang et al., 2014). Macroautophagy also drives the degradation of the scaffold proteins 

PSD95, PICK1 and SHANK3, and of AMPA receptors, leading to synapse destabilization 

(Compans et al., 2021; Nikoletopoulou et al., 2017; Shehata et al., 2012), and enables 

retrograde transport of brain-derived neurotrophic factor (BDNF) (Kononenko et al., 2017), 

a key molecule involved in neuronal differentiation, survival and synaptic plasticity.

The role of macroautophagy in synaptic plasticity has not been fully elucidated. Acute 

Beclin 1 knockdown revealed the need for macroautophagy induction to enhance activity-

dependent plasticity changes in hippocampal neurons after chemical long-term potentiation 

(LTP) (Glatigny et al., 2019). Similarly, mice deficient in neuronal WIPI4 show attenuated 

hippocampal LTP (Zhao et al., 2015). In contrast, suppression of macroautophagy 

is required for BDNF-induced LTP (Nikoletopoulou et al., 2017). During long-term 

depression, endocytic sorting and autophagy induction regulate the degradation of AMPA 

receptors (Ehlers, 2000; Shehata et al., 2012). Further studies are required to understand how 

macroautophagy regulates synaptic strength.

CMA plays an important role in maintenance of the neuronal proteome with higher 

propensity for aggregation. Acute silencing of LAMP2A in dopaminergic neurons leads to 

accumulation of α-Synuclein and ubiquitinated proteins, neurodegeneration, and ultimately 

behavioural impairments (Xilouri et al., 2016). Selective blockage of CMA in excitatory 

neurons leads to a shift in the solubility of the metastable proteome (proteins close to their 

solubility limit) (Bourdenx et al., 2021). Entrapment of CMA substrate proteins within 

aggregates leads to loss of their function and defects in cellular metabolism, endocytosis, 

and cytoskeleton organization (Bourdenx et al., 2021).

The tight communication between neurons and glia suggests that glial macroautophagy may 

have profound non-cell-autonomous effects on neuronal function and health. Astrocytes 

promote neuronal health and survival by providing nutrients, controlling the uptake of 

neurotransmitters and ions and protecting neurons upon injury. Astrocyte macroautophagy is 

emerging as an important pathway to support neuronal health by regulating the degradation 

of misfolded proteins (Janen et al., 2010; Tang et al., 2008) and damaged mitochondria from 

degenerating neurons (Davis et al., 2014; Morales et al., 2020).

Oligodendrocytes and Schwann cells are the myelin-producing cells of the central 

and peripheral nervous systems, respectively. Studies using mice lacking ATG5 in 

oligodendrocyte progenitor cells (OPC) demonstrated that macroautophagy is essential 

for OPC survival, maturation and proper myelination (Bankston et al., 2019). Similarly, 

Schwann cell-specific removal of ATG7 caused abaxonal accumulation of excess cytoplasm 

and organelles, as well as abnormal myelination (Jang et al., 2015), demonstrating that 

macroautophagy is essential for proper myelination and insulation of axons.
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Microglia are the resident immune cells of the brain that constantly sense the neural 

environment and clear debris to maintain homeostasis (Nimmerjahn et al., 2005). Amyloid-

β-induced neuroinflammation was aggravated upon microglial-specific deletion of ATG7, 

resulting in excessive neuronal damage (Cho et al., 2014), transition of microglia to a 

proinflammatory status, defects in lipid homeostasis and elevated tau spreading (Xu et 

al., 2021). Similarly, loss of microglial ATG5 resulted in enhanced neuroinflammation 

and neurodegeneration in the striatum of conditional knock-out mice (Cheng et al., 

2020), suggesting that microglial macroautophagy plays a protective role against aberrant 

microglial activation. Microglia have also been shown to be involved in synaptic pruning 

(Paolicelli et al., 2011). Neurons co-cultured with ATG7-deficient microglia showed 

increased synaptic markers and dendritic spine density, as well as in immature dendritic 

filopodia (Kim et al., 2017). However, ATG7 is also involved in LAP in peripheral 

macrophages (Heckmann et al., 2017), therefore further studies are required to determine 

whether deficiencies in macroautophagy or LAP are responsible for these disease changes. 

Interestingly, microglia from mice expressing human α-Synuclein in neurons engulf and 

sequester α-Synuclein by autophagosomes for degradation (Choi et al., 2020). Together 

these studies show the importance of functional macroautophagy in glia for neuronal 

function and viability.

Less is known about the function of CMA in glia. Neuronal CMA blockage is associated 

with astrocyte enlargement and microglial activation, most probably because of neuronal 

dysfunction (Bourdenx et al., 2021; Xilouri et al., 2016). Mice with full-body CMA 

blockage did not show overt astrogliosis or microglial activation (Bourdenx et al., 2021) 

but a functional study is lacking.

Autophagic processes and cell death pathways

Although removal of excessive neurons is important for the development of the nervous 

system, aberrant neuron death is one of the principal causes of neurological disorders. The 

cell death pathways that have been reported to interact with autophagy in the nervous system 

are discussed below.

Necrosis—Necrosis, characterised by plasma membrane rupture can be either regulated 

and genetically controlled, or unregulated (passive). Multiple types of regulated necrosis 

have been identified to cause neuronal cell death, including necroptosis, ferroptosis, 

pyroptosis and parthanatos (Fricker et al., 2018). Necroptosis is mediated by activities of 

receptor interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like 

pseudokinase (MLKL) and has been reported to regulate axon degeneration induced by 

glutamate excitotoxicity and contribute to pathologies in conditions like ALS and AD 

(Degterev et al., 2019). P62 interacts with RIPK1 on early autophagosome structures to 

form the necrosome and induce necroptosis in response to TNF-related apoptosis inducing 

ligand (TRAIL) in mouse prostate cells. Knockdown of P62 switches the cell death to 

TRAIL-induced apoptosis by blocking the formation of necrosome (Goodall et al., 2016).

Ferroptosis—Ferroptosis is an iron-dependent form of cell death which occurs 

when the phospholipid hydroperoxide (PLOOH) and lipid radicals overwhelm their 
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scavenging systems. Agents that inhibit ferroptosis improve neuronal survival in multiple 

neurodegeneration models (Zheng and Conrad, 2020), and ferroptosis is involved in glial 

to neuron conversion after traumatic brain injury (Gascon et al., 2016). Macroautophagy 

promotes ferroptosis through ferritinophagy (Yang et al., 2019), since free iron is released 

from ferritin-bound iron via the lysosome. CMA also promotes ferroptosis by degrading 

glutathione peroxidase 4 (GPX4), which catalyses the reduction of lipid peroxides and 

prevents ferroptosis (Wu et al., 2019).

Apoptosis—BCL-family proteins stimulate or inhibit macroautophagy and apoptosis, and 

these activities are at the centre of the mutual regulation of these processes. Macroautophagy 

both positively and negatively regulates apoptosis through degradation of BCL-family 

proteins and their regulators (Fricker et al., 2018).

In neurons, BAX is the dominant executor of intrinsic apoptosis. P53 upregulated modulator 

of apoptosis (PUMA, also called BBC3) directly translocates BAX onto mitochondria in 

neuronal cells undergoing oxidative stress, thereby inducing apoptosis, a phenomenon that 

was rescued by PUMA knockout (Steckley et al., 2007). In HeLa cells, autophagy maintains 

low PUMA mRNA levels through an unknown mechanism (Thorburn et al., 2014). It is 

unclear whether similar regulation of PUMA exists in neuronal cells.

The extrinsic apoptosis pathway contributes to pathogenesis in neurological disorders. 

Neuronal specific deletion of caspase-8 renders neurons resistant to TNF-α ligation-induced 

apoptosis in vitro and increases neuron survival with reduced caspase-3 activation after acute 

brain injury (Krajewska et al., 2011). The induction of apoptosis in primary cortical neurons 

by the neurotoxin 6-hydroxydopamine (6-OHDA) was rescued by knockdown of ATG5 or 

macroautophagy inhibitor 3-methyladenine (Chung et al., 2018).

The relation between CMA and apoptosis has been mostly studied in cancer cells, where 

CMA prevents apoptosis through degradation of cyclin D1, PUMA or HMGB1, but 

facilitates immunogenic apoptosis by mediating surface exposure of calreticulin (reviewed 

in (Arias and Cuervo, 2020)). In untransformed cells, inhibition of CMA increases 

susceptibility to stressors and leads to apoptosis but the molecular mechanisms remain 

poorly understood.

Pyroptosis—Pyroptosis is a form of cell death seen in many common neurological 

diseases, like AD and PD, that manifests with inflammasome-mediated release of caspase 

1 from affected cells. Macroautophagy activation protects against this form of cell death 

in mouse models via diverse pathways, including degradation of a key pyroptosis mediator 

NLRP3 (Wu et al., 2021). In this way, autophagy may also buffer neuroinflammation, a 

prevalent process in different neurodegenerative conditions.

Autophagic cell death and Autosis—Usually, macroautophagy promotes cell survival 

following stress/nutrient limitation by recycling cellular components and providing energy. 

However, in ischemia/hypoxia and stroke, macroautophagy has been reported to lead 

to cell death, termed autophagic cell death (ACD). The main morphology of ACD 

is accumulation of vacuoles with increased macroautophagy flux, and is rescued by 
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knockdown or inhibition of autophagic proteins (Galluzzi and Green, 2019). However, 

much of the literature in this domain has caveats, including the use of imprecise chemical 

tools to manipulate autophagy, and difficulties measuring autophagic flux versus steady-

state levels of autophagosomes in vivo. For example, autophagic flux can be impaired by 

defects downstream of autophagosome formation, which lead autophagosome accumulation. 

Furthermore, a reduction in cell death in such scenarios in macroautophagy knockout cells 

means that autophagy is required for the death process but not that autophagy is causing the 

cell death. To robustly support ACD, one needs to show a reduction of cell death when the 

flux is normalised, and not when it is ablated. Furthermore, some macroautophagy genes 

may have roles in cell death unconnected with their autophagic functions.

Interestingly, in all the ACD cases reported, inhibition of lysosome function fails to 

rescue cell death, suggesting that ACD may be an autophagy-independent pathway under 

the control of autophagy machinery. Moreover, no common upstream initiator-signalling 

pathway has been found (Galluzzi and Green, 2019).

Role of Different Autophagy Pathways in Enabling Neuronal Functions

Autophagy plays a role in the structural reorganisation of neuronal circuits via axonal 

growth, dendritic spine formation and pruning, synaptic assembly and vesicle turnover 

(Fleming and Rubinsztein, 2020; Kulkarni and Maday, 2018; Lieberman and Sulzer, 2019). 

These autophagy-driven structural changes have a major impact on neuronal function.

Learning and memory—In hippocampal neurons, macroautophagy is upregulated during 

learning and memory consolidation. Macroautophagy inhibition in the hippocampus of 

young mice affects their performance in different behavioural tests, indicating a deficit in 

the formation of novel memories (Glatigny et al., 2019). The mTORC1 complex is known 

to be over-activated in humans with fragile X syndrome (Hoeffer et al., 2012). In mouse 

models, this hyper-activation decreases macroautophagy, increases dendritic spine density 

with aberrant morphology and leads to exaggerated LTD in hippocampal neurons associated 

with impaired novel object recognition (Yan et al., 2018).

Since hippocampal macroautophagy declines with age, promoting macroautophagy has been 

investigated as a mechanism to improve memory in aged animals. Injection of plasma 

from young mice into older mice improves their memory in a macroautophagy-dependent 

fashion (Glatigny et al., 2019), likely via osteocalcin, a blood-brain barrier penetrant, bone-

derived circulating molecule previously demonstrated to act as a hormonal regulator of 

hippocampal memory (Obri et al., 2018). However, upregulation of macroautophagy may 

not be a panacea for all memory deficits. For example, in primary neuron cultures, treatment 

with AICAR, a cell-permeable nucleoside used to induce AMPK hyper-activation, led to 

macroautophagy-dependent loss of pre- and postsynaptic markers and a decline in neuronal 

network function (Domise et al., 2019), suggesting that elevated macroautophagy may be 

as damaging as reduced autophagy and that maintaining the balance of autophagic flux is 

crucial.
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Whole-body CMA-deficient mice have both memory and motor-coordination dysfunction, 

while blockage of CMA only in excitatory neurons resulted mostly in impaired short-term 

memory (Bourdenx et al., 2021).

Sleep and circadian rhythm—Many neurodegenerative disorders are associated with 

altered or poor sleep. Chronic sleep deprivation increases amyloid-β and tau in interstitial 

fluid and is associated with increased pathology in mouse models (Holth et al., 2019). 

Daily sleep–wake and feeding–fasting cycles are coupled to the central circadian clock 

in the suprachiasmatic nucleus. Circadian oscillations involve transcriptional circuits and 

non-translational controls, such as phosphorylation, which synchronize sleep/wake cycles, 

food intake and cellular bioenergetics (Reddy and Rey, 2014). Food intake occurs during 

wake cycles and autophagy is elevated during fasting (sleep). Recent work has shown 

that TFEB and TFE3 control the rhythmic induction of their transcriptional target genes 

involved in macroautophagy and lysosomal biogenesis during the light phase (sleep). Liver 

or muscle-specific knockouts of both TFEB and TFE3 in mice results in loss of the diurnal 

macroautophagy cycle. TFEB and TFE3 were shown to directly regulate the expression of 

Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also 

involved in the regulation of whole-body metabolism and macroautophagy (Pastore et al., 

2019).

A dual interplay between circadian rhythms and CMA has also been recently reported 

whereby CMA displays central and peripheral circadian activity and, at the same time, 

contributes to the regulation of circadian cycling through degradation of components of 

the clock machinery (Juste et al., 2021). Disruption of CMA in vivo and the subsequent 

impaired degradation by CMA of the positive elements Bmal1 and Clock and the regulatory 

element Rev-erbα, leads to temporal shifts and amplitude changes of the clock-dependent 

transcriptional program and fragmented circadian patterns. In contrast to the modulatory 

effect of TFEB on circadian cycling, the CMA-dependent regulation of the clock is nutrient-

independent.

Suggested links with psychiatric diseases—Recent studies have provided some 

support for the hypothesis that altered neuronal macroautophagy may contribute to 

depression, bipolar disorder and schizophrenia. Autophagy-inducing drugs acting via 

independent pathways have antidepressant-like properties in mice (Kara et al., 2018; Kara et 

al., 2013), and numerous clinically prescribed anti-depressants with diverse pharmacological 

activities enhance macroautophagy (reviewed in Gassen and Rein, 2019). Although there has 

been little human clinical research to support these findings, therapeutic concentrations of 

paroxetine and amitriptyline increase expression of macroautophagy components (Beclin1, 

phosphor-AKT, LC3II) in blood cells of patients and these changes predict clinical 

improvement (Gassen et al., 2014). Similarly, in a small study in patients with major 

depressive disorder, serum levels of Beclin 1 were higher in responders to selective serotonin 

reuptake inhibitors than non-responders (He et al., 2019).

A smaller but growing body literature provides some support for a link between 

autophagy and schizophrenia. When mutated, Disrupted-in-Schizophrenia 1 (DISC1) 

confers susceptibility to psychiatric illness. DISC1 contains an LC3-interacting region (LIR) 
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motif and, when over-expressed, enhances mitophagy (Wang et al., 2019b). In post-mortem 

samples, transcriptomic analysis revealed over-representation of genes that regulate altered 

neuronal macroautophagy with down-regulation of expression observed in cortical and 

hippocampal areas in schizophrenic patients (Ryskalin et al., 2018). In addition, exome 

sequencing identified four rare ULK1 variants significantly associated with schizophrenia in 

a case-control study (Al Eissa et al., 2018).

Ageing

Ageing is a major risk factor for human neurodegenerative disease. Autophagy appears to 

decline with age in many organisms (Hansen et al., 2008). Age-dependent decreases have 

been reported for macroautophagy gene transcripts in brains from Drosophila (Simonsen 

et al., 2008) and humans (Lipinski et al., 2010), in mouse retinas (Rodriguez-Muela et 

al., 2013), and in autophagy proteins in mouse hypothalamus and hippocampus (Glatigny 

et al., 2019; Kaushik et al., 2012). Changes in lysosomal abundance with age have been 

extensively documented in multiple peripheral tissues in different experimental models 

(reviewed in (Nixon, 2020), but expansion of these compartments with age is not a universal 

feature, since recent studies in C. elegans have revealed age-dependent decreases in 

lysosome and autophagosome abundance in tissues, such as intestines, muscles and neurons 

(Chang et al., 2017). This decrease in abundance could explain the reported decreased 

macroautophagic activity in aged C. elegans (Wilhelm et al., 2017) and it is consistent 

with the decline in autophagy flux and autophagosome biogenesis observed in mouse brains 

(Park, 2021). The progressive decline in macroautophagy with age can predispose to toxic 

protein and organelle accumulation in neurons and compromise neuronal health. Indeed, 

impairing autophagy reduces lifespan in C. elegans, Drosophila and mice, while induction of 

macroautophagy extends longevity in these organisms (Hansen et al., 2018).

CMA activity decreases with age in most organs and tissues, predominantly due to reduced 

stability of LAMP2A at the lysosomal membrane of old organisms (Kaushik et al., 2021). In 

peripheral tissues, reduced CMA with age contributes to loss of proteostasis, metabolic 

derangements, immune senescence and loss of stemness, all considered hallmarks of 

aging. Conversely, genetic restoration of the LAMP2A defect in old organisms has proven 

sufficient to prevent proteotoxicity, improve the organismal response to stress and restore 

organ function (Kaushik et al., 2021). Although changes in CMA activity with age in 

neurons are still poorly characterized, elevated levels of neuronal nitric oxide synthase, 

previously associated with neuronal aging, have demonstrated sufficient to reduce neuronal 

LAMP2A levels (Valek et al., 2019).

Most studies on autophagy in the aging brain have followed changes on steady-state markers 

due to the difficulties of measuring autophagy flux in live organisms. The development of 

mouse models constitutively expressing fluorescent probes to follow bulk macroautophagy 

(Lopez et al., 2018), selective macroautophagy (mitophagy, (Sun et al., 2015), or CMA 

(Dong et al., 2020) opens up the possibility of tracking changes in the dynamics of these 

processes with age. For example, studies in a mitophagy reporter mouse have demonstrated 

reduced mitophagy flux in aged hippocampal pyramidal neurons (Sun et al., 2015).
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C. Autophagy pathways and neurodegenerative diseases

Mutations in genes encoding proteins involved at all steps in the macroautophagy pathway 

are implicated in different neurodegenerative diseases. Often, one mutation can affect 

macroautophagy at multiple stages. This section describes defects associated with selected 

important examples, while Table 1 summarises a more comprehensive, although not 

exhaustive, list of autophagy-related genes associated with neurodegenerative disorders and 

the autophagic disruption caused by some common neurodegenerative disease genes is 

summarised in Fig. 4. We have not reviewed all neurodegenerative disease genes causing 

autophagy defects in the text, as extensive reviews have been published previously (Menzies 

et al., 2017; Stamatakou et al., 2020).

Mutations in core autophagy genes

Mutations in core macroautophagy genes have been identified in relatively few human 

neurodegenerative diseases. This may be because core macroautophagy components are 

vital for cellular homeostasis and may cause early lethality if mutated. A recent study 

identified recessive mutations in ATG7 in 12 patients from 5 families with a range of 

neurodevelopmental disorders affecting the cerebellum and corpus callosum with additional 

muscle, and endocrine involvement as well as facial dysmorphism. While fibroblasts 

from one family had no obviously detectable LC3-II, those from other families showed 

LC3-II conjugation, indicative of functional autophagy. Furthermore, in the family where 

no LC3-II was detected, autophagosomes were evident in muscle biopsies (Collier et 

al., 2021). Hence, further analysis is needed to determine whether the mutations result 

in a complete loss-of-function and whether there is compensation from non-canonical 

autophagy. Homozygotes with a mutation in ATG5 (E122D) manifest with childhood 

ataxia and cells derived from these patients display decreased autophagic flux and reduced 

conjugation of ATG12 to ATG5 (Kim et al., 2016). X-linked dominant mutations in another 

core autophagy gene, WDR45 (encoding protein WIPI4) cause human β-propeller protein-

associated neurodegeneration (BPAN) mainly in females (Saitsu et al., 2013) and in patient-

derived lymphoblastoid cells, decreased stability of WIPI4 and accumulation of aberrant 

early autophagic structures were observed. An autosomal recessive missense mutation in 

WIPI2 results in severe syndromic cognitive impairment and loss of brain volume (Jelani et 

al., 2019).

Mutations in genes involved in early stages of autophagosome formation

Several neurodegenerative disease-causing mutations have been identified in genes involved 

in membrane trafficking events required for autophagosome biogenesis. A mutation in 

VPS35 (D620N), a core retromer component, has been described in Parkinson’s disease 

(PD) patients and in subsequent studies was shown to cause ATG9 mislocalization 

(Zavodszky et al., 2014; Zimprich et al., 2011). Similarly, an ATG9 trafficking defect 

was observed in cells derived from patients with early-onset progressive spastic paraplegia 

(SPG47 & SPG52) which are deficient for AP-4 pathway function (Davies et al., 2018).
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Mutations in genes involved in substrate recognition and selective autophagy

Mutations in the autophagy receptor P62 have been identified in cases of familial and 

sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) 

(reviewed in (Deng et al., 2017), leading to disrupted degradation of SOD1 and TDP-43 (Gal 

et al., 2009).

Mutations in FAM134B (also called RETREG1), an ER-phagy receptor, cause hereditary 

sensory and autonomic neuropathy type II (HSAN II) and compromise ER-phagy, leading to 

ER expansion (Bhaskara et al., 2019; Khaminets et al., 2015). Mutations in ATL3 that cause 

hereditary sensory and autonomic neuropathy type I (HSAN I) impair starvation-induced 

ER-phagy through direct disruption of the association of ATL3 with GABARAP (Chen et 

al., 2019).

OPTN mutations inhibit its ability to recruit LC3 to damaged mitochondria and to induce 

mitophagy (Shen et al., 2015; Wong and Holzbaur, 2014a), and ALS-associated mutations in 

this kinase reduce binding of TBK1 to OPTN therefore decreasing mitophagy (Richter et al., 

2016).

Mutations in genes involved in autophagosome trafficking, maturation and fusion with 
lysosomes

Autophagosomes generated in axons rely on retrograde transport to fuse with perinuclear 

lysosomes. Therefore, neurons are particularly vulnerable to disruption in trafficking. 

Dynein–dynactin is a molecular motor required for fast retrograde transport of 

autophagosomes, organelles, RNAs and proteins along microtubules and is the target of 

mutations causing axonal Charcot-Marie-Tooth hereditary neuropathy type 2 (CMT2) and 

ALS (Puls et al., 2003). Defects in trafficking have also been associated with disease-

causing mutations in α-Synuclein (PD), C9ORF72 (ALS) and with hyperphosphorylated tau 

(seen in tauopathies, see section D).

Fusion events required for autophagosome maturation involve many components of the 

endocytic pathway, such as the small GTPase RAB protein family. Mutations in RAB7, 

encoding the late endosomal RAB7A protein, cause Charcot–Marie–Tooth type 2B disease 

(Verhoeven et al., 2003). Similarly, mutations in a RAB5 regulatory protein Alsin, can result 

in recessive ALS (Yang et al., 2001). ALS can be also caused by mutations in CHMP2B, 

one of the subunits of the ESCRT-III complex, which impair autophagosome maturation 

(Filimonenko et al., 2007; Lee et al., 2007). Disruption to the ESCRT machinery may also 

interfere with eMI by disrupting proper LE/MVB biogenesis.

Mutations in genes involved in lysosomal function

Macroautophagy completion requires lysosomal digestion of autophagic cargo and 

subsequent release of recycled metabolites. The degradative capacity of lysosomes depends 

on low pH, which is mediated by vacuolar ATPase (vATPase). Mutations in genes associated 

with familial forms of neurodegeneration, such as PSEN1 (AD) (Lee et al., 2010), α-

Synuclein (Decressac et al., 2013) and ATP13A2 (PD) (Bento et al., 2016; Dehay et 

al., 2012) affect lysosomal pH. Following autolysosome fusion and cargo degradation, 
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lysosomes undergo a process called reformation. SPG11 and SPG15, encoded by genes 

mutated in hereditary spastic paraplegia, have been implicated in this process and loss of 

SPG11 or SPG15 result in the depletion of lysosomes capable of fusing with maturing 

autophagosomes (Vantaggiato et al., 2019).

Mutations in genes involved in CMA

Loss-of-function mutations in LAMP2 cause Danon disease that manifests with 

cardiomyopathy, myopathy, variable mental retardation and with progressive retinal 

degeneration (Cenacchi et al., 2020). Most mutations in this disease occur in the part of 

the gene common to all spliced LAMP2 protein variants. Since only the LAMP2A splice 

variant of this gene is required for CMA, whereas the other variants LAMP2B and LAMP2C 

contribute to macroautophagy and lysosomal degradation of DNA and RNA, respectively, 

the mutations will cause defects in multiple types of autophagy. Interestingly, expression 

of each of the LAMP2 proteins has been shown to be differentially affected in PD patients 

brains, with the earlier changes occurring in LAMP2A (Sala et al., 2016). However, further 

studies on the mechanism that regulate splicing of this gene are needed to determine whether 

these differences are linked to specific gene mutations. Further studies are also needed for 

the heterozygous variant in the LAMP2 gene promoter that significantly reduces LAMP2 
transcription in a PD patient (Sala et al., 2016). Mutations in different proteins related to 

PD and frontotemporal dementia associated with reduced CMA activity are summarized in 

Table 2.

D. Polygenic diseases

Tauopathies and AD

Tauopathies are characterized by the intracellular accumulation and aggregation of tau into 

paired helical filaments and neurofibrillary tangles and include frontotemporal dementias 

(FTDs), AD, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD).

Multiple studies demonstrate the roles of different types of autophagy in the degradation of 

tau. Tau colocalises with LC3 and P62 in post-mortem brains of familial AD, CBD, and 

PSP patients and the expression of P62 is reduced in AD patients (Liu et al., 2017). Tau 

associates with the autophagy cargo receptors NDP52 and OPTN, which also colocalize 

with neurofibrillary tangles and dystrophic neurites in AD patients (Osawa et al., 2011; 

Xu et al., 2019). Clearance of tau variants associated with different tauopathies occurs 

via different autophagic routes (Caballero et al., 2018). For example, phosphorylation 

of tau inhibits its degradation by macroautophagy and results in tau clearance via an 

endolysosomal pathway dependent on ESCRT complex and the small GTPase RAB35 

(Vaz-Silva et al., 2018). About 50% of tau is degraded by macroautophagy and the other 

50% is degraded by non-macroautophagy pathways (CMA and eMI) (Caballero et al., 

2021). Interestingly, tau acetylation, a pathological post-translational modification, and 

pathogenic mutations, such as the FTD-related mutation A152T, favor tau degradation by 

macroautophagy, whereas the P301L mutation reduces overall tau degradation (Caballero et 

al., 2018).
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Compromised removal by CMA of pathogenic forms of tau, including both mutant and 

post translationally modified, is further aggravated by the toxic effect that these proteins 

exert on this process. In vivo, expression of pathogenic tau protein is sufficient to induce 

neuronal- (but not astrocytic) specific inhibition of CMA (Bourdenx et al., 2021). Although 

direct evaluation of CMA activity in human brain in a cell-type specific manner is not 

currently possible, analysis of the transcriptional expression of the components of the CMA 

network in the brain of AD patients using single-nuclei RNAseq demonstrated a neuronal 

specific transcriptional inhibition of CMA (Bourdenx et al., 2021) that correlated with the 

Braak stages of tau pathology. The reduction of CMA score was higher in excitatory than in 

inhibitory neurons, thus corresponding well with the higher vulnerability to tau pathology of 

excitatory neurons.

The mechanisms behind tau’s toxicity on CMA are under investigation, but at least for 

acetylated and P301L tau, translocation of these proteins through the LAMP2A multimeric 

complex is compromised due to loss of their pH-dependent interaction with luminal HSC70 

(Caballero et al., 2021). Persistent occupancy of the CMA translocation complex by 

pathogenic tau blocks degradation of other CMA substrates. Interestingly, this dependence 

on lysosomal pH for uptake through CMA, so far only described for tau, explains tau’s 

highly efficient degradation by this pathway (Caballero et al., 2021) and highlights that the 

reported impaired lysosomal acidification in some forms of familial AD could also lead to 

reduced tau degradation by CMA (Wolfe et al., 2013).

Tau can also be a substrate of KFERQ-selective eMI, although, as is the case for CMA, 

pathogenic tau mutations and posttranslational modifications inhibit eMI activity at different 

stages (i.e. substrate binding to LE/MVB, internalization or degradation in the lumen) 

(Caballero et al., 2018). As different types of autophagy can clear tau, this enables re-routing 

of this aggregate-prone protein from one autophagy type to another when one of these 

routes is compromised. For example, acetylated tau can be re-routed to eMI for degradation 

when CMA is inhibited (Caballero et al., 2021). This re-routing of acetylated tau to eMI 

can lead to its extracellular release in exosomes through fusion of LE/MVBs with the 

plasma membrane (Caballero et al., 2021). This may provide a mechanism to remove toxic 

products, such as acetylated tau, from neurons when they are unable to be degraded (Perez 

et al., 2019) but may also contribute to disease progression through extracellular release of 

pathogenic tau (Caballero et al., 2021). The factors that determine whether the eMI re-routed 

protein is degraded in LE/MVB or released extracellularly remain unknown.

AD, the most common tauopathy and neurodegenerative disorder, is characterized by the 

accumulation of intracellular tau tangles, and extracellular amyloid-β deposits (Aβ plaques). 

Macroautophagy has been implicated in the production of amyloid-β within the autophagic 

vesicles and its secretion to the extracellular matrix, contributing to plaque formation in vivo 
in mice and Drosophila models of amyloid toxicity (Yu et al., 2004). Levels of Beclin 1 

are decreased in patients with AD at early stages (Lachance et al., 2019), whereas Beclin 

1 overexpression reduced amyloid aggregation in a mouse model of AD (Pickford et al., 

2008). Microglial Beclin 1 modulates the inflammatory response in Becn1+/−/APPPS1 mice 

(Houtman et al., 2019) and microglial amyloid-β removal and phagocytosis is significantly 

impaired in Beclin 1+/− mice (Lucin et al., 2013). Amyloid-β proteins also induce the 
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accumulation of deficient mitochondria, driven by the depletion of cytosolic Parkin and 

PINK1 accumulation, resulting in defective mitophagy (Cummins et al., 2019; Fang et 

al., 2019). TREM2, an inflammation-linked risk factor for late-onset AD (Jonsson et al., 

2013), is also associated with mTOR pathway dysregulation in AD, where there is also 

downregulation of the Beclin 1-PI3K and ULK1/2 complexes (Lachance et al., 2019).

Brains from AD patients show a selective loss of nuclear TFEB in the hippocampus, 

negatively correlating with the severity of the neuropathology and reduced expression of 

TFEB target genes is also observed in AD patient fibroblasts and iPSC-derived human AD 

neurons (reviewed in (Cortes and La Spada, 2019).

Familial AD and genetic risk factors—Mutations in the genes encoding amyloid 

precursor protein (APP) and presenilin (PSEN) cause autosomal dominant early-onset forms 

of AD (reviewed in Raybould and Sims, 2021). PSEN1 mutations increase lysosomal pH by 

deregulating the maturation of lysosomal v-ATPase and consequently reduce autophagic 

cargo degradation (Nixon, 2013). The APOE4 allele, involved lipid trafficking and 

metabolism, is the most common AD genetic risk factor (Bu, 2009). APOE4 carriers have 

more pronounced reductions in LC3, P62 and LAMP1 compared to APOE3 carriers (Parcon 

et al., 2018). In astrocytes from mice expressing human APOE4 variant, autophagosome 

formation and cargo degradation were defective (Simonovitch et al., 2016). Levels of 

phosphatidylinositol biphosphates, essential for autophagic function, are reduced in post-

mortem human brain tissues of APOE4 carriers (Dall’Armi et al., 2013) and in primary 

neurons and astrocytes derived from knock-in mice expressing human APOE4 (Zhu et 

al., 2015). APOE4 may also affect the expression of P62, LAMP2 and MAP1LC3B by 

competing with TFEB for the binding to the CLEAR domains in their promoters (Parcon et 

al., 2018).

The impairment of macroautophagy in AD may also be a consequence of variants in 

genes with a functional role in macroautophagy, such as SORL1, PICALM and PLD3 

(see Table 1 for wildtype function). Reduced levels of SORL1, which regulates protein 

trafficking between the trans-Golgi network, are observed in iPSC-derived neurons from 

AD patients (Hung et al., 2021). Phosphatidylinositol Binding Clathrin Assembly Protein 

(PICALM) identified in a GWAS study in a locus associated with AD risk, is abnormally 

cleaved in AD brains and its levels inversely correlate with LC3-II and Beclin 1 levels. 

In addition, alternative splicing of the protein correlates with tau aggregation and Braak 

stages (Raj et al., 2018). PICALM regulates endocytosis of critical SNAREs involved in 

both autophagosome biogenesis and degradation (Moreau et al., 2014).

The link between macroautophagy and AD is further supported by several genetic studies 

that associate autophagy-related genes with AD. Pathway enrichment algorithms analysing 

the data from three GWAS studies found an enrichment in autophagic and endolysosomal 

genes associated with genetic variants that increase risk of AD (Gao et al., 2018).

Gradual loss of CMA with age may also become a risk factor for AD. Thus, CMA blockage 

in a mouse model of AD accelerated tau phosphorylation and aggregation, tau propagation, 

and amyloid-β extracellular deposition (Bourdenx et al., 2021; Caballero et al., 2021). 
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CMA deficiency increases similarity between the proteomes of brains from mouse model of 

disease and AD patients, thus mimicking part of the disease usually missing in conventional 

models (Bourdenx et al., 2021).

Although much interest has been focused on extracellular fragments (amyloid-β 40 and 

42), the C-terminal fragment (CTF) of APP (C99 – originating from β-secretase cleavage) 

induces autophagy-lysosome impairments independently of amyloid-β accumulation 

(Lauritzen et al., 2016). Interestingly, APP CTFs contain a KFERQ motif (763KFFEQ768) 

that could be utilized for its degradation through CMA or eMI (Park et al., 2016a). 

Consistent with that notion, CMA blockage in a genetic AD mouse model caused CTF 

accumulation (Bourdenx et al., 2021).

Parkinson’s disease (PD)

PD is characterized by the loss of dopaminergic neurons in the substantia nigra, the presence 

of intraneuronal inclusions (Lewy bodies, LBs) in neuronal soma and neurites enriched with 

filamentous forms of α-Synuclein (Spillantini et al., 1997).

α-Synuclein has been proposed to play roles in synaptic function, its levels are a major 

determinant of PD severity, and multiplications of the SNCA (α-Synuclein -encoding) locus 

cause autosomal dominant forms of PD. α-Synuclein can be cleared by the proteasome, 

macroautophagy and CMA (Cuervo et al., 2004; Webb et al., 2003). α-Synuclein 

accumulation compromises autophagic flux, as the presence of inclusion bodies containing 

α-Synuclein impairs autophagosome maturation and fusion with lysosomes (Tanik et al., 

2013). Indeed, disruptions in the macroautophagy machinery appear to be central to PD 

pathogenesis, with different PD-causing mutations affecting various stages of the autophagy 

itinerary (Karabiyik et al., 2017).

α-Synuclein overexpression in mammalian cells and transgenic mice compromises 

autophagosome biogenesis by inhibiting the GTPase RAB1 leading to mislocalisation of 

ATG9 (Winslow et al., 2010). The expression of mutant α-synuclein (A53T) leads to an 

accumulation of mitochondria-containing autophagosomes in PC12 cells (Stefanis et al., 

2001), and to increased autophagosomal engulfment of healthy, polarized mitochondria in 

primary neurons, causing an abnormal clearance of functional mitochondria and therefore, a 

bioenergetic deficit (Choubey et al., 2011). In addition, results from Drosophila suggest that 

α-Synuclein expression impairs the autophagic flux in ageing adult neurons by disrupting 

the F-actin cytoskeleton (Sarkar et al., 2021).

Although CMA contributes to clearance of α-Synuclein in primary cultured cells and in 
vivo (Cuervo et al., 2004), pathogenic A53T and A30P mutant α-Synuclein proteins are still 

targeted by HSC70 to lysosomes, but their abnormally enhanced interaction with LAMP2A 

and their oligomerization at the lysosomal membrane disrupt the CMA translocation 

complex and block CMA of other substrate proteins (Cuervo et al., 2004). CMA malfunction 

is not restricted to familial PD, as post-translational modifications on α-Synuclein can also 

compromise its CMA degradation (Martinez-Vicente et al., 2008). While phosphorylation 

and covalent oligomerization mask the KFERQ-like motif in α-Synuclein (Kirchner et al., 

2019) and disrupt its targeting to lysosomes, dopamine oxidation leads to formation of 
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α-Synuclein-dopamine adducts that are still targeted to lysosomes where they disrupt CMA 

through similar mechanisms as the α-synuclein mutants (Martinez-Vicente et al., 2008).

Alterations in CMA-related proteins have been reported in the brains of familial and 

idiopathic PD patients. Reduced levels of LAMP2A and HSC70 in the substantia nigra 

and amygdala of PD brains occur early in the disease and correlate with α-Synuclein 

accumulation (Scrivo et al., 2018). Reduced mRNA levels for both proteins suggest that 

downregulated transcription, in addition to the physical blockage of CMA, may both 

contribute to compromised CMA in PD. This reduced CMA in the PD brain has a negative 

impact in neuronal survival, in part, by reducing degradation of the transcription factor 

MEF2D, normally degraded by CMA. Accumulation of the inactive form of MEF2D 

prevents its protective function in these cells (Yang et al., 2009). The relation between PD 

and eMI has not been directly analysed, but a recent study showing that a mutated form of 

α-synuclein accumulates in the LE/MVB and is secreted in exosomes (Stykel et al., 2021), 

opens the possibility of a rerouting of α-Synuclein from CMA to eMI, similar to the one 

described for tau upon CMA blockage (Caballero et al., 2021).

Increasing evidence suggests that other mutations causing familial PD also affect autophagic 

function. In an autosomal dominant form of PD, a mutation (D620N) in the vacuolar protein 

sorting 35 (VPS35), a component of the retromer complex, impairs macroautophagy (see 

Table One). Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for 

most autosomal dominant PD cases, increase phosphorylation of different RAB GTPases 

(Alessi and Sammler, 2018) and disrupt endosome-to-lysosome trafficking. While the most 

common mutation (G2019S) has been associated with a reduction of macroautophagy flux 

(Henry et al., 2015; Wallings et al., 2019), LRRK2 deletion in neurons increases both 

macroautophagy (through the regulation of p62 phosphorylation) and lysosomal degradation 

(Park et al., 2016b; Wallings et al., 2019). Contrary to this proposed inhibitory role of 

LRRK2 in neurons, overexpression of LRRK2 in microglial cells increased macroautophagy 

flux, while LRRK2 silencing reduced degradation (Wallings et al., 2019). Furthermore, the 

effect of LRRK2 may also differ depending on the type of autophagy. Thus, the LRRK2 

G2019S mutant was also suggested to induce mitophagy in multiple studies by causing 

calcium imbalance, resulting in mitochondrial depolarization (Cherra et al., 2013).

Heterozygous mutations in the gene encoding the lysosomal enzyme glucocerebrosidase 
1 (GBA1) are amongst the most common genetic risk factors for PD. iPSC-derived 

neurons from PD patients with GBA1 mutations showed increased α-Synuclein levels, 

macroautophagy and lysosomal defects, including impaired fusion between autophagosomes 

and lysosomes (Schöndorf et al., 2014), further corroborated in neuroblastoma cells with 

nonsense mutations in GBA1 (Bae et al., 2015) and in GBA1-deficient cells (Magalhaes et 

al., 2016).

Mutations in ATP13A2/PARK9, which encodes a transmembrane lysosomal P-type ATPase 

polyamine transporter, cause familial Kufor-Rakeb syndrome with early-onset Parkinsonism 

and impairs lysosomal function (Dehay et al., 2012). Loss of ATP13A2 causes α-Synuclein 

accumulation in mammalian cells and in C. elegans (Karabiyik et al., 2017) and in vitro, 
depletion leads to a decrease in the levels of synaptotagmin 11 (SYT11), another PD-
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associated gene (Bento et al., 2016). Overexpression of SYT11 rescues the macroautophagy 

defects observed in ATP13A2-depleted cells, implying that the two proteins lie within 

the same pathway (Wang et al., 2019a). ATP13A2 also recruits the histone deacetylase 

6 (HDAC6) to lysosomes to deacetylate a protein implicated in autophagosome-lysosome 

fusion, cortactin, resulting in increased fusion and autophagy flux (Borsche et al., 2020).

Autosomal recessive mutations in PTEN-induced kinase 1 (PINK1 or PARK6) and Parkin 
(PARK2), key regulators of a form of mitophagy, have been discussed above. Low CMA 

activity in PD has also been linked to alteration of mitochondria dynamics. Failure to 

degrade PARK7/DJ1 through CMA leads to its accumulation, disruption of mitochondrial 

homeostasis and cell death (Wang et al., 2016). Similarly, MARCHF5, an E3 ubiquitin 

ligase required for mitochondrial fission, is a CMA substrate that upon CMA blockage 

gets stabilized, increasing mitochondrial fission and altering mitochondrial homeostasis. 

Overexpression of LAMP2A in a 6-OHDA PD mouse model was sufficient to rescue its 

phenotype (Nie et al., 2020).

The reported interaction between UCH-L1 with LAMP2A, HSC70 and HSP90 is 

abnormally enhanced in the case of the PD-related UCH-L1 I93M mutant and results 

in reduced degradation of proteins, including α-Synuclein via CMA (Scrivo et al., 

2018). Similarly, although a fraction of cellular LRRK2 undergoes degradation via CMA, 

mutant forms of LRRK2 block the formation of the LAMP2A translocation complex and 

degradation of other proteins through CMA (Orenstein et al., 2013). In other instances, 

reduced CMA by PD-related pathogenic proteins is a consequence of a more general effect 

in the lysosomal compartment. This occurs with VPS35, whose deficiency or mutant form 

D620N reduces lysosomal levels of LAMP2A through its inefficient retrieval from the 

Golgi (Scrivo et al., 2018). Reduced enzymatic activity of GBA1 reduces lysosomal levels 

of LAMP2A (Murphy et al., 2014), likely by inducing changes in the lipid composition 

of the lysosomal membrane associated with increased levels of cathepsin A, the enzyme 

that triggers LAMP2A degradation in lysosomes (Kaushik and Cuervo, 2018). A similar 

destabilizing effect on lysosomal LAMP2A has been described for the loss of function 

mutants of PARKK7/DJ1, although the mechanism behind this effect remains unknown (Xu 

et al., 2017).

ALS

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease 

characterised by upper and lower motor neurons (MNs) degeneration. While 90% of all ALS 

cases are sporadic (sALS), around 10% are due to a genetic mutation. To date, more than 20 

genes have been associated with ALS (Mathis et al., 2019), including C9ORF72, TAR DNA 

binding protein (TARDBP/TDP-43), P62 (SQSTM1), TANK binding kinase 1 (TBK1), and 

optineurin (OPTN), whose mutations can result in autophagy and mitophagy defects, and the 

accumulation of protein inclusions in familial ALS (fALS) patients.

Hexanucleotide repeat expansions (HREs) in the 5’ non-coding sequence of the C9ORF72 
gene have been identified as the most common cause of fALS and frontotemporal 

dementia due to loss-of-function or gain-of-function through three possible mechanisms: 

(1) haploinsufficiency, (2) repeat associated non-AUG (RAN) translations creating toxic 
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dipeptide repeat (DPR) proteins and (3) sequestration of RNA-binding proteins (RNPs) 

through generation of RNA foci involving the C9ORF72 HRE RNA (Wen et al., 2017). 

While the first mechanism results from loss-of-function, the latter two mechanisms are 

considered toxic gain-of-function.

Although protein levels of C9ORF72 are reduced by 10–75% in post-mortem tissues, 

a significant reduction of C9ORF72 expression is not observed in patient-iPSC-derived 

MNs (Renton et al., 2011). LC3-II levels are decreased in C9ALS- patient-iPSC-derived 

neurons but silencing of C9ORF72 enhances autophagy via inhibition of mTOR activity 

and elevation of TFEB levels (Ugolino et al., 2016). C9ORF72 forms a stable complex 

with two proteins, the Smith-Magenis syndrome chromosome region, candidate 8 (SMCR8) 

and the WD repeat-containing protein 41 (WDR41). C9ORF72-SMCR8 recruits ULK1 

complexes on phagophores in a RAB1A-dependent manner and deficiency of C9ORF72 

causes a decrease in ULK1 protein, compromising the initiation of autophagy (Pang and 

Hu, 2021). The sense repeat RNA of C9ORF72 results in the accumulation of nuclear 

and cytoplasmic RNA foci, the latter resulting in the formation of stress granules (SG) 

(Mizielinska et al., 2013). Wild-type C9ORF72 lowers SGs via autophagic degradation by 

cooperating with P62 (Chitiprolu et al., 2018). Overall, a reduction of autophagic activity 

caused by C9ORF72 loss-of-function results in the accumulation of TDP-43, DPR, and SGs 

which would otherwise be eliminated by autophagy.

The accumulation of TDP-43 is frequently seen in ALS and is also mutated in some cases. 

Knockdown of TDP-43 impacts autophagy at multiple steps, such as downregulation of 

ATG7 and reduction of dynactin subunit 1 expression resulting in an overall inhibition 

of autolysosome formation and impaired autophagic flux (Xia et al., 2016). Mutations of 

OPTN and TBK1 observed in ALS patients prevent ubiquitin binding to OPTN and OPTN 

binding to TBK1, respectively, compromising mitophagy (Evans and Holzbaur, 2019).

Although few studies have investigated the status of other autophagic pathways in 

ALS, growing evidence supports possible involvement of CMA failure on ALS disease 

progression. Inhibition of CMA results in the accumulation of the truncated form of TDP-43 

leading to TDP-43 aggregation (Scrivo et al., 2018). Furthermore, TDP-43 aggregates 

(but not overexpressed soluble TDP-43) promote transcriptional upregulation of LAMP2A 

and HSC70, which has been interpreted as a possible early protective mechanism against 

TPD-43 mediated proteotoxicity. However, as TPD-43 aggregation persists, the associated 

lysosomal damage may likely lead to CMA failure (Scrivo et al., 2018). Interestingly, 

intrabody-mediated targeting of misfolded TDP-43 protein to CMA has proven effective in 

reducing TDP-43 aggregates and decreasing neurotoxicity (Tamaki et al., 2018).

CMA has also shown to contribute to degradation of the ubiquitin-like protein, ubiquilin-2, 

which is mutated in forms of ALS and ALS-like dementia. Physiological clearance by CMA 

of ubiquilin-2, a known regulator of macroautophagy, has been proposed to contribute to 

the crosstalk between the two autophagic pathways (Rothenberg et al., 2010). However, 

expression of mutant UBQLN2P497H in neuronal cells is associated with reduced expression 

of LAMP2A in the ventral horn of the spinal cord and its accumulation in ubiquilin-2-

positive inclusions (Chen et al., 2018).
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A still poorly explored change in ALS, but with the potential of linking this condition with 

CMA and KFERQ-selective eMI, is the sequestration of HSC70 mRNA into inclusions 

resulting from overexpression of either TDP-43 or C9orf72 (Coyne et al., 2017). Lower 

levels of HSC70 protein have also been noted in peripheral blood mononuclear cells from 

sporadic ALS patients. and silencing of HSC70 in neuroblastoma cell line is sufficient to 

precipitate formation of TDP-43 aggregates (Arosio et al., 2020). Although the multiplicity 

of intracellular functions of HSC70 precludes the ability to exclusively attribute these 

changes in proteostasis to defective CMA or eMI, these findings should generate future 

interest in exploring the status of both pathways in ALS.

E. Therapeutic Strategies

A number of drug-like small molecules and genetic tools upregulate macroautophagy and 

ameliorate pathologies in cellular and animal models of different neurodegenerative diseases 

(reviewed in (Lee et al., 2018; Li et al., 2014; Menzies et al., 2017). Here, we will focus on 

more recent developments and also consider other types of autophagy.

Macroautophagy targeting

L-type Ca2+ channel blockers, such as felodipine, enhance macroautophagy in mouse 

neurons (Siddiqi et al., 2019). Felodipine has good brain penetration, enhances 

macroautophagy flux in the brain and was found to reduce mutant huntingtin aggregates 

a Huntington’s disease (HD) mouse model and to ameliorate motor phenotypes. Felodipine 

administered to mimic the plasma concentration of humans taking the drug for hypertension, 

reduced levels of insoluble A53T α-Synuclein, and ameliorated neurodegeneration and 

motor phenotypes in a PD mouse model (Siddiqi et al., 2019).

Lonafarnib, a brain-penetrant farnesyltransferase-inhibitor reduced levels of pathogenic tau 

and ameliorated brain shrinkage and behavioural abnormalities in a tauopathy mouse model, 

likely through inhibition of the GTP-binding protein Rhes (Hernandez et al., 2019).

Genetic deletion of the mGluR5 receptor reverses disease pathology in Q111 mHtt knockin 

mice (HD model) (Ribeiro et al., 2014). CTEP, a well-characterised, potent, CNS penetrant 

mGluR5 negative allosteric modulator, facilitated autophagy-dependent clearance of the 

huntingtin aggregates and improved motor deficits and cognitive impairment in an HD 

mouse model (Abd-Elrahman and Ferguson, 2019).

The D2/D3 dopamine receptor (DR) agonist pramipexole promotes macroautophagy in cell 

culture by enhancing Beclin 1 transcription (Wang et al., 2015), and ameliorates disease in 

the R6/1 HD mouse model where it increased LC3-II and decreased p62 in the striatum 

(Luis-Ravelo et al., 2018).

PPARα agonists, gemfibrozil and Wy14643, which induce macroautophagy in cellular 

models via PPARα, reduce soluble amyloid-β levels in the cortex and hippocampus of 

an AD mouse model, induce macroautophagy and improve behavioural deficits (Luo et al., 

2020).
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Rapid progress has been made developing small molecules such as molecular glues, 

that stabilise protein-protein interactions (Schreiber, 2021) and bifunctional molecules, 

like PRoteolysis TArgeting Chimeras (PROTACs) that degrade proteins by forcing their 

interaction with a ubiquitin E3 ligase that ubiquitinates the target enabling its subsequent 

proteasomal clearance (Paiva and Crews, 2019). Similar approaches have been developed 

for macroautophagy. Molecules dubbed AuTophagosome-TEthering Compounds (ATTECs) 

bind both LC3 and mHTT to target the mutant protein to phagophores for macroautophagic 

degradation (Li et al., 2019c) (Fig. 5). Such ATTECs can lower levels of mutant but not 

wild-type huntingtin, and ameliorate disease in an HD mouse model (Li et al., 2019c).

Chimeric molecules called AUTACs (AUtophagy TArgeting Chimera) (Takahashi et al., 

2019) utilize endogenous tagging by S-guanylation of cysteine residues by 8-nitro-cGMP 

tag to trigger ubiquitination and then macroautophagic clearance. AUTAC molecules consist 

of Cys-S-p-fluorobenzylguanine (dubbed FBnG), a mimetic of Cys-S-cGMP with improved 

physicochemical properties, attached to a target-specific ligand via a polyethylene glycol 

(PEG) linker (Fig. 5). The approach was extended to mitophagy of fragmented mitochondria 

through the generation of AUTAC4 in which the FBnG is attached to a warhead binding 

to the mitochondrial translocator protein (TSPO). AUTAC4 promoted mitophagy, reduced 

apoptosis and maintained levels of intracellular ATP when mitochondrial fragmentation was 

induced.

Clinical trials of autophagy-enhancing drugs for neurodegeneration are relatively rare. Much 

of the effort to-date has focused on repurposing and the next phase will likely see the 

development of specific autophagy-enhancing drugs through focussed medicinal chemistry 

on well-validated targets. Such effort within the pharmaceutical and biotech sectors should 

increase the chance of projects progressing from preclinical to clinical studies.

Therapeutic targeting through CMA

The recently described broad role of CMA in neuronal proteostasis and degradation of 

pathogenic proteins, and the growing evidence of reduced CMA activity in PD, FTD 

and AD, has made CMA an attractive target to prevent neuronal proteotoxicity and 

neurodegeneration.

Genetic modulation of CMA in neurodegeneration models has primarily focused on 

LAMP2A. Lentiviral-based LAMP2A overexpression in rats substantia nigra reduced human 

α-Synuclein aggregation and protected dopaminergic neurons from degeneration (Xilouri et 

al., 2013).

Since retinoic acid receptor α (RARα) negatively regulates CMA, activation of this pathway 

can be attained with retinoic acid derivatives (Anguiano et al., 2013). Extensive medicinal 

chemistry optimized one of these derivatives (CA77.1), which improved behaviour and 

tau and Aβ-related pathology in FTD mouse models (Bourdenx et al., 2021). Although 

interventions that improve lysosomal function should also indirectly enhance CMA, this 

possibility has been rarely investigated. For example, lactulose has been proposed to 

improve Aβ pathology through macroautophagy and CMA, but CMA activity was not 

measured (Lee et al., 2021). Similarly, inhibition of HDAC6 with tubastatin A was reported 
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to reduce PD-related pathology through CMA activation (Francelle et al., 2020). Although 

CMA activity was not directly measured, the fact that the intervention increased LAMP2A 

levels justifies future studies.

PROTAC-like approaches have also been attempted for CMA. A fusion molecule containing 

the KFERQ-like motif and the polyglutamine binding peptide 1, which interacts with 

polyglutamine chains, was effective in targeting mutant huntingtin for degradation via CMA 

(Bauer et al., 2010). Intra-striatal delivery of this fusion molecule reduced pathology in 

HD models and improved the disease phenotype (Bauer et al., 2010). KFERQ-containing 

peptides designed to bind Aβ oligomers and promote degradation through CMA have been 

effective (Dou et al., 2020), although this strategy may not involve CMA, as Aβ oligomers 

are usually extracellular and CMA requires protein unfolding before internalization. It is still 

possible that KFERQ-tagging targets instead these proteins to LE/MVB via eMI.

F. Conclusions and important future questions

To maximise our understanding of these areas of biology and increase the probabilities 

of contributing to therapeutic strategies, there are several domains that deserve further 

exploration. From a basic science perspective, it will be important to appreciate how 

different autophagic pathways, the UPS and unconventional secretion communicate and 

influence each other. One challenge is to devise approaches different from knockout systems 

(e.g. ATG-null cells) or pharmacological inhibitors, as these can affect other systems 

or induce compensatory effects. One approach that may contribute to such analyses is 

autophagosome and lysosomal content proteomic profiling (Le Guerroue et al., 2017; 

Schneider et al., 2015).

We need a better understanding of the roles of autophagic pathways in different glia. 

This will expand understanding of glial physiology and disease relevance, for example, 

for neuroinflammatory-like. Furthermore, growing evidence of non-cell autonomous control 

of neuronal autophagy by glia that could be utilized as a therapeutic target. For example, 

chemical enhancement of CMA in PD astrocytes has proven protective in vitro against 

a-Synuclein-mediated toxicity in neurons (di Domenico et al., 2019).

Further studies testing links between autophagy and psychiatric disease and conditions like 

autism will be important for understanding their etiologies, therapeutic potential and, by 

extension, may also shed light on processes underpinning the very challenging behavioural 

features in common neurodegenerative diseases.

Harnessing autophagy-stimulating strategies has real potential for many neurodegenerative 

diseases, but translational success may depend on the identification of human biomarkers 

that reflect brain autophagic activities. Dynamic metabolite tracing (metabolic fluxomics) 

and multiplex quantitative proteomics including PTMs (Wesseling et al., 2020) and more 

sensitive and specific tools for in vivo imaging of human brains of disease-causing 

autophagic substrates, like tau, α-Synuclein and huntingtin (van Waarde et al., 2021) may 

help reveal the molecular signatures of defects in autophagy. Early treatment, ideally in 

presymptomatic individuals, may be necessary, as disease-protein lowering later in the 
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disease course is not nearly as effective as early removal (Rubinsztein and Orr, 2016). In 

this respect, trial strategies and approval processes should evolve to enable development of 

preventive agents administered to healthy/presymptomatic people, analogous to the use of 

statins in heart disease.

Enhancing autophagosome formation, although effective in disease animal models, may 

have risk in conditions when autophagosome clearance is defective. This may be resolved 

by careful in vivo studies aiming to mimic the physiological/disease scenario in a model 

organism. In advanced states of disease, when multiple autophagy steps and pathways 

may be compromised, it would be worth considering combinatorial interventions aiming at 

restoring flux through multiple autophagic pathways, since even partial restoration of each 

of them may have an additive beneficial effect.

The coordinate functioning of autophagy with the UPS and chaperones also makes 

an attractive combination of chemical regulators of these components with autophagy 

enhancing interventions.

Consideration should also be given to the changes on autophagy in aging and the higher 

probabilities of comorbidities at advanced ages that may contribute to disease (i.e. diabetes 

and AD). Consequently, it will be important to consider the effects of therapeutic agents not 

only on the neurodegenerative disease itself, but also on comorbidities and on healthy older 

people.

Enhancing autophagic pathways to treat diseases or delay symptom onset has the added 

benefit that constitutive upregulation in animals is generally associated with longevity 

and other health benefits (e.g. (Fernandez et al., 2018; Pyo et al., 2013). Furthermore, 

the autophagy-inducing agent may not need to engage its target all of the time like an 

antihypertensive drug but may have efficacy if administered in a pulsatile fashion e.g. every 

few days, which would reduce liabilities of the agent, increasing the feasibility of this 

approach.
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Figure 1. Schematic representation of macroautophagy:
Cell components to be degraded are engulfed in a double membraned structure called 

the phagophore, the edges of which elongate and close to form autophagosomes. These 

ultimately fuse with the lysosomal membrane for cargo degradation. A. Early steps in 

macroautophagy involve 2 ubiquitin-like conjugation cascades. Conjugation I leads to 

the formation of the Atg5-Atg12 conjugate mediated by ATG7 (E1-like) and ATG10 (E2-

like). This then forms a complex with ATG16L1. During Conjugation II, ATG4 cleaves 

the C-terminus of LC3 generating LC3-I whose C-terminal glycine can be conjugated 
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to phosphatidylethanolamine (PE) by ATG7 (E1-like), ATG3 (E2-like) and ATG5-ATG12/

ATG16L1 (E3-like) (generating lipidated LC3 (LC3-II)). The other ATG8 family members 

(GABARAPs) use the same machinery to enable their conjugation to PE as LC3 proteins. 

The sites of LC3 conjugation to membranes are determined by the ATG5-ATG12-ATG16L1 

complex, which localizes to the surface of the forming phagophore by interacting with 

WIPI2. WIPI2 is recruited to these membranes by binding both to phosphatidylinositol 

3-phosphate (PI3P) and RAB11A. B. During autophagosome formation, the phagophore 

double membrane elongates and fuses to form a double-membraned vesicle termed the 

autophagosome. Cargo within autophagosomes can be trapped in a (i) bulk or (ii) selective 

manner by autophagy cargo receptors, such as P62, leading to the selective autophagy 

of specific substrates. Completion of vesicle closure to engulf regions of cytoplasm and 

organelles or to engulf specific cargoes such as aggregates (aggrephagy), mitochondria 

(mitophagy) or ribosomes (ribophagy) is followed by release from the recycling endosome-

RAB11A platform to which the LC3 conjugates. Finally, the autophagosome outer 

membrane fuses with the lysosomal membrane and cargo is released for complete 

degradation in the lysosomal lumen.
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Figure 2. Schematic representation of chaperone-mediated autophagy (CMA) and endosomal 
microautophagy (eMI).
The first steps for cargo recognition are shared by CMA and eMI and are mediated by the 

binding of HSC70 to a targeting motif in the protein sequence biochemically related to the 

pentapeptide KFERQ. The inset (top right) highlights the chemical requirements for KFERQ 

motifs and the post-translational modifications such as phosphorylation or acetylation that 

can generate motifs by providing the missing charges. This motif is necessary and sufficient 

for CMA, whereas it is necessary but insufficient for eMI. Additional, as yet unknown, 

mediators are required for eMI targeting. HSC70 binds to the surface of late endosomes 

via phosphoserine and triggers assembly of the ESCRT machinery for internalization of 

substrate into intraluminal vesicles. In CMA, binding of the HSC70/substrate complex to 

LAMP2A at the lysosomal membrane triggers its multimerization to form a translocation 

complex that mediates the internalization of the substrate protein into the lumen for 

degradation. LAMP2A is actively disassembled from the complex to initiate a new cycle 

of binding/internalization. LAMP2A also mobilizes laterally to incorporate into lipid 

microdomains for its own degradation triggered by cathepsin A (CTSA). Phosph. gen.: 

phosphorylation generated. Acetyl. gen: Acetylation generated.
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Figure 3. Schematic representation of microautophagy:
Bulk of proteins and cells components such as organelles (1. In bulk) can be integrated into 

lysosomes and late endosomes directly through invaginations at the lysosomal membrane. 

Cytosolic proteins targeted by Hsc70 can be also selectively degraded by its internalization 

into late endosome invaginations in a process known as Endosomal microautophagy (2).
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Figure 4. Overview of the role of macroautophagy in the nervous system in health and 
neurodegeneration.
Autophagy is fundamental to sustain the homoeostasis and function of the CNS. 

Perturbations in the macroautophagy pathway at different stages have been observed 

during neurodegeneration and distinct disease-associated genes are also key contributors 

to macroautophagy dysfunction. Defective autophagy compromises protein clearance and 

organelle turnover, leading to the accumulation of toxic proteins and damaged cellular 

components that finally alter neuronal function and induce neuronal loss.
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Figure 5. Autophagy tethering compounds (ATTEC) and the autophagy-targeting chimera 
(AUTAC) system.
A) ATTEC molecules tether the protein of interest to the autophagosomes by direct binding 

to the protein of interest and to LC3. A proof-of-concept study using the mutant HTT 

protein (mHTT) demonstrated that these compounds can degrade mHTT both in cells 

and in vivo in animal models and demonstrated targeting of mHTT to autophagosomes 

for subsequent degradation without influencing autophagy activity per se. B) AUTAC 

technology has a similar design to the PROTAC technology and both use ubiquitination to 

target proteins for degradation. The AUTAC molecule contains a degradation tag (a guanine 

derivative called FBnG) which induces K63 polyubiquitination and a ligand which binds to 

the target protein to provide target specificity. The resulting K63 ubiquitination targets the 

labelled protein for degradation via macroautophagy.
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Table 2.

Mutations in neurodegeneration-related genes with impact on CMA

Gene Mutation/s Associated disease Effect on CMA References

SNCA A53T A30P PD Blocks CMA uptake (Cuervo et al., 2004)

LRRK2 G2019S R1441C D1994A PD Reduces LAMP2A stability and blocks CMA 
uptake (Orenstein et al., 2013)

VPS35 D620N PD Reduces LAMP2A stability (Tang et al., 2015)

UCH-L1 I93M PD Blocks CMA substrates degradation (Kabuta et al., 2008)

LAMP2 LAMP24127A>C PD Reduces LAMP2A transcription (Pang et al., 2012)

MAPT P301L FTD Blocks CMA degradation (Caballeroet al., 2018)
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