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Abstract

The advent of induced pluripotent stem cell (iPSC) technology, which allows to transform one cell type into another, holds
the promise to produce therapeutic cells and organs on demand. Realization of this objective is contingent on the ability to
demonstrate quality and safety of the cellular product for its intended use. Bottlenecks and backlogs to the clinical use of
iPSCs have been fully outlined and a need has emerged for safer and standardized protocols to trigger cell reprogramming
and functional differentiation. Amidst great challenges, in particular associated with lengthy culture time and laborious cell
characterization, a demand for faster and more accurate methods for the validation of cell identity and function at different
stages of the iPSC manufacturing process has risen. Artificial intelligence-based methods are proving helpful for these com-
plex tasks and might revolutionize the way iPSCs are managed to create surrogate cells and organs. Here, we briefly review
recent progress in artificial intelligence approaches for evaluation of iPSCs and their derivatives in experimental studies.
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Methods

A comprehensive literature search was conducted
on May 21, 2021 using the PubMed-NCBI database.
The following search terms were used: (1) induced
pluripotent stem cells[MeSH:noexp] AND artificial
intelligence[MeSH:noexp]; (2) induced pluripotent stem
cellsfMeSH:noexp] AND deep learning[MeSH:noexp]; (3)
induced pluripotent stem cellsfMeSH:noexp] AND machine
learning[MeSH:noexp]. PubMed search returned a total of
29 results. Three non-English (Japanese) language publica-
tions, one review, and four editorial/commentary contribu-
tions were excluded from the manuscript. Further search
in the Scopus database returned an additional publication,
which was also included. During manuscript revision, we
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added seven more articles as suggested by the reviewers.
Considered articles were published between 2014 and 2021.

Introduction

Failed or failing organs, according to well-established prac-
tice, may be replaced by healthy ones obtained from a cadav-
eric or a live donor. Success of this approach, as significant
as it is, however, is restricted by the short supply of donors
of either type.

In recent years, alternative approaches for functional
organ generation have emerged. Organ generation using
tissue-specific stem/progenitor cells has been suggested
[1], and more recently, induced pluripotent stem cells
(iPSCs) have opened new avenues for regenerative treat-
ments [2]. iPSCs hold great potential for the development
of personalized therapies without the ethical issues associ-
ated with embryonic stem cell treatment and the immuno-
logical risk of rejection. This promise has spurred efforts
to generate all known cell types for therapeutic purposes,
which have resulted in a hundred of clinical trials (http://
clinicaltrials.gov). However, major drawbacks for clinical
translation are the low reprogramming and differentiation
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efficiency of common iPSC protocols [3], as well as the
high variability in differentiation outcomes [4], and the
occurrence of differentiation-defective phenotypes [5].
iPSCs, during early culture passages, have a residual
epigenetic memory of the tissue from which they were
derived [6], and might revert to their somatic cells of ori-
gin. Furthermore, the genomic instability associated with
the reprogramming process [7], and/or small variations in
the complex multistep culture system [8], can influence
iPSC response to differentiation stimuli and, hence, cell
fate decisions. In many cases, the progeny of iPSCs are
comparable to an immature fetal stage [9-11]. Failure to
provide mature and functional cells, or contamination of
the cellular product with residual undifferentiated iPSCs,
might be detrimental to the recipients of iPSC-based
therapies.

For safe and effective autologous cell replacement, a thor-
ough evaluation of the iPSC-derived cell product at different
stages of culture is required. The current solution relies on a
judgement call from well-trained cell culture experts, who
often determine iPSC induction and maturation based on
changes in morphology and/or lineage marker expression,
tasks which are extremely effort-intensive and subjectively
biased. Scalable production of therapeutic cells cannot be
based on manual cell quality control. An automated method
enabling high-throughput validation of cell identity and
function would be desirable throughout the entire manufac-
turing process. The screening is multifold. It is needed: (1) in
the reprogramming stage, to select those somatic cells which
have been fully converted to iPSCs; (2) in the expansion
stage, to exclude abnormal or unstable iPSC colonies; and
(3) in the differentiation stage, to select functional mature
cells for implantation.

While practical application of iPSCs in the clinic may
not be forthcoming, an automated, high-throughput method
would at least sustain the use of iPSC derivatives as drug
screening platforms, by helping understand how drugs
impact key cellular functions.

Developments in digital pathology and computational
image analysis have provided advanced tools for cellular
morphology description and classification [12]. Given the
high-dimensionality of the data generated by computa-
tional image analysis, artificial intelligence, with the use of
machine learning algorithms, has been increasingly deployed
to build cell image classification methods [13]. Machine
learning algorithms are able to learn from large datasets and
to make predictions based on novel input. Hence, they can
evaluate multiple parameters simultaneously without a priori
knowledge. Several different machine learning methods have
been developed in the last fifty years. Few examples are: the
nearest-neighbor search developed in the 1960 s [14], sup-
port vector machines (SVM) in the 1990 s [15], and random
forest (RF) in the early 2000 s [16].
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In the machine learning field, deep learning has also
attracted much attention. Deep learning uses a multilayered
neural network that mimics human neural circuit structure
[17]. Deep neural network can automatically extract features
from an image, while traditional machine learning methods
require human intervention. Convolutional neural network
(CNN)-based deep learning methods or convnets, are now
used for a wide range of image-related tasks. Such methods
transform input images into predicted outputs after learning
the proper associations from examples. Their performance
largely depends on the features extracted for a given task,
and it is usually measured using statistical metrics such as
accuracy, precision, recall, F1 score, the receiver operator
characteristic curve (ROC), and the area under the curve
(AUC).

Not only applied to biological images, but also machine
learning techniques have started to be exploited for the pro-
cessing and the analysis of the huge amount of data or big
data, that is being created by advancements in next gen-
eration sequencing (NGS) technologies in various areas of
medicine including the iPSC field [18].

By helping evaluate both the reprogramming state and the
differentiation trajectories of human iPSCs, machine learn-
ing and deep learning have the power to open up the game
for greater iPSC bioprocess efficiency and yield. A review
of the methods which have been adopted in research for the
identification, classification and prediction of iPSCs follows.

Machine and Deep Learning Methods
for Image-based iPSC Identification and Functional
Characterization

Recently, machine learning methods have been trained to
predict iPSC induction and differentiation from microscopy
images. Machine learning methods based on time-lapse
images of the morphology and motion pattern of iPSCs were
used to predict/identify iPSCs against feeder fibroblasts dur-
ing the early stage of the reprogramming process [19]. After
48 h of infection, the reprogramming process was recorded
using a live cell imaging system. iPSCs and feeder fibro-
blasts within 3 to 5 days after infection were then labeled by
retrospectively tracing the time-lapse microscopic image.
Eleven types of cell morphological and motion features
(volume, area, sphericity, ellipsoid-prolate, ellipsoid-oblate,
nucleus-cytoplasm volume ratio, displacement, speed, etc.)
were calculated, and different time windows were considered
for modeling and perform feature selection. Six features and
best time windows were finally used to build a prediction
model using the algorithm XGBoost. In another study, the
quality of newly reprogrammed iPSC colonies was identi-
fied from phase-contrast images using SVM followed by the
feature extraction method Scaled Invariant Feature Transfor-
mation (SIFT) [20]. In these images, feeder cells were also
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included. The classification task was a multiclass problem
with three possible classes (good/semigood/bad) for the
iPSC colonies. Importantly, such colony image classification
method could be improved by applying an error-correcting
output code (ECOC) framework [21]. Other authors devel-
oped a model to guide colony selection using a combination
of bright-field microscopic images and CNNs [22]. Specifi-
cally, the CNN model was trained to locate unlabeled iPSC
colonies and detect their boundaries. After the boundary
of a colony was found, each colony was measured in terms
of the area and time frame after reprogramming induction,
and a growth curve was plotted. Abnormal growth condi-
tions (overgrowth/undergrowth) were manually defined and
normal colonies were used to train a Hidden Markov Model
(HMM) for prediction of optimal picking time window.

Healthy quality of undifferentiated iPSCs is an essen-
tial requisite for further experimental and therapeutic
approaches. Kavitha et al. developed a vector—based CNN
(V-CNN) to classify healthy from unhealthy colonies, con-
sidering both colony morphological and textural features
[23]. In a further study, 151 texture features, extracted
quantitatively from segmented colony regions, were evalu-
ated using several machine learning classifiers [24]. This
approach could achieve a robust and reliable classification
accuracy in the range of 82.5-92.7%, with low false positive
and negative rates.

Not only for colony detection and classification, but also
machine learning has been exploited to reveal specific iPSC
cellular constituents. Indeed, Christiansen et al. designed a
deep neural network capable of predicting fluorescent labels
against nuclei or cell-type-specific markers from the z-stack
of unlabeled transmitted-light images of fixed and live iPSCs
[25]. Cellular constituents of several types of cells, including
iPSCs could also be recognized in three-dimensional (3D)
tissues by the CNN-based Cell Profiler 3.0 software, which
supports both whole-volume and plane-wise analysis of 3D
image stacks [26].

While the above described machine learning methods
require to specify target morphologies, choose specific
algorithms, and try different parameters depending on the
imaging problem, the open source utility wndchrm, i.e.
weighted neighbor distances using a compound hierarchy of
algorithms representing morphology, provides an automated
pipeline [27]. Wndchrm allows users to define classes by
providing example images for each class; completely repro-
grammed cells or partially reprogrammed cells, for example.
Given that nuclear morphology changes during differentia-
tion status, Tokunaga et al. constructed wndchrm image
libraries from immunofluorescence of the promyelocytic
leukemia (PML) and Cajal bodies to discriminate bona fide
iPSCs from non-iPSCs [28].

Beside supporting iPSC colony identification/prediction/
classification, machine learning methods might also help

assess differentiation and function of iPSC-derived cells.
CNNs were trained to predict whether phase-contrast images
contained human iPSC-derived endothelial cells (hiPSC-
ECs) based on morphology only [29]. Predictions were later
validated by comparison with immunofluorescence staining
for CD31, a pan-endothelial marker. Using high-throughput
image-processing and SVM, Smith et al. considered instead
the relationships between cytoskeletal tension, density,
and micropattern geometry to predict pattern formation in
early and late-stage human iPSC maturation toward both
endothelial cells and pericytes [30]. Furthermore, a few
studies used artificial intelligence methods to assess the
quality of human iPSC-derived cardiomyocytes (hiPSC-
CMs). Orita et al. trained CNNSs using bright-field images
of hiPSC-CMs to classify the images into normal (experi-
mentally useable) or abnormal (experimentally unusable)
[31]. Lee et al. established a screening method that com-
bines bright-field microscopy and machine learning to detect
changes in the contraction of hiPSC-CMs after exposure to
three cardioactive drug compounds with distinct, dissimi-
lar effects: E-4031 (hERG K* channel inhibitor), verapamil
(L-type Ca®* channel blocker), and blebbistatin (myosin-II
inhibitor) [32]. For the bright-field method, images were
processed by an optical flow algorithm to generate vectors
that represent the motion of hiPSC-CMs. The optical flow
method was later combined with SVM. SVM classified the
data points into normal and abnormal cardiomyocyte behav-
ior by creating a decision boundary between the two groups.
Another method to assess the quality of hiPSC-CMs con-
sisted in optical quantification of the contractility of hiPSC-
CMs using bright-field microscopic videos [33]. Contraction
waves were extracted directly from time-lapse video images
using Fiji image processing package in Imagel, and were
divided into normal contraction (experimentally useable)
and abnormal contraction (experimentally unusable) waves
using an SVM classification. In addition to contractility,
Ca”* transients were also exploited for functionality assess-
ment of hiPSC-CMs. Indeed, calcium cycling has a central
role in cardiac functionality by linking electrical activation
and contraction. Juhola et al. first proposed an analytical
algorithm to detect cycling Ca** transient peaks, quantify
peak variables, and assess the abnormality of transient peaks
and signals using iPSC-CMs generated from genetic car-
diac disease patients [34]. However, signal abnormality was
based solely on characteristics of a single peak. An improved
method consisting in the identification of peak abnormality
based on quantified peak characteristics, was later suggested
by Hwang et al. [35]. Ca®* transient data of 200 cells and
1893 peaks were collected and analyzed to train peak- and
cell-level SVM models, and later validated using the leave-
one-out cross-validation (LOOCV) approach. In parallel, test
data of 54 cells and 454 peaks were used to implement the
SVM classifier to predict cell abnormality. This machine
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learning classification method obtained higher sensitivity
and accuracy with respect to the previous analytical algo-
rithm, and also allowed separating different genetic car-
diac diseases from each other and from controls [36, 37].
The genetic cardiac diseases included: catecholaminergic
polymorphic ventricular tachycardia (CPVT), long QT syn-
drome 1 (LQT1), hypertrophic cardiomyopathy (HCM),
dilated cardiomyopathy (DCM), and long QT Syndrome 2
(LQT2). The improved method could also predict the type of
mutation based on Ca** transient signals only [38]. Finally,
machine learning was exploited to study drug responses of
hiPSC-CMs. Heylman et al. used machine learning to clas-
sify the electrophysiological effects of chronotropic drugs on
hiPSC-CMs based on alteration of membrane depolarization
waveforms [39], while Juhola et al. used machine learning to
detect drugs affecting calcium cycling properties of CPVT
iPSC-CMs [40].

Besides iPSC-CMs, the iPSC-derived retinal pigment
epithelium (iPSC-RPE) was also analyzed using artifi-
cial intelligence-based methods. Deep neural networks
and traditional machine algorithms were used to predict
iPSC-RPE function from quantitative bright-field absorb-
ance microscopy (QBAM) images [41]. To demonstrate the
effectiveness of the imaging and analysis method, a proof-
of-principle study was carried out on iPSC-RPE from the
following donor types: healthy, oculocutaneous albinism
disorder (OCA), and age-related macular degeneration
(AMD) donors. QBAM was first used to assess iPSC-RPE
for transepithelial resistance (TER) and polarized vascular
endothelial growth factor (VEGF) secretion, where TER is
a measure of RPE maturity that increases as tight junctions
form between neighboring cells, and polarized VEGF secre-
tion is a measure of RPE function. Single-cell analysis began
with a deep neural network that identified cell borders in
QBAM images. Next, visual features of individual cells were
extracted from QBAM images using the web image pro-
cessing pipeline (WIPP). The extracted visual features were
then used to train five different traditional machine learning
methods (multilayer perceptron [MLP]; linear SVM; RF;
partial least squares regression [PLSR]; and ridge regression
[RR]) to predict a variety of tissue characteristics, includ-
ing cell function, donor identity, and developmental outli-
ers. The iPSCs-RPEs from healthy donors were imaged as
they matured throughout the long culture, thus providing a
comprehensive/continuous assessment, while iPSCs-RPEs
from AMD and OCA donors were imaged at a terminal time
point once they had reached maturity. The latter approach
allowed to predict function, identity and developmental out-
liers just prior to implantation. Similarly, Ye et al. developed
a machine learning-based prediction model to predict failure
RPE products [42]. As F-actin plays an important role in the
maintenance of the epithelial architecture, authors analyzed
how F-actin was distributed in RPE sheets and from this
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data predicted TER values. Cellular morphological analyses
were performed using the ImageJ plugin Cell Magic Wand.
Importantly, the TER discrimination model could also pre-
dict failure samples from non-labeled images.

Machine learning approaches also proved successful in
image-based analysis of cellular pathways and injury mecha-
nisms, as demonstrated by Kandasamy et al., who combined
an in vitro model of human iPSC-derived renal proximal
tubular cells (iIPSC-HPTCs) with the automated classifier RF
to predict drug-induced proximal tubular toxicity in humans
[43]. The nephrotoxicity prediction performance of iPSC-
HPTCs was determined by evaluating their responses to 30
compounds. Given that compounds that are toxic to renal
proximal tubular cells increase interleukin-6 (IL-6) and/
or interleukin-8 (IL-8) expression, nephrotoxicity was pre-
dicted by exploiting changes in the levels of these cytokines,
as determined by qPCR. Not only drug-induced toxicity
could be predicted, but also underlying injury mechanisms
and compound-induced cellular pathways could be detected
with automated imaging of yH2AX generation, 4-hydrox-
ynonenal (4-HNE) production, and nuclear-cytoplasmic
translocation of the nuclear factor (NF)-kB p65 subunit.

Thus, the power of machine learning can be leveraged
in image-based characterization of iPSCs and iPSC deriva-
tives, and support future application of iPSCs in regenerative
medicine and drug discovery.

Machine and Deep Learning Methods
for Genomic-based iPSC Identification
and Functional Characterization

Machine learning has been applied not only to image pro-
cessing, but also to gene expression profiles. Danter et al.
developed an unsupervised deep machine learning technol-
ogy called DeepNEU to simulate artificial iPSC systems
using a defined set of reprogramming transcription factors
[44]. By employing a fully-connected recurrent neural net-
work architecture with one processing layer for each input
variable, the DeepNEU platform enabled authors to gain
a better understanding of gene and pathway regulation in
pluripotent and reprogrammed somatic cells, and therefore,
key information about which genes/molecules are indispen-
sable for iPSC generation and maintenance.

In addition, machine learning techniques are being
increasingly exploited to extract biologically relevant tran-
scriptomic and epigenetic signatures from NGS data. Bardy
et al. built an extremely randomized trees (ERT) classifier
with the transcriptome of 56 single cells and trained it with
electrophysiological data to classify the functional states of
human iPSC-derived neurons [45]. Wu et al., used NGS and
machine learning to screen a library of 6107 synthetic pro-
moters with enhanced cell-state specificity (SPECS) [46].
Through this approach, they identified multiple SPECS
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that exhibit distinct spatio-temporal activity during iPSC
differentiation.

Another example of network-based screening that lev-
erages iPSC and machine-learning technologies has been
very recently given by Theodoris et al. in the context of
aortic valve (AV) disease, which is caused by heterozy-
gous loss-of-function NOTCH1 (N1) mutations [47]. ECs
are drivers of AV disease and therapeutic targets. To map
the gene network disrupted by N1 haploinsufficiency and
to identify small molecules that could correct the network
back to a normal state, the authors designed a targeted RNA-
seq strategy assaying expression of 119 signature genes in
N1+/-iPSC-ECs or gene-corrected isogenic cells exposed
to either dimethyl sulfoxide (DMSO) or one of a panel of
1595 small molecules. Next, the authors trained a K-nearest
neighbors (k-NN) algorithm to classify the gene expression
network by targeted RNA-seq as WT or N1+4/- based on
isogenic ECs of each genotype exposed to DMSO. The k-NN
algorithm classified ECs as either WT or N1+/— with 99.3%
accuracy by LOOCYV. Authors next applied the trained k-NN
algorithm and hierarchical clustering to N1+/— ECs exposed
to a library of 1595 small molecules to identify those mol-
ecules that could shift gene expression networks such that
treated N1-haploinsufficient ECs could cluster with WT
ECs. Through this investigation, they identified eight com-
pounds that could correct gene expression networks such
that one or more replicates of treated N1+/— ECs were clas-
sified as WT by the k-NN algorithm in validation trials. Of
these, XCT790, an inverse agonist of estrogen-related recep-
tor alpha (ERRa), had the strongest restorative effect.

Over the last several years, machine learning has also
been applied to CRISPR/Cas9 system, the third-generation
genome editing technology. An example is provided by Liu
et al. [48], who developed a CRISPR interference (CRISPRi)
platform targeting 16,401 long non-coding RNA (IncRNA)
loci in diverse cell lines including human iPSCs, and con-
ducted screens for IncRNA genes that could modify cell
growth. Large-scale screening identified 499 IncRNA loci
required for robust cell growth. Growth modifier IncRNA
function was found to be highly cell type-specific. Inter-
estingly, a larger fraction of IncRNAs hits were observed
in the iPSC screen, suggesting that iPSCs are either more
susceptible to growth perturbations or are differentiating to
other cell types with lower growth rates. Taking advantage
of the large dataset, authors finally constructed generalized
linear models to assess which genomic properties could be
predictive of IncRNA function and found an association of
IncRNA function with higher order chromatin structure.

Overall, this evidence demonstrates how the extremely
cumbersome manufacturing process for iPSC-derived
functional cells is forcing researchers to leverage functional
genomics and cutting-edge artificial intelligence algorithms
to drill into the biology of iPSCs.

Conclusions

Since its beginning fifteen years ago [49], iPSC technol-
ogy has evolved rapidly. Currently, different studies are
exploring its potential application in regenerative medi-
cine. However, there is still no solid strategy ensuring the
exclusion of contaminants such as residual undifferenti-
ated iPSCs from differentiated cell products. Candidate
marker genes for detecting undifferentiated iPSCs have
been recently selected from single cell RNA sequence data
[50]. Yet, this strategy has limitations with regard to the
amount of product that can be validated in each assay.

In our experience, maintaining normal (useable) iPSC
colonies in vitro is very challenging. First, iPSC colonies
must be manually picked and re-plated from the primary
reprogrammed cultures. Live immunostaining for Tra-1-
60, a surface marker of pluripotent cells, can help identify
true iPSC colonies. In our graphical abstract, A and B
microscopic images show Tra-1-60 immunofluorescence
staining and phase contrast respectively of a primary
reprogrammed culture. Absence of expression of Tra-1-
60 in a colony (dashed line) indicates that it is not fully
reprogrammed. In the early passages, iPSCs often undergo
spontaneous differentiation. Normal (usable) from abnor-
mal (unusable) colonies can be easily distinguished based
on morphology. C and D microscopic images show nor-
mal iPSC colonies. These colonies appear flat and com-
pact, and show distinct borders. E-H microscopic images
represent abnormal iPSC colonies. These colonies show
irregular morphologies and/or signs of (de)differentiation,
which can be appreciated at the colony center (E and F) or
at the colony edges (G and H). A glandular-like phenotype
can be observed in image F, which might be indicative of
spontaneous endoderm differentiation. Image G shows the
presence of contaminating unreprogrammed cells in the
well, while image H shows fibroblast-like spindle-shape
cells at the borders of a colony. When such abnormal colo-
nies appear in the culture, it is important to remove them
promptly.

Effective differentiation is highly dependent on iPSC
quality. As such, several critical decisions must be taken
when cultivating iPSCs, including but not limited to, when
it is the right time to passage the colonies, which is the
proper cell aggregate size during passaging, and what is
the best colony density for maintaining healthy undiffer-
entiated iPSCs in vitro. These properties might be spe-
cific to each cell line and must be therefore experimentally
determined. Accumulating evidence suggests that artifi-
cial intelligence, which applies machine learning, deep
learning and other techniques to solve complex problems,
might help answer these questions. Several machine learn-
ing approaches have already been developed and their
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significance in classifying iPSCs and their derivatives has
been confirmed. In this manuscript, we have provided an
overview of machine learning-based state-of-the-art meth-
ods in such a rapidly evolving field, which we have sum-
marized in Table 1.

Compared to humans, artificial intelligence-based meth-
ods bring enormous improvements in terms of accuracy,
speed of data analysis, and costs. As such, they have the
potential to lay the groundwork for an iPSC manufactur-
ing revolution, by providing cost-effective, rapid and robust
methods for efficient screening of large numbers of iPSC
lines and their derivatives. This is crucial for the derivation
of cells suitable for clinical applications. Furthermore, artifi-
cial intelligence-based methods can be applied in the context
of iPSC-based drug discovery to assist with prediction of
efficacy, toxicity and pharmacokinetics of drugs.

Not only modern artificial intelligence methods such
as deep learning might provide an aid to human operator,
but also, they might one day support or even replace deci-
sion making. However, much groundwork is still needed
before these methods can be applied into the clinical realm.
A major limitation is the need for large amounts of hand-
crafted, structured training data, and this data must be good
enough to yield meaningful results.
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