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Abstract
Purpose  Low-grade gliomas (LGG) and mixed neuronal-glial tumors (MNGT) show frequent MAPK pathway alterations. 
Oncogenic fibroblast growth factor receptor 1 (FGFR1) tyrosinase kinase domain has been reported in brain tumors of various 
histologies. We sought to determine the frequency of FGFR1 hotspot mutations N546 and K656 in driver-unknown LGG/
MNGT and examined FGFR1 immunohistochemistry as a potential tool to detect those alterations.
Methods  We analyzed 476 LGG/MNGT tumors for KIAA-1549-BRAF fusion, IDH1/2, TERT promotor, NF1, H3F3A and 
the remaining cases for FGFR1 mutation frequency and correlated FGFR1 immunohistochemistry in 106 cases.
Results  368 of 476 LGG/MNGT tumors contained non-FGFR1 alterations. We identified 9 FGFR1 p.N546K and 4 FGFR1 
p.K656E mutations among the 108 remaining driver-unknown samples. Five tumors were classified as dysembryoplastic 
neuroepithelial tumor (DNT), 4 as pilocytic astrocytoma (PA) and 3 as rosette-forming glioneuronal tumor (RGNT). FGFR1 
mutations were associated with oligodendroglia-like cells, but not with age or tumor location. FGFR1 immunohistochemi-
cal expression was observed in 92 cases. FGFR1 immunoreactivity score was higher in PA and DNT compared to diffuse 
astrocytoma, but no correlation between FGFR1 mutation in tumors and FGFR1 expression level was observed.
Conclusion  FGFR1 hotspot mutations are the fifth most prevailing alteration in LGG/MNGT. Performing FGFR1 sequencing 
analysis in driver-unknown low-grade brain tumors could yield up to 12% FGFR1 N546/K656 mutant cases.
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Introduction

Low-grade gliomas (LGG) and the WHO category of 
mixed neuronal-glial tumors (MNGT) encompass a broad 
spectrum of mostly pediatric tumors with usually indo-
lent clinical behavior or long-term epilepsy-associated 
sequelae (Surrey et al. 2019). Excellent outcome can be 
achieved through gross total resection. However, cases 
with incompletely resected tumors may experience a 
chronic, relapsing course (de Blank et al. 2019). Some 
recurring tumors have poor response rates with chemo-
therapy and risks of long-term toxicity of irradiation must 
be carefully weighed in children (Ater et al. 2012). The 
designation LGG is not consistently used in pediatric and 
adult neuro-oncology. LGG in ‘adult-type’ diffuse gliomas 
is used for isocitrate dehydrogenase (IDH) 1 and 2 mutant 
tumors or IDH-wildtype gliomas exhibiting molecular 
features of high-grade gliomas and usually progressing to 
glioblastoma histology (Komori 2021). In contrast, ‘pedi-
atric-type’ LGG include many circumscribed gliomas and 
tumor progression is rarely reported. Distinct morphologi-
cally defined entities of LGG and MNGT include pilocytic 
astrocytoma (PA), ganglioglioma (GG), dysembryoplastic 
neuroepithelial tumor (DNT), polymorphous low-grade 
neuroepithelial tumor of the young (PLNTY), papillary 
glioneuronal tumor (PGNT) and rosette-forming glioneu-
ronal tumor (RGNT). Recent advances in genomic discov-
eries allow for a molecular approach for LGG and MNGT 
stratification and new entities of so called ‘pediatric-type’ 
diffuse gliomas based on recurrent alterations have been 
proposed (Ellison et al. 2019). Diffusely growing gliomas 
in children and adolescents usually show genetic aberra-
tions within the mitogen-activated protein kinase (MAPK) 
pathway and are characterized by the absence of isoci-
trate dehydrogenase (IDH) 1 and 2 hotspot and H3 his-
tone, family 3A (H3F3A) mutations (Lazow et al. 2020). 
The most frequent single driver alterations in these tumors 
are a v-Raf murine sarcoma viral oncogene homolog B 
(BRAF) V600E mutation, a fibroblast growth factor recep-
tor (FGFR)1 alteration, or a v-Myb avian myeloblastosis 
viral oncogene homolog (MYB) or MYBL1 rearrangement 
which are all associated with a rather favourable outcome 
(Qaddoumi et al. 2016; Yang et al. 2018). These driving 
genetic alterations are usually conserved at tumor recur-
rence (Lazow et al. 2020). Some MAPK alterations over-
lap with distinct histological subtypes. For example, the 
BRAF V600E mutation is frequently seen in GG and pleo-
morphic xanthoastrocytoma (PXA) but is also sometimes 
reported in PA and diencephalic diffuse glioma (Ho et al. 
2015). Similarly, isomorphic diffuse gliomas frequently 
show MYBL1 (54%) or MYB (23%) rearrangements but 
these alterations are also seen in diffuse astrocytomas 

(DA) (Ellison et al. 2019; Zhang et al. 2013). Other altera-
tions are highly diagnostic for a specific tumor entity. The 
majority of PA exhibit characteristic KIAA1549-BRAF 
fusions (Collins et al. 2015) and PGNT show a unique 
methylation profile and highly diagnostic PRKCA fusions 
(Hou et al. 2019). In contrast, some alterations encom-
pass a broad spectrum of LGG and MNGT tumors and 
show age-related distribution patterns (Ryall et al. 2020). 
Especially, FGFR alterations are observed in several tumor 
entities in up to 7% of neoplasms (Helsten et al. 2016). In 
brain tumors, FGFR1 alterations are not restricted to tumor 
grade or a specific age group (Bale 2020).

Four receptors (FGFR1 to FGFR4) and 18 ligands (fibro-
blast growth factors) have been discovered in humans and 
have an important role in cell growth, differentiation and 
neovascularization (Bale 2020; Katoh and Nakagama 2014). 
Upon ligand binding, FGFR dimerizes and phosphoryl-
ates intracellular kinase domains (for example Tyr724 and 
Tyr760 in FGFR3) thus activating several important drugga-
ble pathways including Ras/Raf/MEK and PI3K-Akt (Katoh 
and Nakagama 2014; Nelson et al. 2018). FGFR1-tyrosinase 
kinase domain duplications are more prevalent in extracer-
ebellar PA and DNT (Jones et al. 2013; Rivera et al. 2016). 
In contrast, FGFR1-TACC1 fusion is a distinctive altera-
tion of extraventricular neurocytoma in addition to a small 
number of other rare FGFR1 and FGFR3 fusions (Sievers 
et al. 2018). Additional frequent reported alterations are the 
oncogenic FGFR1 tyrosinase kinase domain hotspot muta-
tions N546 and K656 (Lew et al. 2009). These mutations 
have been reported in midline and extracerebellar PA (Jones 
et al. 2013), in posterior fossa PA with widespread oligo-
dendroglial features (Sievers et al. 2020), in DNT (Surrey 
et al. 2019; Rivera et al. 2016) and in RGNT (Lucas et al. 
2020). Furthermore, they are also observed in diffuse mid-
line gliomas in addition to H3 K27M mutations (Schüller 
et al. 2021). A recent study associated FGFR1 mutations in 
low-grade glioma with increased risk for intracranial bleed-
ing (Ishi et al. 2020). In experimental murine NF1 models, a 
co-occurring FGFR1 hotspot mutation confers an additional 
growth advantage in LGG (Fisher et al. 2021). These hotspot 
mutations are of great interest, because FGFR alterations can 
be targeted by inhibitors including the multi tyrosine kinase 
inhibitors ponatinib, lucitanib and nintedanib (Porta et al. 
2017). Some of these FGFR inhibitors are currently under 
investigation in phase I/II targeted trials for advanced solid 
tumors (Voss et al. 2019; Touat et al. 2015).

Taken together, the reported FGFR1 N546 and K656 
hotspot mutations show a significant overlap in LGG and 
MNGT entities, are driven by altered MAPK signalling and 
represent potential diagnostic as well as predictive markers 
for clinical trial inclusions and eventually clinical manage-
ment. Open questions addressed in this study include (i) the 
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actual frequency of FGFR1 N546 and K656 hotspot muta-
tions in an unselected collection of low-grade brain tumors 
independent of their histological designation and (ii) the 
potential screening role of FGFR1 immunohistochemistry 
to identify FGFR1 alterations in such tumors.

Material and methods

Biological specimen

The formalin-fixated, paraffin-embedded samples were 
obtained from patients undergoing surgery for brain tumors 
between 2000 and 2018 at the University Hospital Tübin-
gen. The study was authorized by the respective ethics board 
(number 708/2017BO2). Histological diagnosis, molecular 
typing and grading for each tumor sample were performed 
according to the current WHO classification of CNS tumors 
(Louis et al. 2016). Tumor location, gender, survival, tumor 
status (primary/progression), NF1 status and patient age 
were retrieved from the clinical records.

681 tumors were listed after initial search from the pathol-
ogy records for LGG and MNGT diagnosis and cases were 
reviewed. Eleven samples were excluded, because the remain-
ing archived tumor tissue was too small for immunohisto-
chemistry or molecular analysis. 476 tumors remained after 
checking for consent of scientific use of samples (Fig. 1A). 
Based on available data from clinical records or additionally 
performed molecular analysis as outlined below, the follow-
ing 368 cases with one or more non-FGFR1 alteration were 
identified: Confirmed neurofibromatosis type 1 in 35 cases, 
IDH1 mutation in 221 cases, IDH2 mutation in nine cases, 
1p/19q codeletion in four cases without and in 112 cases with 
IDH1/2 mutation, TERT promotor hotspot mutation in 24 
cases without and in 21 cases with IDH1/2 mutation, H3F3A 
K27M mutation in two cases and KIAA1549-BRAF fusion 
in 73 cases. Table 1 summarizes the frequency of mentioned 
alterations for initial tumor diagnosis. Because FGFR1 altera-
tions usually do not occur in the context of these mutations, 
the subsequent FGFR1 analysis was restricted to the remain-
ing cases without known driver-mutation (Picca et al. 2018). 
The final FGFR1 sequencing and staining study cohort con-
sisted of 108 samples (45 female and 63 male, mean age 
22.8 range 0.6–71 years, Fig. 1A). Epidemiologic details of 
FGFR1 cohort are shown in Table 2. In 94 cases, the primary 
tumor and in 20 cases the recurrent tumor was used for analy-
sis because either the primary tumor was not available or not 
sufficiently DNA could be extracted.

Molecular diagnostics

IDH1/2, H3F3A, ATRX, BRAF and LOH1p/19q analy-
sis in the Tübingen cohort was performed as described 

previously (Ebrahimi et al. 2016). Briefly, the IDH R132H 
and H3F3A K27M mutational status was first determined 
by immunohistochemistry. All grade II/III tumors lacking 
the R132H mutation and grade IV samples aged below 
55 years were further examined by direct pyrosequencing 
of the relevant exons for IDH1 and two hotspot mutations. 
Cases with ATRX loss and IDH1/2 wildtype status or cases 
with midline location were sequenced for H3F3A K27 and 
G34 mutations. Diffuse low-grade gliomas without IDH1/2 
mutation were sequenced for BRAF and TERT promotor 
mutations (Koelsche et al. 2013). Loss of heterozygosity 
(LOH 1p/19q) was examined in IDH1/2 mutant tumors with 

Fig. 1   A Distribution of Non-FGFR1 mutations across 476 tumors. 
Sample numbers are provided on top for each slice. 108 samples 
without known mutation were selected for FGFR1 testing. B Rep-
resentative pyrograms for FGFR1 N546K mutation (five cases with 
c.1638C > A and four with c.1638C > G). C Representative pyrogram 
for FGFR1 K656E mutation (four cases with c.1966A > G)
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ATRX retention using 5 tetranucleotide markers for each 
chromosomal region. Allele signal intensity of each tumor 
sample was always compared with the corresponding allele 
band of the blood control sample of each corresponding 
patient. BRAF fusion analysis was performed using fusion-
transcript-specific PCR after RNA was extracted from FFPE 
samples using the RNeasy FFPE Kit (Qiagen) (Gierke et al. 
2016). Methylation classification analysis on the EPIC 
platform was retrieved from cases enrolled in the MNP2.0, 
or PTT trials in five cases (Illumina, Carlsbad, California, 
USA) and evaluated as previously described (Capper et al. 
2018), Tumors were classified with an established brain 
tumor classifier V11b4 (www.​molec​ularn​europ​athol​ogy.​
org). Classifier scores with a probability greater 0.9 were 
taken as indicative for the respective methylation class.

FGFR1 pyrosequencing

Using a BlackPREP FFPE kit (Analytik Jena, Germany), 
DNA was extracted from the microdissected tumor tissue 
according to the manufacturer’s instructions. Tissue was 
selected from regions on paraffin blocks that presented suf-
ficient (> 50%) tumor content in microscopy. The region 
around FGFR1 c.546 was amplified with the following 
primers: FGFR1 c.546 -forward, 5′-CGG​ACG​CAA​CAG​
AGA​AAG​ACTT-3′ and FGFR1 c.546 -reverse biotinylated 
primer, 5′-[BIO]CCC​AGA​TCC​CGA​GAT​AAC​ACA-3′. For 
c.656 we used FGFR1 c.656 -forward, 5′-ACG​GGA​CAT​
TCA​CCA​CAT​C-3′ and FGFR1 c.656 -reverse biotinylated 
primer, 5’-[BIO]CAC​CCC​ACT​CCT​TGC​TTC​-3′. In all 
cases, the estimated sizes of the amplification products 
detected corresponded to the predicted sizes.

Pyrosequencing was performed on the Pyromark Q24 
system according to the manufacturer’s instructions (Qia-
gen, Hilden, Germany). For pyrosequencing we used start-
ing primer FGFR1 (c.546 5′-AAG​CAT​AAG​AAT​ATC​ATC​
AA-3′ c.656 5′- CAT​TCA​CCA​CAT​CGACT-3′) with dis-
pensation orders’GAC​TGC​TGGC’ for c.546 and ‘ACT​AGT​
AAG​AGA​CACT’ for c.656. Pyrograms were analyzed with 
the PyroMarkQ24 software (Version 2.0.7 Build 3) and a 
level of 5% for relative light units for variant detection was 
applied. FGFR1 positive cases were confirmed by repeated 
pyrosequencing.

FGFR1 immunohistochemistry

Staining was performed on the Benchmark IHC/ISH (Ven-
tana Medical Systems) after several optimization rounds 
for tissue pretreatment, antigen demasking and antibody 
dilution. FGFR1 protein expression was detected by 
immunohistochemistry using a polyclonal antibody raised 
against phospho-FGFR1 (Tyr653, Tyr654) of human origin 
(RRID:AB_1500112, #44-1140G, Thermo-Fisher Waltham, Ta
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MA, USA). Samples of breast cancer tissue served as posi-
tive control. Staining conditions were as follows: FGFR1: 
OptiView CC1 pretreatment for 32 min, 1:100 dilution, incu-
bated at room temperature for 32 min. All slides were then 
counterstained with hematoxylin for 2 min. FGFR1 stain-
ing intensities were scored as published previously as 0 (no 
staining), 1 (weak staining), 2 (moderate staining) and 3 
(strong staining). For exemplary images see Supplemental 
Fig. 1. In addition, positive staining in tumors was quantified 
as follows: 1 (up to 24% tumor cells positive), 2 (25–50% 
tumor cells positive, 3 (51–75% tumor cells positive) and 4 
(more than 75% tumor cells positive). Staining intensities 
were multiplied with staining quantification into a combined 
immunoreactivity score (IRS) ranging from 0 to 12.

TCGA dataset and statistical analysis

Sequencing profiles of patients with LGG of the central 
nervous system were retrieved from The Cancer Genome 
Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/​
TCGA-​LGG). The clinical datasets (mean age 42.9 years, 
range 14–87 years) consisted of 460 females and 570 males 
After exclusion of 416 anaplastic tumors, the final set con-
sisted of 128 astrocytomas, 156 oligodendrogliomas and 262 
mixed gliomas. Samples were screened for IDH1/2, H3F3A, 
NF1, BRAF and FGFR1 mutations. Sample-matching TERT 
promotor mutations and LOH1p/19q status were derived 
from tabulated data provided by (Ceccarelli et al. 2016). 
Quantitative and statistical analyses were performed using 
JMP 14.2.0 (SAS Institute, Cary, NJ, USA). For correlation 
analyses, we performed unpaired, two-tailed Student’s t-test 
and the Fisher’s exact test to identify possible significant 
associations or differences between two pairs. Univariate 
analyses of the different variables were obtained with 95% 
confidence intervals (CIs). A p value < 0.05 was considered 
as significant.

Results

FGFR1 pyrosequencing identifies FGFR1 hotspot 
mutations in 12% of the LGG/MNGT subcohort 
of driver unknown cases

108 samples without entity-defining molecular alterations 
were analyzed for FGFR1 hotspot mutations in pyrosequenc-
ing (Fig. 1A) and in 105 cases the signal passed quality 
checks. We detected 13 (12%) FGFR1 hotspot mutations. A 
p.N546K mutation was observed in 9/105 tumors (8%, five 
cases with c.1638C > A and four with c.1638C > G, exem-
plary pyrograms shown in Fig. 1B). Among the p.N546K 
mutated cases, three tumors were diagnosed as DNT, four 
tumors as PA, one tumor as RGNT and the remaining tumor 
only had a descriptive diagnosis of low-grade neuroepithelial 
tumor.

A FGFR1 p.K656E mutation was observed in 4/103 
tumors (3%, c.1966A > G; Fig. 1C). Two p.K656E mutated 
tumors were diagnosed as RGNT, one as PA and one as 
DNT. Taken together, one of the two FGFR1 hotspot muta-
tions was present in 5/37 (13%) PA, in 4/26 (15%) DNT and 
in 3/4 (75%) RGNT. None of the tumors histologically diag-
nosed as DA (n = 16), GG (n = 15), PXA (n = 4) or DIA/DIG 
(n = 2) exhibited a FGFR1 p.N546K or p.K656E mutation.

Clinicopathological overview of FGFR1 mutant cases

All FGFR1 mutant cases were reviewed histologically. 
Common histological features included low cellularity with 
round nuclei and frequent oligodendroglia-like tumor cells, 
loosened fibrillary matrix with focal myxoid appearance 
and low to absent mitotic activity. Vascular proliferations, 
hemosiderin deposits and calcifications were present in two 
cases each. Perivascular inflammation was noted in one case. 
The initial histological diagnosis was confirmed in 11 cases 

Table 2   Epidemiological data 
of samples used for comparative 
FGFR1 pyrosequencing and 
immunohistochemistry

DA diffuse astrocytoma, DIA/DIG desmoplastic infantile astrocytoma/ganglioglioma, DNT dysembryo-
plastic neuroepithelial tumor, GG ganglioglioma, ODG oligodendroglioma, PA pilocytic astrocytoma, PXA 
pleomorphic xanthoastrocytoma, RGNT rosette-forming glioneuronal tumor. F female, M male, yr year

Diagnosis N cases Mean age (yr.) Min age (yr.) Max age (yr.) Gender F/M Primary/
Recur-
rent

DA 16 35.3 4 71 6/10 15/1
DIA/DIG 2 0.7 0.6 0.75 1/1 2/0
DNT 26 15.2 1 43 13/13 19/7
GG 15 27.9 3 59 5/10 14/1
ODG 2 4.5 4 5 0/2 2/0
PA 37 21.4 1.5 60 14/23 30/7
PXA 4 20.5 6 51 3/1 3/1
RGNT 4 37 11 58 1/3 3/1
DESCRIPTIVE 2 24.5 3 46 2/0 0/2

https://portal.gdc.cancer.gov/TCGA-LGG
https://portal.gdc.cancer.gov/TCGA-LGG
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reviewed. One case had a descriptive diagnosis of low-grade 
neuroepithelial tumor. Detailed histological review of this 
case showed oligodendroglial-like cells within a loosened 
myxoid matrix, suggestive of DNT despite absence of float-
ing neurons (Fig. 2). The last case diagnosed initially as 
DNT showed overlapping features of PA/DNT in review. 
External reference pathology review (second opinion) in 
this case also discussed PA/DNT and provided a descriptive 
diagnosis of low-grade neuroepithelial tumor. Radiological 
appearance and clinical features also favored DNT in this 
case and consolidating the initial diagnosis.

Seven of the FGFR1 mutated cases were male, six were 
female. Six cases were pediatric (3–16 years) and seven 
cases were adults (23–58 years). FGFR1 mutation was not 
associated with a distinct tumor location. Seven mutated 
cases were located supratentorial, six cases were located in 
the cerebellum. Complete resection could be achieved in 
seven and subtotal resection in three cases. In the limited 
follow-up period (2–13 months), three tumors showed pro-
gression (one subtotal, one partial resection and one case 
with biopsy only). In one case, tissue of the recurring tumor 
was available and the identical FGFR1 hotspot mutation 
was detected. Presenting symptoms of the tumors included 
epileptic seizures (n = 4), headache (n = 5), vertigo (n = 2), 
visual disturbances (n = 3) and facial nerve palsy (n = 2). 
There was no significant age difference between the 13 
FGFR1 mutant cases combined (mean age 25.8 years) com-
pared to 92 cases without FGFR1 hotspot mutation (mean 
age 22.6 years, p = 0.564). Patients with a FGFR1 p.N546K 
mutation were slightly but not significantly younger (mean 
age 19.6 years) and the FGFR1 p.K656E mutant tumors 
were significantly older at diagnosis (mean age 39.7 years) 
compared to wildtype cases. In the histological subanalysis, 

FGFR1 mutated RGNT cases were older (mean age 
45.6 years) than the FGFR1 wildtype RGNT case (11yrs), 
while PA (mean 22.1 vs. 19.6 years) and DNT (mean 14.7 
vs. 13.7 years) FGFR1 mutant cases were seen at similar age 
as FGFR1 wildtype tumors.

Positive FGFR1 immunohistochemistry does 
not identify tumors with FGFR1 p.N546 or p.K656 
hotspot mutation

Sufficient tissue for FGFR1 staining was available in 106 
samples. Expression of FGFR1 was observed in the cyto-
plasm and membrane of tumor cells and staining intensity 
was homogenous throughout the tumor tissue. FGFR1 
immunohistochemistry staining examples are shown in 
Supplementary Fig. 1. Absence of staining (score 0) was 
observed in 16 cases. Weak FGFR1 expression (intensity 
score 1) was seen in 42 cases (39%), moderate staining 
intensity (score 2) was present in 30 cases (28%) and strong 
expression was seen in 18 cases (17%).

Number of positively stained cells varied across diver-
gent tumors. A staining distribution score 1 (less than 25% 
positive tumor cells) was observed in 3 cases, distribution 
score 2 in 14 cases, distribution score 3 in 22 cases and 
distribution score 4 (more than 75% tumor cells positive) 
in 51 cases.

Combining staining intensity and number of positive cells 
into an immunoreactive score showed low IR scores (1–4) in 
41 cases, intermediate IR scores (5–8) in 36 cases and high 
IR scores (9–12) in 13 cases.

The FGFR1 IR scores were independent of patient age 
(p = 0.8725) and gender (p = 0.554). Primary tumors had 
nonsignificantly lower FGFR1 IR scores (mean 4.8) com-
pared to tumor recurrences (mean 5.7, p = 0.326). FGFR1 
IR scores were significantly higher in WHO grade I tumors 
(mean 5.4, p = 0.0053) compared to WHO grade II tumors 
(mean 2.8). For FGFR1 immunohistochemistry details 
across histological diagnoses, see Table 3. Interestingly, 
FGFR1 IR score was significantly higher in PA (mean 6.4, 
p = 0.0002), PXA (mean 7.8, p = 0.0101) and DNT (mean 
4.8, p = 0.0255) compared to DA (mean 2.3).

FGFR1 IR scores in p.N546K or p.K656E mutated 
tumors were higher (mean 5.8) than in FGFR1 wild-type 
tumors (mean 4.9. p = 0.0370), but results were also not 
significant in further subgroup analysis after separation for 
WHO grade or tumor recurrences.

TCGA dataset analysis

Among 614 sample datasets with LGG histology record, 
we identified 253 cases with IDH1 and 14 cases with IDH2 
mutation. TERT promotor mutations were found in 154, 
LOH 1p/19q codeletion in 81, NF1 alterations in 10 and a 

Fig. 2   H&E stain of a case with descriptive diagnosis of low-grade 
neuroepithelial tumor exhibiting a c.1638C > A p.N546K hotspot 
mutation suggesting DNT as appropriate diagnosis. Reference review 
pathology also suggested DNT as most likely diagnosis in this case
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BRAF V600E mutation in two cases. One case each exhib-
ited a KIAA1549-BRAF fusion, a H3F3A K27M mutation 
and one missense FGFR1 N577K mutation. The FGFR1 
mutant case was a 34-year-old male with diagnosis of oligo-
dendroglioma grade II. No follow-up data were available in 
this case. A cross-check with the COSMIC database (URL: 
https://​cancer.​sanger.​ac.​uk/​cosmic/​mutat​ion/​overv​iew?​id=​
12517​9833, accessed on 28.10.2021) shows that the FGFR1 
N577K mutation has been reported previously in five high-
grade gliomas and two RGNT.

Discussion

A significant subset of low-grade gliomas and mixed neu-
ronal-glial tumors demonstrate ambiguous or overlapping 
morphological features and diagnostic accuracy of brain 
tumors can be improved through combining histological and 
molecular data (Lucas et al. 2020). With the present study 
we tried to determine the frequency of potentially action-
able FGFR1 hotspot mutant tumors in a histological diag-
nosis-independent subcohort of LGG/MNGT without other 
known driver mutations. Among 476 tumors with molecular 
data available, we identified 13 activating FGFR1 p.N546 
or p.K656 mutant cases, while 368 tumors exhibited non-
FGFR1 alterations. This indicates an overall frequency of 
2.7% FGFR1 hotspot mutations in unselected LGG/MNGT 
cohorts. The most common non-FGFR1 alterations were 
IDH1/2 mutations (234 cases), KIAA1549-BRAF fusion 
(73 cases), 24 TERT C228/C250-mutated gliomas and 35 
cases with NF1. In our cohort, FGFR1 hotspot mutations 
are the fifth most occurring genetic alteration in LGG/
MNGT tumors. A systematic FGFR1 analysis of these sam-
ples after exclusion of these four more frequent mutations 
would result in 12% FGFR1 N546/K656 mutant cases. The 

FGFR1 mutations were observed only in tumors diagnosed 
as pilocytic astrocytoma, dysembryoblastic neuroepithelial 
tumors and rosette-forming glioneuronal tumor. Therefore, 
further restricting the FGFR1 sequencing analysis to non-
diffusely growing gliomas/MNGT tumors would yield 15% 
FGFR1 N546/K656 mutant cases after exclusion of cases 
with BRAF fusion, IDH1/2, NF1 or TERT mutation. We 
did not find FGFR1 hotspot mutations in our DA or PXA. 
As seen from the additional TCGA dataset analysis, FGFR1 
alterations in DA are rare. In this context, it is notewor-
thy, that while PA, DNT and RGNT share frequent FGFR1 
hotspot alterations they represent epigenetically distinct 
tumor entities with separate methylation clusters (Capper 
et al. 2018). In accordance with our data, Qaddoumi et al. 
reported FGFR1 hotspot mutations only in DNT and dif-
fuse oligodendroglial tumors, while DA instead contained 
one FGFR1 fusion and two FGFR1 TKD duplications (Qad-
doumi et al. 2016). A study analyzing the molecular pro-
file of adult brainstem gliomas reported a surprisingly high 
FGFR1 mutation frequency in 18% of patients (13/73 cases) 
(Picca et al. 2018). These mutations were also reported 
in thalamic and cerebellar tumors in both H3F3A K27M 
mutated and K27 wild-type tumors. The vast majority of 
these cases had a high-grade histology, whereas our cohort 
was intentionally restricted to LGG and MNGT tumors. Both 
low-grade tumors with H3F3A K27M mutation underwent 
panel-sequencing and co-occurring FGFR1 mutations could 
be excluded. Methylation analysis in these cases clearly clus-
tered them together with K27M-mutant pontine gliomas sug-
gesting histological underdiagnosis due to limited sample 
size. Another integrated molecular analysis of 70 low-grade 
glioma cases with NF1 tumors revealed 3 FGFR1 hotspot 
mutation. Such tumors were classified as non-pilocytic astro-
cytoma based on DNA methylation analysis (Fisher et al. 
2021). Except for a single DA case, all NF1 tumors in our 
initial selection cohort consisted of classical PA, in which no 
FGFR1 mutations are expected. Three quarters of our RGNT 
samples were FGFR1 mutated in accordance with a pre-
vious publication identifying FGFR1 hotspot mutations in 
10/10 RGNTs (Lucas et al. 2020). A previous study reported 
p.N546K (n = 22) or p.K656E (n = 8) alterations in all 30 
RGNT and additional PIK3CA mutations in 63% and NF1 
mutations in 23% of these tumors (Sievers et al. 2019). As 
expected, the majority (44%) of PA exhibited KIAA1549-
BRAF fusions, followed by 12% NF1 mutant and 3% FGFR1 
mutant samples. Again this data is in agreement with the 
suggested frequency of 5% FGFR1 mutations in pilocytic 
astrocytoma (Collins et al. 2015). While the detection of 
an FGFR1 alteration in a LGG/MNGT tumor of uncertain 
subtype may not aid in differential diagnosis between PA, 
DNT and RGNT, it may help to further narrow the differen-
tial diagnosis and exclude certain tumor entities, such as DA 
and PXA. A study reported on five LGG cases with DNA 

Table 3   FGFR1 immunohistochemistry

Mean and standard deviation (SD) of immunreactive score (IRS) by 
histological diagnosis
DA diffuse astrocytoma, DIA/DIG desmoplastic infantile astrocy-
toma/ganglioglioma, DNT dysembryoplastic neuroepithelial tumor, 
GG ganglioglioma, ODG oligodendroglioma, PA pilocytic astrocy-
toma, PXA pleomorphic xanthoastrocytoma, RGNT rosette-forming 
glioneuronal tumor

Diagnosis N Mean IRS SD IRS

DA 16 2.3 2.52
DNT 26 4.8 3.70
PXA 3 7.8 0.28
GG 15 4.5 2.89
PA 37 6.4 3.52
RGNT 4 5.6 3.35
Other 7 3.5 4.17

https://cancer.sanger.ac.uk/cosmic/mutation/overview?id=125179833
https://cancer.sanger.ac.uk/cosmic/mutation/overview?id=125179833
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methylation profiles that did not align with any reference 
methylation classes but had FGFR1-alterations. In these 
cases, oligodendroglial-like cells without well-defined pat-
terned nodules, floating neurons, neurocytic rosettes, piloid 
processes, Rosenthal fibers, or other specific histologic find-
ings, were described (Lucas et al. 2020). Because in two 
cases a FGFR1 alteration in combination with PIK3CA 
or PIK3R1 mutation was present, the authors questioned 
whether such samples may represent a yet-to-be defined 
tumor class of RGNT outside of the stereotypic location 
in the fourth ventricle. Furthermore, the FGFR1 hotspots 
may provide a rationale for targeted FGFR1 treatment (Porta 
et al. 2017).

As a large center with expertise in pediatric neurooncol-
ogy the cases referred to us have an inherent selection bias 
for challenging neurosurgery cases which in turn may impact 
frequency of FGFR1 alterations. Further limitations of our 
study include the retrospective nature and archived sample 
retrieval, differences in the clinical indications for biopsy 
and restrictions on the amount and type of material available 
for molecular characterization and restriction of samples to 
driver unknown LGG/MNGT. Because methylation array 
tumor clustering is not feasible in such a large cohort, our 
approach to select cases by histology diagnosis, does not 
completely exclude cases with potential FGFR1-TACC1 
fusions and FGFR1-TKD tandem duplication (Qaddoumi 
et al. 2016). As this study proposes additional molecu-
lar hotspot FGFR1 testing for a subset of driver unknown 
LGGs, we intentionally restricted our cohort to previously 
non-informative cases after removing mutually exclusive 
entity-defining mutations (Picca et al. 2018). However in 
rare instances, three secondary FGFR1 hotspot mutations 
have been reported among 364 IDH-mutant gliomas and 
such cases may have been missed by our methodology 
(Ahrendsen et al. 2021).

Taken together, our analysis indicates that FGFR1 hot-
spot mutations are a common event in non-diffusely growing 
gliomas, especially in PA, DNT and RGNT cohorts, and not 
associated with a distinct histological pattern further sug-
gesting that MAPK-altered tumors in pediatric and adult 
samples encompass a broad spectrum of tumors. Perform-
ing FGFR1 sequencing analysis routinely in non-diffusely 
growing driver-unknown low-grade brain tumors could yield 
up to 15% FGFR1 N546/K656 mutant cases.
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tary material available at https://​doi.​org/​10.​1007/​s00432-​021-​03906-x.
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