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The primate gut mycobiome-bacteriome interface is impacted

by environmental and subsistence factors

Ashok K. Sharma(®'"'7, Sam Davison', Barbora Pafco?, Jonathan B. Clayton (**>®, Jessica M. Rothman’%, Matthew R. McLennan®'°,
Marie Cibot®'®"", Terence Fuh'?, Roman Vodicka'?, Carolyn Jost Robinson'®, Klara Petrzelkova®'® and Andres Gomez )%

The gut microbiome of primates is known to be influenced by both host genetic background and subsistence strategy. However,
these inferences have been made mainly based on adaptations in bacterial composition - the bacteriome and have commonly
overlooked the fungal fraction - the mycobiome. To further understand the factors that shape the gut mycobiome of primates and
mycobiome-bacteriome interactions, we sequenced 16 S rRNA and ITS2 markers in fecal samples of four different nonhuman
primate species and three human groups under different subsistence patterns (n = 149). The results show that gut mycobiome
composition in primates is still largely unknown but highly plastic and weakly structured by primate phylogeny, compared with the
bacteriome. We find significant gut mycobiome overlap between captive apes and human populations living under industrialized
subsistence contexts; this is in contrast with contemporary hunter-gatherers and agriculturalists, who share more mycobiome traits
with diverse wild-ranging nonhuman primates. In addition, mycobiome-bacteriome interactions were specific to each population,
revealing that individual, lifestyle and intrinsic ecological factors affect structural correspondence, number, and kind of interactions
between gut bacteria and fungi in primates. Our findings indicate a dominant effect of ecological niche, environmental factors, and
diet over the phylogenetic background of the host, in shaping gut mycobiome composition and mycobiome-bacteriome
interactions in primates.

npj Biofilms and Microbiomes (2022)8:12; https://doi.org/10.1038/s41522-022-00274-3

INTRODUCTION
The gut mycobiome, the communities of fungal species that

biodiversity of gut eukaryotes according to primate phylogeny,
unshared dominant fungal taxa across different nonhuman

colonize the gastrointestinal tract of humans and animals, still
constitutes a poorly explored fraction of the gut microbiome.
These neglected microbial communities have received increas-
ing attention, as they have been recently associated with roles
in regulating host immune responses and various chronic
gastrointestinal diseases'™. Bacterial-fungal interactions,
either through direct contact or exchange of small molecules,
have also been reported to have clinical importance at various
anatomical sites®™, Recently, mice models have been used to
show that the gut mycobiome is strongly influenced by
environment and diet, including potential influences on mice
metabolic phenotypes'®. However, our understanding of how
gut fungal communities adapt and/or interact with bacterial
communities in the context of lifestyles and diet, is still limited.

In recent years, the study of nonhuman primate micro-
biomes has offered valuable insights for understanding the
evolutionary and ecological factors shaping the human
microbiome. Although most of the work in this research area
has concentrated on the gut bacteriome, some reports have
investigated other microbial kingdoms in the nonhuman
primate gut''"'3, These reports highlight positive correlations
between eukaryotic and bacterial diversity, weakly structured

primates, and involvement of anaerobic fungi in the degrada-
tion of complex polysaccharides, further facilitating bacterial
fermentation in the gut'®. Influence of host phylogeny,
captivity, fermentation strategy, and dietary fiber content on
the composition of different anaerobic fungi has been reported
in primates'*'®. However, our understanding of the relation-
ship between mycobiome and bacteriome, in the context of
phylosymbiosis, host ecology and subsistence across diverse
members of the primate order, including humans, is still
limited.

In the present study, we produced ITS2 and 16 S rRNA MiSeq
data in 52 fecal samples collected from three human groups
characterized by different subsistence strategies (urban or
industrialized, traditional agriculture and hunting-gathering), and
compared them with data obtained in 97 samples from seven
nonhuman primate populations; composed of wild and captive
apes (chimpanzees and gorillas), and the distantly related wild
agile mangabeys. By investigating this multi-kingdom and multi-
host comparison, we intend to shed light on the phylogenetic and
ecological factors shaping fungal diversity in the primate gut, and
on how the interface between the mycobiome and bacteriome is
impacted by these factors.
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RESULTS

After collecting fecal samples of western lowland gorillas
(Gorilla gorilla gorilla, n=19), agile mangabeys (Cercocebus
agilis, n=11), BaAka hunter-gatherers (n = 27), Bantu agricul-
turalists (n = 13), eastern chimpanzees (Pan troglodytes schwein-
furthii, n=11), captive western lowland gorillas (n=18),
captive chimpanzees (n=12), mountain gorillas (Gorilla ber-
ingei beringei, n=26), and a US human cohort (n=12), we
profiled gut bacteriome and mycobiome composition via 16 S
rRNA and ITS2 MiSeq sequencing.

Distinct mycobiome composition in phylogenetically similar
primates

We obtained 1,530,381 ITS2 and 3,688,979 16S rRNA filtered
reads, respectively, with an average sequencing depth of 10,271/
sample and 24,758/sample for mycobiome and bacteriome,
respectively. Mycobiome diversity was highly variable in indivi-
duals of each sampled group, but not significantly different across
most primate groups studied; except for US humans, who showed
the lowest fungal richness and diversity (Fig. 1a, and Supplemen-
tary Fig. 1). Principal coordinates analysis (PCoA) based on Bray-
Curtis distances on the relative abundances of amplicon sequence
variants (ASVs) showed significant stratification (PERMANOVA,
R2 =0.44 and P < 0.001) in the gut mycobiome composition of all
groups studied (Fig. 1b). Hierarchical clustering analysis on
cumulative relative abundances of each population (average
distance method) showed the presence of two main clusters, one
composed of US humans and all captive apes and another one
composed of all wild primates and the traditional human
populations (Fig. 1b right panel). To further validate these
grouping patterns, an unsupervised clustering analysis led to the
identification of four specific clusters (K means clustering
Supplementary Fig. 2a); composed of mountain gorillas (Cluster1);
US humans and all captive apes (captive chimpanzee and captive
western lowland gorillas) (Cluster2); all wild primates (wild
chimpanzees, wild agile mangabeys and wild western lowland
gorillas) (Cluster3); and both traditional human groups (BaAka
hunter-gatherers and Bantu agriculturalists) (Cluster4) (Supple-
mentary Fig. 2b, c). These ecologically driven clustering patterns
further highlight the dominant role of subsistence strategies over
host phylogeny in shaping the primate gut mycobiome.

Specific taxonomic signatures distinguish primate
populations and ecological clusters

Taxonomic assessment of the most abundant fungal families led
to the identification of Ascomycota and Basidiomycota as the
main fungal phyla in the primate gut (Fig. 1c and Supplementary
Fig. 3). However, an analysis of representative fungal families
indicates that the majority of ITS2 sequences generated in all
samples could not be assigned to any taxonomic group
(unidentified sequences, Fig. 1¢), indicating that, in general, the
primate gut mycobiome, including that of humans, is largely
unknown. Regardless, we identified some families that were
characteristic of specific primate populations (indicator species
analysis, indicator value >0.3, p<0.05, Fig. 1c, Supplementary
Table 1).

The relative abundance of the 30 most abundant fungal genera
is shown in a hierarchically clustered heatmap on Fig. 2. This
analysis identified taxonomic signatures specific to individual
primate populations and taxa that clustered different groups
together based on ecological similarities. For example, Trichos-
poron and Lactarius distinguished the BaAka hunter gatherers,
while Pichia characterized the Bantu agriculturalists; however,
both human populations, who constituted a single cluster
(Cluster4, Supplementary Fig. 2b, ¢), harbored high abundance
of unidentified fungi of the Saccharomycetales order. US humans
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and all captive apes (chimpanzees and western lowland gorillas)
(Cluster2) seemed to harbor the highest abundances of Penicillium;
nonetheless, US humans were also uniquely distinguished by
Saccharomyces, while Sordaria was more characteristic of captive
western lowland gorillas. In contrast, the cluster distinguishing
wild western lowland gorillas, chimpanzees, and agile mangabeys
(Cluster3) showed the lowest levels of Saccharomyces across all
primates analyzed, including humans. In addition, individual
groups within the wild primates cluster showed high variability
in the number of group-specific taxa. Remarkably, the cluster
composed of only of mountain gorillas (Cluster1l) was not
characterized by any specific fungal indicator; however, Fig. 2
shows that there is high interindividual variability in the presence
and abundance of specific fungal taxa detected in mountain
gorillas, in concordance with the high variation in alpha diversity
patterns observed in this group (Fig. 1a).

Ecological importance of these fungal genera was assessed by
assigning them into predictive functional categories using
FUNGuild, based on their probable guild source and trophic
mode'”. Guild source provides information on functional groups
or categories of related or unrelated groups of species that likely
exploit the same environmental resources. The assigned guilds (7
out of 12), show that Cladosporium, unassigned Didymosphaer-
iaceae, Lasidodiplodia, Lactarius, Unassigned Sordariomycetes,
Ganoderma and Unassigned Capnodiales, all distinguishing
traditional human populations and wild apes, are associated with
plant material (Fig. 2). Indeed, the proportion of plant associated
fungi was always greater in all wild apes compared with captive
apes, and in Bantu traditional agriculturalists and BaAka hunter
gatherers compared with US humans (Supplementary Fig. 4).
Trophic mode information of these taxa, as predicted by
FUNGuild, revealed potential interactions between each host
and its mycobiome, showing variable relationships including
saprotrophic, phototrophic and symbiotrophic (Fig. 2).

Mycobiome and bacteriome interacted differently across
primate populations, and were affected by ecological factors
unique to each population and individuals within populations
Relative proportions of bacteriome and mycobiome in each
primate group were accessed after merging the centered log-ratio
(CLR) transformed compositional data separately (see “Methods”).
Merged absolute CLR transformed counts indicated that abun-
dance of bacteria was higher relative to that of gut fungi
(bacteriome mean = 85.73%; mycobiome mean = 14.26%) (Sup-
plementary Fig. 5). However, we noted that the mycobiome is
structured differently across species compared with the bacter-
iome, and that interactions between mycobiome and bacteriome
were specific to each primate population and individual without
following a consistent pattern. Adding the mycobiome and
bacteriome fractions together, resulted in ordination patterns
that are slightly more concordant with a phylogenetic-driven
dynamics'®, except for captive apes and wild agile mangabeys,
both of which harbored more similarities with all human groups
(Fig. 3a).

Another important distinction is the significantly higher
interindividual nature of the mycobiome relative to the bacter-
iome. For example, distance to centroid in ordination space, which
indicates how dispersed individuals are relative to the average
distance in their group, was on average 1.3 times greater for
mycobiome compared with the bacteriome (Fig. 3b). This
difference was the highest for western lowland gorillas and
mountain gorillas (fold change for mycobiome:bacteriome dis-
imilarity = 2.3 and 1.9, respectively, wilcoxon rank-sum tests, p <
0.05), who are the most folivorous primates in our dataset, and
lowest for traditional BaAka hunter-gatherers and Bantu agricul-
turalists (1.1-1.3) (Fig. 3b). The US human group, remarkably, also
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Gut mycobiome composition differs based on subsistence strategy across different primates. a Alpha diversity analysis showing

lower fungal richness in US humans, compared with other primate populations. b Principal coordinate analysis based on Bray-Curtis distances
showing different fungal community composition across different primate groups. Each symbol represents mycobiome composition, at the
ASV level, in the fecal samples of an individual primate. A Bray-Curtis distance dendrogram (hierarchical clustering, average distances) based
on average fungal ASV abundances showed similarities between phylogenetically distinct primate groups. Each group with similar
mycobiome composition is shown to reflect PAM clustering (Supplementary Fig. 2). ¢ Relative abundance of top 20 fungal families and their
mean distribution among different primate groups are shown in a Bubble plot. Color code represents membership of each family to a specific
Fungal Phylum. Differentially abundant taxa (Supplementary Table 1) were identified using Indicator Species Analysis and the families marked
with stars are representative of a given primate group. The identifiers used for primate groups are Western Lowland Gorilla: WLG, Mangabey:
Agile Mangabeys and Chimps: Chimpanzee. In boxplots, center values indicate the median; bounds of box represents lower/upper quartiles;

whiskers show inner fences.

showed high interindividual variation in mycobiome composition
compared with the bacteriome.

Procrustes and mantel tests were applied to specifically test for
correspondence between the bacteriome and mycobiome across
all studied groups, indicating that the level of correspondence
between these two microbial fractions across all populations
studied is significant (Protest corr=0.78, p =0.001 and mantel
test, r=0.62, p = 0.001). However, correspondence patterns were
unique to each species. For instance, the greatest correspondence
between mycobiome and bacteriome (lowest distance) was
observed in both the traditional human populations BaAka and
Bantu, and the lowest correspondence (greater distance) in
mountain gorillas (Fig. 3D). Greater overlap or correspondence
between the mycobiome and bacteriome in the traditional human
groups was evident when measuring the level of association
between ordination scores obtained from mycobiome and

Published in partnership with Nanyang Technological University

bacteriome according to Bray-Curtis distances (plots in Fig. 1b
and Supplementary Fig. 6b, respectively); this association analysis,
seen in Supplementary Fig. 7a, shows how the samples that most
overlapped in the combined ordination scores, reflected by their
closeness to a regression line, are those of the BaAka hunter-
gatherers and Bantu agriculturalists, followed by wild chimpan-
zees and agile mangabeys. In contrast, the samples that showed
the greatest distance from the regression line between myco-
biome and bacteriome were those of the two wild gorilla
populations (Supplementary Fig. 7a).

Thus, similarities in mycobiome-bacteriome correspondence
between groups that share some bacteriome traits (e.g., humans
practicing non-industrialized subsistence strategies, wild chim-
panzees and wild agile mangabeys) as reported before'® was not
always observed; indeed, gorillas, all captive apes and US humans,
all of which showed substantial ecological divergence showed a
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Fig. 2 Heatmap distribution of 30 most abundant fungal genera. Heatmap showing the relative distribution of the 30 most abundant
fungal genera based on their normalized relative abundances in each group. Color distribution of individual fungal genera is reported in color
key based on normalized Z scores. The primate groups were arranged as per the hierarchical clustering shown in Fig. 1b. Cumulative relative
abundance of individual genera across groups is shown in the separate bar plot. Genera highlighted in green and deepskyblue belong to the
Ascomycota and Basidiomycota phyla, respectively. Tropic mode and guild of these most abundant genera were selected from the total
assigned trophic mode and guild for each ASV. To make FUNGuild assignments more accurate, only ASVs ranked as “Probable” and “Highly
Probable” hits were considered for final classification. ASVs ranked as “Possible” were not considered. These categories are shown at the
bottom of the heatmap with different colors and numbers. The dotted boxes along with the asterisk are drawn to show statistical significance
(based on species indicator analysis, indval > 0.3, and p < 0.05) of each fungal genera in the respective primate group. The identifiers used for
primate groups are US-H: US-Human, CCO: Captive Chimpanzees Ostrava, CWLG: Captive Western Lowland Gorilla, MG: Mountain Gorilla, Ban-
H: Bantu-Human, BaA-H: BaAka-Human, C: Chimpanzee, M: Agile Mangabey, and WLG: Western Lowland Gorilla.

similar level of mycobiome-bacteriome dissimilarity (Fig. 3c and
Supplementary Fig. 7a). Associations between fungal and bacterial
richness (alpha diversity) when considering all groups were
positive and significant, but weak (Spearman r=0.36, p=
4.7e-06, Supplementary Fig. 7b). This observation indicates that
greater bacterial richness did not necessarily correspond to higher
fungal richness in the primate populations studied, which is
perhaps more evident in the case of mountain gorillas (Supple-
mentary Fig. 7b). However, low bacterial richness always
corresponded with low fungal richness, specifically, in US humans.
All analyses on bacterial diversity, including ordination, alpha
diversity and taxonomic composition can be seen in Supplemen-
tary Figs. 6 and 8.

Network dynamics between mycobiome and bacteriome also
showed group-specific patterns

To understand the nature of specific associations between
mycobiome and bacteriome, we performed a co-occurrence
network analysis based on compositionally corrected correlations
between bacterial and fungal ASVs in each primate group. We
considered only significant positive and negative correlations (r >
+/—0.6, q<0.01), and calculated neighborhood connectivity,
which denotes the number of local and wide (direct/indirect)
interactions between fungal and bacterial ASVs?®, as well as
modularity, degree and hub scores. These primate-specific net-
works showed significant differences in the number of

npj Biofilms and Microbiomes (2022) 12

mycobiome-bacteriome interactions (Fig. 4a and Supplementary
Fig. 9a), with all nonhuman primates showing denser networks
(higher number of bacteria-fungi associations) but lower mod-
ularity (dense connections between nodes across different
modules) relative to all humans. However, the gut microbiome of
US humans always showed the fewest number of associations
between bacteria and fungi; for example, only one fungal taxon
was found associated with a few bacterial species (r> 0.6, g < 0.01),
therefore, the US-humans network displayed zero modularity.
Denser networks in nonhuman primates were further supported
by the higher number of observed hub nodes, which ranged from
7 to 31. This metric was based on a hub score >0.2, which
measures the number of nodes significantly more connected
within a network. This observation is in contrast with all humans,
which showed hub nodes ranging from 1 to 5. (Supplementary
Table 2, all hub nodes based on high hub score >02 are
highlighted in green). Additionally, the degree of connectivity of
microbial communities in each sample was assessed using a
cohesion metric, for negative and positive correlations separately.
These analyses showed similar patterns for positive and negative
cohesion, demonstrating that high or low cohesion values do not
correlate with ecological niche; for example, wild and captive
chimpanzees and the wild mountain gorillas showed high positive
and negative cohesion values. However, US humans always
displayed the lowest cohesion values compared with any other
group (Supplementary Fig. 10). We didn’t find an influence of
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number of samples per group on number of significant correla-
tions detected in each primate group (Supplementary Fig. 9¢c).

Neighborhood connectivity, degree, modularity, and cohesion
(Fig. 4b, ¢, Supplementary Figs. 9a, b, and 10) showed that each
primate group displayed unique mycobiome-bacteriome interac-
tions. For instance, mountain gorillas displayed the greatest
number of interactions between fungi and bacteria. This is an
interesting observation considering mountain gorillas showed the
lowest correspondence between these two microbial fractions
(Fig. 3¢, d) and poor associations between fungal and bacterial
diversity (Supplementary Fig. 7b). Likewise, despite the fact that the
agricultural and foraging human populations showed the greatest
degree of correspondence between bacteriome and mycobiome
composition, they still showed less dense networks and network
connectivity compared with all nonhuman primates in this study
(Figs. 4a, b, c). However, US humans were the only group that
consistently showed a low degree of association between myco-
biome and bacteriome, low mycobiome and bacteriome diversity
and low number of interactions between these two microbial
fractions. Thus, in most cases, alpha diversity of bacteria and fungi,
and similarities between mycobiome and bacteriome composition
do not explain co-occurrence or interaction patterns between
specific bacteria and fungi in the primate gut.

Identification of specific interactions between fungal taxa
distinguishing a given primate group (e.g., indicator taxa as
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shown in Fig. 2) and any bacterial taxa, also revealed unique
patterns (Fig. 5 and Supplementary Fig. 11). For example, wild
chimpanzees showed multiple associations between Cladosporium
and various gut bacterial commensals (e.g., positive with
Prevotella, g__RFN20, Dialister, Campylobacter, Ruminococcus, and
g__p-75-a6; negative with Parabacteroides, Oribacterium, Rumino-
coccus flavefaciens, Prevotella, Adlercreutzia, g__YRC22, and Sphaer-
ochaeta). Cladosporium was identified as one of the hub taxa in
wild chimpanzees, based on hub score of 0.23 (Supplementary
Table 2) and was classified as plant-associated pathotroph/
symbiotroph according to FUNGuild. This observation contrasts
with the only gut fungal marker of western lowland gorillas,
Schwanniomyces, which only showed one positive association with
Peptococcus. However, none of the unique fungal markers of the
remaining two wild primate populations, agile mangabeys and
mountain gorillas, showed any significant associations with
bacterial taxa (r> 0.6, g < 0.01).

Captive groups also showed a few associations between their
indicator fungi and bacterial taxa. For example, Aureobasidium
pullulans, the gut fungal marker of captive chimpanzees, showed a
positive association with Coprococcus; whereas Sordaria, found in
captive western lowland gorilla and classified as a saprotroph that
feeds on decaying wood matter according to FUNGild, showed
positive associations with Ruminobacter and Sutterella. A few
group-specific association patterns also characterized the three
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human populations; Lactarius, key taxa in BaAka hunter gatherers
based on the network hub score 1; (Supplementary Table 2) and
classified as a plant symbiotroph, showed positive associations
with Oribacterium, Prevotella and Anaerostipes, and a negative
association with Ruminococcus. Trichosporon, a pathotroph also
distinguishing the BaAka, showed negative associations with
Roseburia and Faecalibacterium prausnitzii. The only gut fungal
marker of the US human population, the pathotroph Sacchar-
omyces, key taxa based on a network hub score =1 (Supplemen-
tary Table 2), showed positive associations with Alistipes
onderdonkii, Bacteroides uniformis, Adlercreutzia and negative
associations with Blautia, Lachnospira and Dorea formicigenerans.
However, the fungal makers of Bantu agriculturalists, Pichia and
unclassified Saccharomycetales, did not show association with any
bacterial taxa (Fig. 5, Supplementary Fig. 11).

DISCUSSION

This report presents an overview of the gut mycobiome and its
interactions with bacteria in different wild and captive nonhuman
primates, and human populations with diverse subsistence
strategies. The results reinforce the important role of diet and
subsistence strategy over phylogeny in shaping the primate gut
mycobiome and bacteriome. However, the data indicate that,
compared with the gut bacteriome, gut fungal communities in
primates are more variable, and perhaps more driven by
environmental, individual and/or intrinsic factors characterizing
populations and specific individuals within each population.
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Dietary, environmental and individual factors have a greater
influence on shaping the primate gut mycobiome than the
bacteriome

Just as reported with the bacteriome'®?'-23, these results indicate
that the primate gut mycobiome is significantly driven by
ecological and subsistence factors over the phylogenetic back-
ground of the host. However, fungal fingerprints in the groups
studied were significantly more variable compared with the
bacteriome, indicating that gut fungi may be even more
influenced by environmental, individual or behavioral factors,
concordant with previous data reported in healthy humans*. This
contention is further supported by our findings: weaker influence
of phylogenetic constraints and higher inter-individual variability
within groups in mycobiome composition, weak correspondence
between fungal and bacterial community assemblies, and
inconsistent nature of interactions observed between fungi and
bacteria in the primate gut. In line with these data, the strong
influence of dietary and environmental sources in seeding the gut
mycobiome has been reported recently in mice'® and nonhuman
primates'62>26, Compared with the bacteriome, the gut environ-
ment may be particularly susceptible to food-derived and
environmental fungi, albeit transiently?’, possibly triggering the
heterogeneous compositional patterns we observed between
individuals within the same primate population.

It is unclear why the BaAka hunter gathers showed the greatest
correspondence (and less inter-individual variation) between
bacterial and fungal composition compared to any other group
studied, including US humans and the folivorous mountain
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gorillas. This observation warrants further investigation, especially
in regards to how interactions between diet, fungi and bacteria
contribute to ecological assembly and structural resilience in the
human gut, and how these interactions define patterns of health
and disease in the host? It was clear that US humans exhibited
poor correspondence and the lowest degree of connectivity
between bacterial and fungal fractions, and low fungal alpha
diversity compared to the traditional human groups and any other
nonhuman primate group analyzed. This observation is remark-
able in light of the previously hypothesized connections between
western diets, extinction of the gut microbiome, and diseases of
civilization?®?°, It is possible that high sanitation of western food
systems impedes seeding of food-derived fungi in western
subjects®®, which is in contrast with the higher number of food
or environmental derived fungi we observed in the nonhuman
primates and traditional human populations. Thus, our data
generate questions on the role of food-associated microorganisms
and their impact on human health and the gut mycobiome in
particular, as a symbiotic population affected by food sanitation
and industrialized subsistence patterns; these potential associa-
tions had previously focused on the bacteriome only.

The observation that merging the bacteriome and mycobiome
in ordination space results in patterns more consistent with a
phylogenetic-based arrangement of each primate group, indicates
that, in primates, the host genetic background may have more
influence over the gut bacteriome than the mycobiome. Weak
phylosymbiosis between fungal commensals and hosts has been
shown previously, including other microbial populations in the gut
of various wild primates (e.g., with nematodes)'". For instance, we
did not observe a mycobiome overlap between the two closely
related lowland and mountain gorillas, as reported before with
bacterial communities'®. Instead, wild lowland gorillas shared
mycobiome similarity with wild chimpanzees and wild agile
mangabeys, which are more phylogenetically divergent. Myco-
biome convergence between these wild primate populations
could be explained by similar feeding behaviors, specifically by a
similar degree of reliance on fruit>'=3, but also by environmental
seeding sources from plants and soil shared in a common
niche'®?>, However, selectivity and preference of specific fruit
substrates vary greatly among wild primates, even when sharing
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the same location and resources, which may explain why -
although a mycobiome overlap was observed between these
three species - each shows a set of unique indicator fungal taxa.
These indicator taxa, including Schwanniomyces®*, Cladospor-
ium®, Lasiodiplodia®®, Nigrospora®” and Hanseniaspora®® are all
yeast commonly associated with specific plant foods, including
leaves and fruits, concordant with their classification as plant-
associated fungi according to FUNGuild. However, it is also likely
that these wild primates purposely forage on fungi (mycophagy),
as it has been reported for wild bonobos, chimpanzees and even
mountain gorillas, the later of which are reported to specifically
forage on Ganoderma, consistent with the compositional myco-
biome patterns observed in this population (Fig. 2)*°=*'. Penicil-
lium, a taxon common to captive apes and US humans, colonizes a
wide variety of food items, which indicates that their presence in
these groups may also be explained by dietary or environmental
sources and not due to permanent colonization in the gut?’4243,
These data indicate that collective and individual feeding
behaviors have a strong influence in shaping the seeding of
fungal communities in the primate gut. However, the specific
dietary and/or environmental determinants of these fungal
patterns in every group of wild and captive primates and US
humans remains unknown.

The enrichment of Lactarius and Pichia in the BaAka hunter-
gatherers and Bantu agriculturists, respectively, may be better
explained by specific dietary behaviors. For example, Lactarius is a
mushroom genus that includes several edible species*, con-
cordant with the observation that African foragers pick and
consume staple mushrooms frequently*>=#’. Edible Lactarius is
reported to have antitumor, antioxidant, and immunostimulant
functions*®*°. Pichia, a fungal taxon characterizing the Bantu
agriculturalists, is common in many traditional, cereal-based
fermented African foods*®®', and have been deemed to have
probiotic properties including antioxidant and cholesterol-
lowering effects>2. Saccharomyces, common in all human popula-
tions studied, are found in several foods and beverages>3, and are
also reported to have probiotic properties®. These observations
provide additional evidence on the potential role that diet-derived
microorganisms, including fungi, play when reaching the human
gut and influencing health®. Thus, an important question centers
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on elucidating the extent to which the presence of these fungi in
the primate gut, many of them likely associated with external,
dietary sources and hence largely transient in the gastrointestinal
tract, represents any digestive, nutritional or health consequences
for the host. Based on this dataset, which is compositional in
nature, it is not possible to make such functional inferences.
However, we sought to explore if mapping associations between
fungal communities and the bacteriome could help in elucidating
the ecological relevance, in the gut environment, of the primate
mycobiome.

Mycobiome-bacteriome interactions shed light on the
ecological and physiological contributions of the gut
mycobiome in primates

Patterns of association between fungi and bacteria may offer clues
to understand the ecological and physiological relevance of fungi
in different primate hosts. For instance, it has been shown that
diet alterations impact interkingdom metabolic networks, with
potential physiological consequences for the host'. Indeed, co-
abundance patterns between bacteria and fungi have been shown
to be significantly affected by western diets®. These observations
may help explain the lower number of interactions observed
between gut bacteria and fungi in humans compared with
nonhuman primates. Particularly, US humans showed the least
dense networks, the lower neighborhood connectivity, degree,
low number of hub taxa, and lower modularity. It is likely that less
reliance on dietary fiber, specifically depleted in western diets, has
affected potential metabolic interactions between the mycobiome
and the bacteriome in humans along evolutionary timescales. The
bacteria-fungi co-abundance network analyses could also indicate
that high fiber diets, such as those characterizing the most
folivorous primates (e.g., gorillas), require increased synergistic
interactions between bacteria and fungi in the gut. However, since
captive gorillas and chimpanzees, which likely subsist on less
dietary fiber, showed a similar degree of connectivity, dietary fiber
may not always predict interactions or metabolic synergism
between bacteria and fungi in the primate gut. An additional,
possible explanation is that the foods consumed by nonhuman
primates, regardless of specific diet, exhibit a higher content of
food-associated fungi that can reach the gut environment. In this
regard, it has been shown that more diverse diets (fruits,
vegetables, lean meat and whole grains) exhibit a higher microbial
load (including yeast and bacteria) compared with typical
American diets®”, which could affect the rate at which fungi and
bacteria interact in the gut.

Also, these data show that fungal or bacterial diversity in the
primate gut do not necessarily correspond with the number of
interactions between bacteria and fungi. For instance, mountain
gorillas exhibit low, and highly variable fungal diversity, and
bacterial diversity that is comparable to that seen in all other
nonhuman primates and traditional human populations. Yet,
mountain gorillas show the densest, most connected bacterial-
fungi co-occurrence networks. In contrast, the traditional human
populations showed higher fungal and similar bacterial diversity
as compared to mountain gorillas; nonetheless, they showed the
least number of interactions. An interesting question to pursue, in
light of these findings, is to determine the extent to which degree
of external microbial seeding is a more relevant factor in
predicting associations between fungi and bacteria in the primate
gut. Based on a greater influence of environment in shaping gut
fungi, in contrast to bacteria, as proposed here, one could
speculate that the degree of fungal seeding from foods and the
environment may be an important determinant of the number of
bacteria-fungi interactions. In that case, non human primates
would be more likely to be seeded from external sources,
compared to any human, but particularly, compared to US
humans. Moreover, if most fungi are mainly present partly due
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to infections from external sources, one would expect that the
number of fungi-bacteria interactions would vary significantly
across spatiotemporal scales (e.g., season)®. These observations
highlight the importance of environmental cues in shaping
cooperation and/or competition among diverse host-associated
microbial kingdoms>®.

Fungal and bacterial taxa with similar functional potential may
interact to accomplish common metabolic roles; such may be the
case of Lasiodiplodia in wild chimpanzees, which is known to
produce various enzymes involved in plant cell wall degrada-
tion®%®", and Ruminococcus and Clostridiales, typical symbionts
associated with fiber-degradation roles®%%3, Antagonistic interac-
tions may show competition for common ecological niches but
can also represent a physiological advantage for the host. For
example, Faecalibacterium and Roseburia, which are butyrate
producers and are associated with optimal intestinal integrity and
immune modulation®*, were seen to antagonize with Trichosporon
in the BaAka hunter-gatherers; this fungus is a classical
opportunistic pathogen whose infection causes trichosporono-
sis®. This observation adds to the growing body of evidence
pointing to the mycobiome, and their interactions with the
bacteriome, as key factors shaping health and disease phenotypes
in the host through pathogen or inflammation control>¢%¢7,
Bacteria may also directly degrade or metabolize fungal cell walls,
which are rich in a-mannans®®, potentially supporting the multiple
associations observed between different fungi, and bacterial taxa
typically regarded as fibrolytic, saccharolytic, or fermentative®®.
However, the functional relevance of these bacteria-fungi inter-
actions in the primate gut, in terms of their physiological
consequences for the host, remains unknown.

In summary, these data highlight the role of environment and
subsistence strategy in shaping gut mycobiome structure and
mycobiome-bacteriome interactions in different primate popula-
tions. The weak phylogenetic-based assortment and high inter-
individual variation of fungal communities, relative to the bacter-
iome, indicates that ecological, behavioral and individual factors
define the assembly and persistence of fungal communities and the
degree to which fungi interact with bacteria in the primate gut.
However, these data cannot assess the mechanisms that dictate gut
fungal community assembly and environmental seeding, as it
pertains to each primate species or their specific ecological niche.
Nor can we assess the metabolic or phenotypic impact of these
interactions (or lack of thereof). Moving forward it would be key to
measure the extent to which soil and specific food sources in the
ecological niche of each primate host determine mechanisms of
fungal assembly in their gastrointestinal tract. Likewise, the
relevance of transient fungi in the primate gut needs to be
elucidated beyond in silico analyses, focusing on interactions
between environment, diet, bacteria, and fungi and the conse-
quences of these interactions for the host physiological landscape.

METHODS

Subjects and samples

Samples from four social groups of western lowland Gorillas (Gorilla gorilla
gorilla, n =19), one group of agile Mangabeys (Cercocebus agilis, n=11),
BaAka hunter-gatherers (n = 27), and Bantu agriculturalists (n = 13) were
collected at the Dzanga Sangha Protected Areas, Central African Republic.
Samples from one group of eastern chimpanzees (Pan troglodytes
schweinfurthii, n=11) were collected in Bulindi, Uganda. Samples from
captive western lowland gorillas (n = 18) were collected at Como zoo in St
Paul Minnesota, USA (with some individuals sampled up to three times),
while samples from captive chimpanzees were collected at Ostrava (n =
12) zoos in the Czech Republic. Samples from mountain gorillas (Gorilla
beringei beringei, n = 26) from four social groups were collected at Bwindi
Impenetrable National Park, Uganda. Samples from the US human
population (n=12) were collected from healthy subjects in St. Paul MN.
All samples were collected between 2012 and 2016. About 1 gr of fecal
sample, taken from the inner core of feces, avoiding the exterior and
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within 1-2h after voiding, was collected and then stored in 5 ml tubes
containing RNAlater (Qiagen, Germany, 1 g of fecal sample in 2 volumes of
solution). Then, the solution was mixed thoroughly to homogenize the
sample. Depending on field/site infrastructure, samples remained at room
temperature from 24 h for a maximum of three weeks before storage at
—20°C until DNA extraction®26°-7",

Ethics

Human samples: Approval to collect samples from US humans was
granted by the University of Minnesota, Twin Cities, and its Institutional
review board (IRB) for the protection of human subjects, protocol number
STUDY00004208. All work carried out with hunter-gatherers and agricul-
turalists from the Central African Republic, including sample collection, was
approved according to the rules and regulations from the Ministre de
I'Education Nationale, de I'Alphabetisation, de I'Enseignement Superieur,
and de la Recherche (Central African Republic), as well as the IRB for the
protection of human subjects from the University of lllinois at Urbana-
Champaign (permit number 13045). All participants provided written
informed consent to take part in the study.

Nonhuman primate samples: Samples from wild western lowland
Gorillas and agile mangabeys from the Central African Republic were
collected with approval by the Ministre de I'Education Nationale, de
I'Alphabetisation, de I'Enseignement Superieur, and de la Recherche
(Central African Republic) while samples from wild mountain gorillas were
collected with approval from the Uganda Wildlife Authority and the
Uganda National Council for Science and Technology. Samples from wild
chimpanzees were collected with approval from Makerere University in
Uganda, protocol number HDREC421 and from Oxford Brooks University in
the UK, protocol number UREC-160989. Samples from captive apes from St.
Paul, Minneapolis, USA and Europe were collected under protocol ID 2003-
37934A granted by the University of Minnesota, Twin Cities.

DNA extraction, amplicon library preparation, sequencing and
data processing

Genomic DNA was extracted using the Power Soil DNA extraction kit of
MoBio (Carlsbad, CA). To determine bacterial composition, the V4 variable
region of the 16S rRNA gene was amplified using 16S-515F
(GTGCCAGCMGCCGCGGTAA) and 165-806R (GGACTACHVGGGTWTCTAAT)
primers. To determine fungal composition, the internal transcribed spacer 2
(ITS2) was amplified using ITS3 (GCATCGATGAAGAACGCAGC) and ITS4
(TCCTCCGCTTATTGATATGC) primers. Sequencing of pooled libraries was
carried out using lllumina MiSeq platform at the University of Minnesota to
generare 2*¥300bp of sequences, including negative controls (libraries
constructed on a water solution). 16 S rRNA and ITS2 sequences were
processed using custom-made Perl scripts and the Qiime2 pipeline’. Raw
sequencing data were processed to remove primers and low-quality reads
(phred quality score <30) using cutadapt and fastx_toolkit, respectively.
These high-quality reads were considered for denoising, merging, chimera
removal and finally to generate unique amplicon sequence variants (ASV)
using the Dada2 plugin of Qiime2. Representative sequences of each ASV
were aligned using MAFFT and phylogenetic trees both rooted and
unrooted were constructed using FasTree. Taxonomic assignments of
bacterial ASVs were carried out by trained naive Bayes classifiers on
reference sequences (clustered at 99% sequence identity) from Greengenes
13_8, and fungal ASVs were carried out using the UNITE database. For both
taxonomic assignments, Qiime2 plugins feature-classifier fit-classifiernaive-
bayes and feature-classifier classifier-sklearn were used. Generated bacterial
and fungal ASV tables were converted to relative proportions using total
reads per sample and the ASVs which were not present in at least 5 samples
(~3% of total samples) were omitted from the data set. Furthermore,
bacterial, and fungal taxa present in both negative control samples were
identified and removed before using bacterial and fungal relative
abundances at different taxonomic levels for downstream analysis.

Guild analysis

For assigning ecological functions to each fungal ASV, we have used the
FUNGuild program. ASVs for which tropic modes and guilds were
identified as “probable” and “highly probable” were considered for further
downstream analysis.
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Microbial networks

Bacterial fungal association networks for each microcosm were created by
first creating a compositionally corrected correlation matrix using CCREPE
function in R”3, All strong significant correlations (r > +/—0.6 and g < 0.01)
were then used in the Cytoscape to generate undirected networks”. These
networks were used to calculate the various network parameters such as
neighborhood connectivity, degree, and cohesion along with the keynote
taxa based on hubScore and modularity of network using the Igraph
package in R7°. From these networks, the number of interactions was
counted, and network complexity specifically to understand overall
connectivity of microbial communities was reported using degree,
neighborhood connectivity, modularity and positive/negative cohesion.

Statistical analyses

All microbial community analyses were performed within the R statistical
interface. Briefly, for alpha diversity, beta diversity, permutational multi-
variate analyses of variance (PERMANOVA), multiple R packages such as
vegan, ape, phyloseq were used’®’%, CLR transformation was done on
each table separately to estimate the relative proportions of mycobiome
and bacteriome using. Significantly discriminating bacterial and fungal
taxa were identified using species indicator analysis using labdsv package
in R. Average genus abundances of each primate group were used to
generate phylogenetic trees based on Bray-Curtis distances and hclust
function within the R ape package. Bacterial and fungal summary analyses
were performed on the phyloseq object using plot_bar function in R.
Kruskal-Wallis tests were used to check the statistical significance among
multiple groups using the kruskalmc function of pgirmess package in R”°,
whereas, Wilcoxon rank-sum tests were used to check the statistical
significance among sbacterial and fungal interindividual variation within
each primate group using the wilcox.test function in R. Heatmap was
generated using aheatmap function in R NMF package®®. All graphs were
plotted using ggplot function in R®',

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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