Skip to main content
. 2022 Mar 4;9:842873. doi: 10.3389/fcvm.2022.842873

Table 2.

Model evaluation.

Model AUROC Accuracy, % PPV, % NPV, % BA, % F1-score MCC
Internal validation
LightGBM 0.807 76.9 60.1 81.6 67.9 0.533 0.387
CatBoost 0.795 76.2 60.1 79.7 64.8 0.478 0.344
GBDT 0.798 76.0 60.3 79.4 64.2 0.333 0.336
XGBoost 0.780 75.3 56.3 80.7 66.1 0.414 0.345
Random Forest 0.792 76.3 61.2 79.5 64.5 0.326 0.343
LR 0.758 75.1 60.6 77.1 60.0 0.258 0.275
Bagging 0.761 74.2 54.7 78.8 62.7 0.384 0.291
SVM 0.757 72.4 45.5 76.5 56.4 0.351 0.169
Naïve Bayes 0.640 72.7 51.1 75.3 56.3 0.274 0.182
MLP 0.651 69.8 43.3 76.5 58.0 0.456 0.184
KNN 0.608 71.6 42.7 73.5 52.4 0.211 0.089
AdaBoost 0.790 74.9 55.7 80.0 64.9 0.404 0.326
Decision Tree 0.603 69.0 43.8 78.9 61.6 0.536 0.230
External validation
LightGBM 0.816 82.8 59.0 85.0 60.9 0.362 0.311
CatBoost 0.791 82.6 62.4 83.7 57.5 0.271 0.262
GBDT 0.778 82.1 62.1 82.7 54.2 0.171 0.195
XGBoost 0.790 81.9 52.9 85.4 62.0 0.384 0.303
Random Forest 0.804 82.4 58.7 84.0 58.2 0.293 0.264
Logistic Regression 0.755 82.0 55.9 83.6 57.0 0.261 0.234
Bagging 0.760 81.7 52.1 84.4 59.3 0.325 0.261
SVM 0.707 81.5 46.9 83.6 55.6 0.227 0.185
Naïve Bayes 0.569 73.0 29.2 85.3 58.5 0.322 0.156
MLP 0.692 80.9 47.2 83.6 57.0 0.268 0.207
KNN 0.606 81.4 57.1 81.6 50.9 0.042 0.084
AdaBoost 0.793 82.2 54.4 85.0 61.0 0.363 0.294
Decision Tree 0.622 74.8 34.5 85.3 61.1 0.367 0.212

The bold values represent the best predict performance among these models. AUROC, the area under the receiver operating characteristic curve; PPV, positive prediction value; NPV, negative prediction value; BA, balanced accuracy; MCC, Matthews correlation coefficient.