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Abstract

It was suggested in 1986 that cue-induced cocaine craving increases progressively during early 

abstinence and remains high during extended periods of time. Clinical evidence now supports this 

hypothesis and that this increase is not specific to cocaine but rather generalize across several 

drugs of abuse. Investigators have identified an analogous incubation phenomenon in rodents, 

in which time-dependent increases in cue-induced drug seeking are observed after abstinence 

from intravenous drug or palatable food self-administration. Incubation of craving is susceptible 

to variation in magnitude as a function of biological and/or the environmental circumstances 

surrounding the individual.

During the last decade, the neurobiological correlates of the modulatory role of biological (sex, 

age, genetic factors) and environmental factors (environmental enrichment and physical exercise, 

sleep architecture, acute and chronic stress, abstinence reinforcement procedures) on incubation 

of drug craving has been investigated. In this review, we summarized the behavioral procedures 

adopted, the key underlying neurobiological correlates and clinical implications of these studies.
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1. Introduction

A defining feature of substance use disorder (SUD) is drug relapse, that is often triggered 

by craving, an intense subjective experience of wanting to use a drug (Drummond, 2001; 

Mendelson and Mello, 1996; O’Brien, 1997; Preston et al., 2018). Now a formal criterion 

in the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5) (Murphy et al., 

2014), craving is regarded as a dynamic phenomenon. This is a reason why the large 

majority of clinical assessments focus on its perceived intensity (Tiffany and Wray, 2012). 

Notably, craving intensity has been found to predict treatment outcomes (Higley et al., 

2011; Tsui et al., 2014). An account of craving dynamicity is exemplified by the incubation 

of drug craving phenomenon, the progressive increase of cue-induced drug craving during 

abstinence from drug self-administration (Gawin and Kleber, 1986; Pickens et al., 2011). 

Incubated craving typically remains elevated for extended drug-free periods followed by a 

stable decline.

Here we review the biological and environmental factors that modulate (either exacerbate 

or attenuate) the intensity of drug craving over time. We refer the readers to (Altshuler et 

al., 2020; Dong and Nestler, 2014; Li et al., 2015b; Pickens et al., 2011; Wolf, 2016) for a 

thorough analysis of the neurobiological mechanisms of incubation of drug craving per se.

We first describe the biological factors modulating incubation of drug (or food) craving, 

which include sex, age and genetic factors. We will then review the environmental factors. 

The latter include environmental enrichment and physical exercise, sleep architecture, acute 

and chronic stress and abstinence reinforcement procedures. Next, we will review the 

relevant neurobiological research on the subject. Due to the limited literature available, 

we discuss incubation of non-drug reward craving separately. We conclude by describing the 

implications of the reviewed studies to SUD. A comprehensive understanding of the factors 

that modulate craving intensity, and their interactions, is essential in the management of 

craving.

1.1. Brief history of incubation of craving (Fig. 1A and Fig. 1B)

In 1986, based on clinical observations, Gawin and Kleber (1986) proposed that cue-induced 

cocaine craving progressively increases during early abstinence and remains elevated for 

extended drug-free periods. At the time, this hypothesis was based on limited evidences 

and was not immediately pursued (Li et al., 2016; Venniro et al., 2016). More than a 

decade later, Grimm et al. (2001) described a similar phenomenon in rodents, pre-trained to 

self-administer cocaine, based on observations that time-dependent increases in cue-induced 

drug seeking occurred after withdrawal from cocaine (Neiswander et al., 2000) and heroin 

(Shalev et al., 2001a). Specifically, responding for cues associated with cocaine intensified 

after cessation of drug self-administration. This cocaine “craving” was significantly higher 

Venniro et al. Page 2

Neurosci Biobehav Rev. Author manuscript; available in PMC 2022 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



after 1–2 months than after 1–7 days of abstinence from cocaine. At present, the concept of 

incubation of craving has been substantiated by several clinical and preclinical studies for 

both drug and food rewards. Incubation of cue-induced drug craving has been observed in 

rodents with a self-administration history of heroin (Shalev et al., 2001a), nicotine (Abdolahi 

et al., 2010), alcohol (Bienkowski et al., 2004), methamphetamine (Shepard et al., 2004), 

oxycodone (Fredriksson et al., 2020) and fentanyl (Martin et al., 2021). Incubation of drug 

craving has also been observed in humans with a drug taking history of nicotine (cigarette 

smoking) (Bedi et al., 2011), methamphetamine (Wang et al., 2013; Zhao et al., 2021), 

alcohol (Bach et al., 2020; Treloar Padovano and Miranda, 2021) and cocaine (Parvaz 

et al., 2016). The demonstration of incubation in human studies provides support for the 

translational potential of therapeutic targets for relapse uncovered through basic research 

with rodents.

2. Biological factors modulating incubation of drug craving

2.1. Sex

2.1.1. Behavioral findings (Fig. 2A and Fig. 2B)—Several clinical and preclinical 

studies have investigated sex differences in all stages of SUD [for comprehensive reviews, 

refer to (Anker and Carroll, 2011; Becker, 2016; Becker and Chartoff, 2019; Becker and 

Hu, 2008; Becker et al., 2012; Bobzean et al., 2014; Carroll and Anker, 2010; Lynch et 

al., 2002; Riley et al., 2018)] including drug craving and relapse. The emerging picture is 

complex, due to the large inconsistencies 1) within clinical or preclinical studies, 2) between 

clinical and preclinical studies and 3) across drug classes (Fredriksson et al., 2021; Nicolas 

et al., 2021). Overall, the results of the clinical studies do not support the notion that women 

are more vulnerable to psychostimulant, opioid, alcohol and nicotine craving. For example, 

some human studies show that women experience stronger craving to cocaine (Fox and 

Sinha, 2014; Fox et al., 2013; Kennedy et al., 2013; Li et al., 2005; Potenza et al., 2012; 

Robbins et al., 1999) and heroin (Moran et al., 2018; Yu et al., 2007) or show a higher 

smoking cue reactivity than men (Janes et al., 2009, 2010, 2012; Wetherill et al., 2013). In 

contrast, other reports did not find sex differences in cocaine (Back et al., 2005; Elman et al., 

2001; Volkow et al., 2011), opioids (Herbeck et al., 2016; Kennedy et al., 2013) and alcohol 

(Yarmush et al., 2016) craving. To the contrary, other reports find higher alcohol-primed 

craving (Willner et al., 1998) and smoking-cue reactivity (Dumais et al., 2017) in men than 

women.

The few available evidences on incubation of drug craving (Bedi et al., 2011; Li et al., 2014; 

Parvaz et al., 2016; Wang et al., 2013) have not directly examined sex differences, which 

may be due to limited sample sizes in each sex.

Preclinical studies provide evidences for sex differences in stress-induced reinstatement 

and incubation of cocaine craving, but not cue- or cocaine priming-induced reinstatement 

of cocaine seeking. These studies primarily employed the reinstatement procedure in rats 

(Alonso-Caraballo et al., 2021; Shaham et al., 2003; Venniro et al., 2016). Drug-associated 

cues are the most commonly used triggers to study drug seeking after abstinence (Lu 

et al., 2004b). Female rats, relative to males, show potentiated incubation of cocaine 

craving after abstinence from short-access (Kerstetter et al., 2008) or intermittent-access 

Venniro et al. Page 3

Neurosci Biobehav Rev. Author manuscript; available in PMC 2022 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(but not continuous-access) self-administration (Nicolas et al., 2019), and cocaine seeking in 

females, but not males, stays elevated until 180 days (Kerstetter et al., 2008). Notably, 

two recent incubation studies revealed no differences between females and males in 

methamphetamine (Venniro et al., 2018, 2017b), heroin (Venniro et al., 2017b) and 

oxycodone (Fredriksson et al., 2020) craving after either forced or voluntary abstinence. The 

dissimilar results in the sex differences between cocaine and methamphetamine, or opioids, 

in incubated craving have yet to be determined. However, it has been suggested that distinct 

drugs of abuse feature distinct behavioral and neurobiological determinants that should be 

taken into considerations (Badiani et al., 2011).

2.1.2. Neurobiological findings (Fig. 3)—What contributes to the sex differences in 

incubation of cocaine craving? Key factors are ovarian hormones associated with the estrus 

cycle (Anker and Carroll, 2011). Kerstetter et al. (2008); Nicolas et al. (2019) and Corbett 

et al. (2021) report that females rats during estrus exhibit stronger incubation of craving 

than during non-estrus or males, which is consistent with findings in cocaine-induced 

reinstatement (Feltenstein et al., 2009; Feltenstein and See, 2007; Kippin et al., 2005). 

The role of the estrus cycle in enhancing cocaine seeking behavior has been linked to 

ovarian hormones: progesterone and estrogen. Eliminating both progesterone and estrogen 

by ovariectomy in rats decreases cocaine priming-induced reinstatement, an effect rescued 

by systemic administration of estrogen (Larson et al., 2005) or estrogen receptor beta 

agonist (Larson and Carroll, 2007). Lower plasma progesterone levels, on the other hand, are 

associated with enhanced cocaine priming-induced reinstatement during estrus (Feltenstein 

and See, 2007). Systemic administration of progesterone (Anker et al., 2007; Feltenstein et 

al., 2009) or allopregnanolone (the metabolite of progesterone) suppresses cocaine priming-

induced reinstatement (Anker et al., 2009). Consistent with animal studies, women report 

decreased craving for cocaine in the luteal phase (when progesterone level is high) compared 

with the follicular phase (Evans et al., 2002; Sofuoglu et al., 1999). Progesterone treatment 

in both men and women decreased subjective effects of cocaine use (Sofuoglu et al., 

2002, 2004). Based on these findings, an interesting question for future studies is whether 

manipulating ovarian hormones also affect incubation of cocaine craving.

2.2. Age

2.2.1. Behavioral findings (Fig. 2A and Fig. 2B)—Another key biological factor 

that affects incubation of drug craving is age, and adolescence has been a main focus of 

both clinical and pre-clinical studies (Bernheim et al., 2013; Jordan and Andersen, 2017; 

Schramm-Sapyta et al., 2009; Spear, 2000, 2016; Stanis and Andersen, 2014). As a critical 

developmental period, adolescence is characterized by increased risk-taking and sensation/

novelty/reward seeking (Galvan, 2010; Jordan and Andersen, 2017; Kreek et al., 2005; 

Laviola et al., 2003; Spear, 2000, 2016) relative to adults, all of which may contribute to 

increased vulnerability to drug abuse. Moreover, epidemiological studies show that most 

individuals diagnosed with SUD initiate drug use as teenagers or young adults (Chen and 

Kandel, 1995; O’Loughlin et al., 2009), which is associated with increased drug-related 

problems in later life (Anthony and Petronis, 1995; Clark et al., 1998; Kandel et al., 1992; 

Palmer et al., 2009). However, it is controversial as to whether adolescents are biologically 
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more vulnerable to SUD or whether initiation of drug use in adolescents contributes to SUD 

in adults [see (Bernheim et al., 2013; Schramm-Sapyta et al., 2009) for details].

In animal studies, the age at which drug exposure starts can be precisely controlled and 

adolescence in rodents is usually referred to a short time window between postnatal day 

28–42 (Spear, 2000). However, since behavioral procedures to study animal models of 

relapse such as incubation usually require 1–2 months (Pickens et al., 2011; Venniro et al., 

2016), this short time window presents a challenge to examine relapse behaviors within 

the adolescence window of rodents. Therefore, preclinical researchers have been focusing 

on whether adolescent onset drug self-administration leads to potentiated drug seeking in 

adulthood, compared with adult-onset drug self-administration.

For example, the Frantz laboratory conducted a series of studies to compare incubation of 

craving after adolescent-onset versus adult-onset drug self-administration and their findings 

are quite unexpected (Doherty et al., 2013; Doherty and Frantz, 2012; Li and Frantz, 2009, 

2017; Li et al., 2018a). In these studies, adolescent or adult rats go through short-access (2 

or 3 h/day) drug self-administration and forced abstinence, followed by a single extinction 

test (Doherty et al., 2013) or a within-session extinction and cue-induced reinstatement 

test (Doherty and Frantz, 2012; Li and Frantz, 2009, 2017; Li et al., 2018b). Adolescent-

onset self-administration rats exhibit both attenuated incubation (assessed during extinction 

sessions) and cue-induced reinstatement for cocaine (Li and Frantz, 2009, 2017; Li et al., 

2018a) and heroin seeking (Doherty et al., 2013; Doherty and Frantz, 2012), compared 

with adult-onset groups. It is of note that studies above show no differences during drug 

self-administration (Doherty et al., 2013; Doherty and Frantz, 2012; Li and Frantz, 2009, 

2017; Li et al., 2018a). These findings are also in line with a recent nicotine study by 

Funk et al. (2016) that found an attenuated incubated nicotine craving in adolescent-onset, 

compared to adult-onset, rats after 2 h nicotine self-administration.

Overall, these findings suggest adolescent onset rats may develop resistance, rather than 

increase vulnerability, to cue-induced relapse assessed in adulthood. However, in contrast 

with Frantz group (Li and Frantz, 2009; Li et al., 2018a) and Lê group (Funk et al., 

2016) findings, Madsen et al. (2017) evaluated incubation of craving using extended access 

cocaine self-administration and demonstrate that adolescent- and adult-onset groups exhibit 

similar incubation of cocaine craving. This finding is supported by a recent study reporting 

no age differences in incubated oxycodone seeking after extended access oxycodone 

self-administration, but adolescent rats exhibit decreases seeking during early abstinence 

(Altshuler et al., 2021).

Two factors may contribute to these conflicting results. One factor is that the incubation 

of craving after short access self-administration (Li and Frantz, 2009; Li et al., 2018a), 

is generally less robust (Lu et al., 2004a) relative to that following extended access self-

administration (Madsen et al., 2017). Therefore, adolescent-onset groups with short-access 

self-administration may fail to produce incubation of craving. The other factor is the housing 

condition. Studies from the Frantz group (Li and Frantz, 2009; Li et al., 2018a) house 

the rats in pairs, while Madsen’s group (Madsen et al., 2017) houses rats individually. 

The Frantz group has shown that pair housing condition may contribute to the attenuated 
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incubation of cocaine craving in adolescent-onset rats (Li and Frantz, 2017), possibly due 

to the developmental significance of social interaction in adolescents (Auger and Olesen, 

2009; Burke et al., 2017; Douglas et al., 2004; Panksepp, 1981). However, a recent study 

using group-housing condition observed no differences in incubation of oxycodone craving 

after adolescent- and adult-onset oxycodone self-administration. Therefore, it is possible 

that age differences in cue-induced drug seeking may be more sensitive to different self-

administration procedures than housing conditions (Altshuler et al., 2021).

Lastly, the results from incubation studies also contrast with those from the classical 

reinstatement model: both Anker and Carroll (2010) and Wong and Marinelli (2016) report 

potentiated stress-induced reinstatement of cocaine seeking in adolescent compared to adult-

onset rats, while Cho et al. (2020), report no differences in context-reinstatement of cocaine 

seeking between adolescent- and adult-onset rats.

For drug priming-induced reinstatement, the current findings are mixed (Anker and Carroll, 

2010; Li and Frantz, 2017; Shram et al., 2008), probably due to the differences in behavioral 

procedures used in each study.

The literature reviewed above conclusively demonstrates that adolescents are not more 

vulnerable to incubation than adults, providing preclinical evidence that adolescents are not 

biologically more vulnerable than adults.

Adolescence, in contrast to adulthood, is a sensitive period of brain development and the 

resulting behavioral flexibility and self-regulatory competence are shaped by the experiences 

(e.g., social interactions and relationships) (Burke et al., 2017; Westbrook et al., 2018). 

Based on this consideration, the procedural differences discussed above might reflect 

distinct “experiences” that might have contributed to the discrepancies between studies 

in the adolescent behavioral outcome. The same line of reasoning might justify the many 

controversies highlighted in human studies (Bernheim et al., 2013; Schramm-Sapyta et al., 

2009), although to the best of our knowledge, no studies explicitly addressed cue reactivity 

between adolescents and adults. Because only a minority of adolescents experiencing 

recreational drugs will later develop SUD (Anthony et al., 1994; Kandel, 1991) we believe 

that a major aim for future studies will consist in finding endophenotypes (Dalley and 

Ersche, 2019) along with vulnerability markers of cue-induced relapse.

2.2.2. Neurobiological findings (Fig. 3)—Few studies have addressed the 

neurobiology of incubation of drug craving after adolescent-onset self-administration. 

Doherty et al. (2013) compared Fos [a neuronal activity marker (Morgan and Curran, 1991)] 

induction in medial prefrontal cortex (mPFC; both prelimbic and infralimbic cortex) during 

heroin seeking tests after 12-days of abstinence from heroin self-administration between 

adolescent- and adult-onset rats. They found no induction of Fos in adolescent-onset 

rats, while adult-onset rats showed significant induction of Fos in mPFC during heroin 

seeking. These data highlight the potential role of mPFC, a brain area that undergoes 

significant anatomical and functional changes during adolescence (Ernst et al., 2006; 

Spear, 2000; Tseng and O’Donnell, 2007), in mediating drug seeking behavior after 

adolescent-onset drug self-administration. In a more recent study from the same group (Li 
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et al., 2018a), Li et al. explored potential mechanisms underlying attenuated cue-induced 

reinstatement of cocaine seeking after adolescent-onset self-administration and they found 

that Arc and brain-derived neurotrophic factor (BDNF) gene expression in PFC and nucleus 

accumbens (NAc) were overall higher in adolescent-onset than adult-onset rats, suggesting 

the protective role of Arc and BDNF in adolescent-onset rats against future drug seeking 

in adulthood. However, these data above are correlational and further functional studies are 

needed to test causality.

All animal studies described in this section focused exclusively on males. As mentioned 

above, sex is an important biological factor in incubation of craving and adolescence 

is indeed the period that animals develop sexual maturity (Spear, 2000). Therefore, an 

important future direction is to take both sex and age into consideration (Kuhn, 2015) 

when examining the effect of biological factors on incubation of craving. Additionally, drug 

abuse in older population has been on the rise recently (Chhatre et al., 2017; Lehmann 

and Fingerhood, 2019), but largely ignored previously in clinical and preclinical studies. It 

would be interesting to examine how the effect of aging on incubation of craving in future 

studies.

2.3. Genetic factors

Genetic prediction efforts in SUD are difficult because of its polygenic, heterogeneous, 

and multifactorial nature that is heavily influenced by environmental factors (Ducci and 

Goldman, 2012).

While twin studies suggest that SUD is highly heritable (Agrawal and Lynskey, 2008), only 

a few genome-wide associations (GWAS) and robust candidate genes studies support genetic 

heritability of SUD. Among them the most convincing are the polymorphism that affects 

acetaldehyde and aldehyde dehydrogenases (which influence alcohol metabolism) (Hurley 

and Edenberg, 2012) and variants of nicotinic acetylcholine receptor subunit (α5, α3, and 

β4 subunits) (Bierut et al., 2008; Morrow and Flagel, 2016).

It is currently unknown whether specific genes contribute to incubation of craving, but some 

evidence suggest that genetic factors modulate craving intensity. The alcohol-dependent A 

allele carriers in the alcohol dehydrogenase gene cluster reported increased alcohol craving 

and higher alcohol consumption relative to the group of alcohol-dependent individuals 

homozygous for the C allele (protective factor), which displayed craving values like the 

control group. Notably, follow-up data indicated that A allele carriers relapsed earlier to 

heavy drinking compared with individuals with two C alleles (Bach et al., 2019). To 

a similar extent, the CHRNA5-A3-B4 haplotypes were significantly associated to higher 

nicotine craving and relapse likelihood relative to control patients (Baker et al., 2009).

3. Environmental factors modulating incubation of drug craving

3.1. Sleep architecture

3.1.1. Behavioral findings (Fig. 2A and Fig. 2C)—In 1883, Emil Kraepelin noted 

that abnormal sleep patterns and mental health are intrinsically linked (Kraepelin, 1883). 

This observation gained empirical support from studies that highlighted the connections 
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between disruption to sleep/circadian rhythms and psychiatric disorders (Wulff et al., 2010). 

Regarding SUD, human data suggest that drugs of abuse have acute adverse consequences 

on sleep/circadian rhythms that persist during chronic drug use and are further exacerbated 

during abstinence (Hasler et al., 2012). Noteworthy, it has been speculated that sleep 

disturbances during protracted abstinence may lead to an exacerbated drug craving which in 

turn may foster drug relapse and, in doing so, nurture the vicious cycle of SUD (Roehrs et 

al., 2004; Teplin et al., 2006).

A recent study by Chen et al. (2015), addressed this general question and more specifically 

asked how sleep can modulate incubation of cocaine craving. The authors first characterized 

longitudinal alterations in the sleep architecture [non-rapid eye movement (NREM) and 

rapid eye movement (REM)] after withdrawal from cocaine self-administration. The authors 

showed that after protracted abstinence from cocaine self-administration, rats exhibited 

a reduction in NREM and REM sleep stages, as well as increased sleep fragmentation 

(repetitive short interruptions of sleep). These findings are particularly relevant from a 

translational perspective because they mirror the clinical observations in polysomnography 

studies in people with cocaine use disorder (Kowatch et al., 1992; Valladares and 

Irwin, 2007). In addition, the authors demonstrated a causal relationship between sleep 

architecture and craving by experimentally manipulating sleep architecture after withdrawal 

from cocaine. This manipulation increased the incubation of drug craving. The authors 

then applied a sleep restriction (SR) procedure during the withdrawal phase to improve 

the quality of sleep and in an attempt to attenuate incubated cocaine craving. The SR 

procedure was originally developed by Arthur Spielman et al. (1987) as a treatment for 

patients suffering from chronic insomnia and is designed to eliminate prolonged nighttime 

awakenings while not affecting the actual sleep time.

This manipulation preferentially increased daily REM sleep during the light phase without 

altering the total amount of NREM and REM and total sleep. As expected, exposing rats to 

this procedure between abstinence days 22–42 prevented the incubated cue-induced cocaine 

seeking on abstinence day 45. These results, unraveled through a rodent model of drug 

craving, have several important implications for the role of sleep in individuals with SUD. 

First, they elucidated the dynamic interplay between sleep, cocaine craving and drug relapse. 

Abnormalities in sleep timing and sleep architecture play a critical role in cocaine relapse 

by expediting the development of the incubation of cocaine craving. Second, these findings 

support the translational potential of sleep-based interventions in the prevention of cocaine 

relapse. Furthermore, they suggest that an individual’s sleep architecture may be used as a 

marker for the early detection of cocaine relapse. Consistent with the findings by Chen et al. 

(2015), several studies have reported that REM sleep disturbances (shortened REM latency, 

high REM percentages, high REM density) in individuals with alcohol use disorder predict 

the likelihood of relapse (Roehrs and Roth, 2001). Furthermore, a recent study in individuals 

with cocaine use disorder revealed that REM time during protracted abstinence is positively 

correlated with better clinical outcomes and negatively correlated with the amount of drug 

use (Angarita et al., 2014). Importantly, the work by Chen et al., emphasizes the mechanistic 

connection between sleep disturbances and cocaine craving. However, it should be noted 

that sleep is a highly complex state originating from the dynamic interactions between the 

circadian systems and a homeostatic drive that increases during wakefulness (Hasler et al., 
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2012). Chronic cocaine use interferes with this complex system of sleep/circadian cycles by 

disrupting the delicate balance among several brain regions, neurotransmitter systems and 

modulatory hormones. Specifically, while Chen et al., demonstrated that sleep can causally 

affect cocaine craving in a rat model, which itself could be a primary reason for loss 

of sleep in individuals with SUD, particularly during protracted abstinence, an alternative 

explanation may be that sleep disturbances (due to pre-existing circadian disturbances) 

exacerbate cocaine craving and drive subsequent drug use.

3.1.2. Neurobiological findings (Fig. 3)—Chen et al. (2015) explored the 

Ca2+-permeable AMPA receptors (CP-AMPARs; also called GluA2-lacking AMPARs) 

accumulation, a key adaptation occurring in the NAc in late abstinence (Loweth et al., 2014), 

as a putative molecular link through which sleep may influence cocaine craving and relapse. 

Compared with Ca2+-impermeable AMPARs (CI-AMPARs; also called GluA2-containing 

AMPARs) CP-AMPARs exhibit calcium permeability, higher conductance, and inward 

rectification due to voltage-dependent block by endogenous polyamines. Thus, recruiting 

CP-AMPARs into synapses potentiates synaptic strength (Cull-Candy et al., 2006; Isaac et 

al., 2007). Previous evidence showed that incubation of cocaine craving is accompanied 

by an accumulation of CP-AMPARs in NAc synapses and that NAc injection of Naspm, 

a selective antagonist of CP-AMPARs, blocked the incubation of cocaine craving (Conrad 

et al., 2008). Drawing on this line of enquiry, Chen et al. used slice electrophysiology and 

showed that sleep intervention bi-directionally regulates CP-AMPARs in NAc at the late 

abstinence time points. Specifically, the SR manipulation during the dark phase (leading 

to improved REM sleep) between abstinence day 22–42 decreased accumulation of CP-

AMPARs in NAc on abstinence day 45. Conversely, the sleep fragmentation manipulation 

between abstinence days 11–17 facilitated accumulation of CP-AMPARs in the NAc on 

abstinence day 21, when accumulation of CP-AMPARs is yet to emerge (Wolf and Tseng, 

2012). Taken together with previous demonstration on the critical roles of CP-AMPARs 

in incubation of cocaine craving, the authors’ findings suggest the accumulation of CP-

AMPARs in NAc as a potential mechanism underlying behavioral effects of sleep on 

incubation of cocaine craving.

3.2. Enrichment and physical exercise

3.2.1. Behavioral findings (Fig. 2A and Fig. 2C)—Environmental Enrichment (EE) 

is a preclinical procedure for animals in captivity achieved by increasing the complexity 

of their living environment (Solinas et al., 2021). EE groups are housed in large cages 

(up to 10 times the size of normal cages) with several objects changed out frequently. 

In some preparations, running wheels are available, however this introduces a potential 

confound as physical exercise itself produces some of the beneficial effects of enrichment 

(Solinas et al., 2021). The final aim of EE is to increase the animal well-being. EE provides 

enhanced sensory, cognitive, and motor stimulation. These specific aspects led to the 

hypothesis that an enriched environment can be beneficial in alleviating several psychiatric 

and neurodegenerative disorders (Laviola et al., 2008), although is still matter of debate 

which features constitute an enriched environment in humans (Kuhn et al., 2017).
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Consistently, a wealth of preclinical studies suggest that EE increases resistance to acquire 

drug taking and prevents drug relapse (Solinas et al., 2010). Regarding the application of 

the EE procedure during the abstinence phase, two studies (Thiel et al., 2012, 2010) found 

a reduced “incubated” cocaine craving in rats housed in large cages equipped with toys and 

social partners relative to isolated controls (Thiel et al., 2010). A third study by Chauvet 

et al. (2012) confirmed the anti-incubation of craving effect of EE, but also revealed its 

transitory effect. Indeed, when the EE was discontinued (for 30 days), the protective effects 

of EE on incubation of cocaine craving was not evident.

Two more studies focused anti-craving effects of exercise, an enriching activity noted above. 

Controlled laboratory studies in humans have demonstrated that aerobic exercise decreased 

alcohol (Ussher et al., 2004), nicotine (Daniel et al., 2004; Prapavessis et al., 2014) and 

cannabis (Buchowski et al., 2011) craving and preclinical animal model have shown that 

voluntary wheel running decreased cue-induced cocaine-seeking behavior (Lynch et al., 

2010; Thanos et al., 2013). Concerning incubation of cocaine craving, Zlebnik and Carroll 

(2015) found a robust incubated cocaine craving in female rats with access to a locked 

running wheel but not to an unlocked running wheel (day 30 vs day 3), indicating that 

incubation of cocaine seeking was suppressed following access to exercise for 30 days. 

A second study by Beiter et al. (2016) manipulated the timing of the availability of 

physical exercise and found that exercise applied during early abstinence (days 1–7) robustly 

attenuated subsequent cocaine seeking (day 15). In contrast, physical exercise during late 

abstinence (days 8–14) was not effective and these animals displayed high levels of cocaine 

seeking similar to that observed in sedentary animals. These results are relevant because, 

both in humans and rodents, certain exercise conditions enhance rather than decrease SUD 

related behaviors. This could mean that biological factors are critical (Beiter et al., 2016; 

Terry-McElrath et al., 2011; Zlebnik et al., 2014). To sum up, these findings support the 

translational potential of a healthier life/environmental context-based interventions in the 

prevention of drug relapse. However, at least using the approaches reported thus far, the 

anti-craving effect of physical exercise and EE appear to be transient.

Solinas et al. (2010) argued that EE and exercise are reinforcing. We speculate that EE 

or physical exercise decreases cocaine seeking by acting as an alternative and competing 

non-drug reinforcer. This is an intriguing hypothesis that deserve to be investigated. A 

possibility would be by exposing rats to a discrete, mutually exclusive, choice procedure 

between EE (or physical exercise) and the drug.

3.2.2. Neurobiological findings (Fig. 3)—At the neural level, EE is typically 

associated with increased: 1) dendritic branching, 2) dendritic spines, 3) hippocampal 

neurogenesis and 4) the integration of these newly born cells into functional circuits 

(Greenough and Volkmar, 1973; Kempermann et al., 1997; Nithianantharajah and Hannan, 

2006). As previously reported, Thiel et al. found a reduced “incubated” cocaine craving 

in rats housed in large cages equipped with toys and social partners relative to isolated 

controls (Thiel et al., 2010). Importantly, by manipulating the length of the exposure to the 

EE the authors found that short exposure (1 day) to EE, but not long (28 days), increased 

the level of BDNF in the hippocampus. In contrast, long exposure to EE, but not short, 

prevented central amygdala (CeA) extracellular signal–regulated kinases (ERK) activation at 
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late abstinence test day (Thiel et al., 2012). These findings are particularly relevant because 

other findings support the hypothesis that ERK might drive cue-induced enhancement of 

excitatory neurotransmission by AMPAR insertion into cell membranes (Wolf, 2016). These 

data further suggest that EE, by attenuating the time-dependent increased sensitivity of 

the CeA, recently implicated in incubation of methamphetamine craving after forced and 

voluntary abstinence (Li et al., 2015c; Venniro et al., 2017a), promote the attenuation of 

drug craving. In support of this hypothesis an earlier study by Thiel et al. (2010) found 

that EE inhibits incubated cocaine craving and associated Fos expression in CeA after 30 

abstinence days. A similar counter-adaptation was observed by Powell et al. (2020) which, 

using an RNA-seq in the NAc shell, found that the EE-mediated reduction of incubated 

cocaine craving correlate with a differential regulation of several signaling pathways (which 

include synaptogenesis and neurogenesis pathways) in isolated versus enriched forced 

abstinence. Finally, Ma et al. (2016) found that after cocaine abstinence and subsequent 

maturation of silent synapses by recruitment of CP-AMPARs (Wolf, 2016), the basolateral 

amygdala (BLA) to NAc projection (Lee et al., 2013) became highly resistant to EE (8 

days EE exposure; in this specific experiment rats were single housed in environmentally 

enriched cages). Indeed, the authors found that in cocaine-exposed rats, 1) silent synapses in 

the EE group remained at low levels and 2) that Naspm sensitivity of BLA to NAc synapses 

remained high in the EE group relative to controls. These findings suggest that EE only 

partially affected the “incubated” synapses. Notably, the authors, by combining EE with an 

optogenetic long-term depression protocol (LTD) to the BLA to NAc projection in vivo, 

decreased persistently incubated cocaine craving via a mechanism hypothesized to promote 

the insertion of Ca2+-impermeable-AMPARs.

3.3. Acute and chronic stress

3.3.1. Behavioral findings (Fig. 2A and Fig. 2C)—Stressor exposure initiates a 

complex set of neuronal, endocrine and behavioral responses that prepare an organism 

to cope with this perturbation in homeostasis. Although initiation of these stress 

responses is typically adaptive, their persistent or inappropriate activation is linked to the 

pathophysiology of several psychiatric disorders (Bangasser and Valentino, 2014). As far 

as SUD is concerned, exposure to stress is associated with increase in craving in drug 

dependents (Sinha, 2001) and in susceptibility to relapse to drug use (Mantsch et al., 2016; 

Shaham et al., 2000; Stewart, 2000). Most of the pre-clinical literature describes results 

from studies using the reinstatement model following extinction of drug-seeking behavior. 

Acute foot-shock reinstates seeking for heroin (Shaham and Stewart, 1995), cocaine (Erb et 

al., 1996), alcohol (Le et al., 2005), methamphetamine (Shepard et al., 2004) and nicotine 

(Buczek et al., 1999). Among other stressors, acute food deprivation reinstates cocaine 

(Highfield et al., 2002; Shalev et al., 2003) and heroin seeking (Shalev et al., 2001b), while 

both quinine (Twining et al., 2015) and cold swim stress (Conrad et al., 2010) induce 

reinstatement in rats trained to self-administer cocaine. Reinstatement can also be elicited 

through pharmacological stressors: yohimbine, the most widely studied, was effective on 

cocaine (Feltenstein and See, 2006), methamphetamine (Shepard et al., 2004), alcohol (Le et 

al., 2005) and nicotine seeking rats (Feltenstein et al., 2012), although its stress-like effect 

has been recently challenged (Chen et al., 2014).
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In a variation of the reinstatement model, in which the concept of incubation of craving 

started to take shape, Shalev et al. (2001a) showed time-dependent changes in stress-induced 

heroin seeking. With extinction and footshock-induced reinstatement conducted in the same 

daily session, maximal reinstatement was in fact present on day 6 and day 12 of forced 

abstinence with negligible drug seeking on day 1. Since then, only a few studies have 

directly tested the effect of stress on the incubation of craving. Using food restriction as the 

stressor, the Shalev group demonstrated that chronic (14 days) restriction during abstinence, 

but not acute food deprivation, enhances heroin seeking post-abstinence in both male and 

female rats (D’Cunha et al., 2013; Sedki et al., 2015). The Loweth group (Glynn et al., 2018; 

Munshi et al., 2021) instead explored the phenomenon adopting both acute and chronic 

restraint procedures during abstinence from cocaine self-administration. In this model, rats 

are placed in a restraint hemicylinder for 20 min once a day for 5 consecutive days, then 

for 2 more days following a 2-day break. The study showed that while acute restraint was 

ineffective, rats exposed to the 1-week chronic restraint during early abstinence showed a 

greater incubation effect on day 15 compared to unrestricted controls. This regimen did not 

affect the long-term incubation of craving (day 48). The effect of chronic restraint stress 

on incubation of cocaine craving was not replicated in another study (Ball et al., 2018). It 

should be noted, though, that there are important methodological differences between the 

studies, including the short vs long access drug self-administration and the different length 

and schedule of the daily restraint sessions.

Finally, to study the incubation of opioid craving under conditions that more closely 

resemble voluntary abstinence in humans, Fredriksson et al. (2020) introduced the electric 

barrier-based abstinence model. In this experimental procedure, rats were first trained to 

self-administer oxycodone. Rats were then required to cross an electrified grid floor to reach 

and press the lever for drug infusions, mimicking the stressful contingencies often associated 

with drug seeking in humans. The electric barrier-induced voluntary abstinence potentiated 

the incubation of craving on day 15 and day 30 compared to rats maintained in forced 

abstinence. This study highlights the importance of incorporating voluntary abstinence 

protocols in animal models of drug seeking, achieved in this specific case by introducing 

adverse consequences to drug seeking.

3.3.2. Neurobiological findings (Fig. 3)—To investigate the neurobiological 

mechanisms driving chronic stress-induced acceleration of incubation of craving, Munshi et 

al. (2021) focused on the BLA. Indeed, previous studies have shown that repeated restraint 

stress exposure increases neuronal excitability in the BLA of adult male rats (Rosenkranz et 

al., 2010). The authors found that repeated restraint stress during early abstinence produced 

an additive enhancement in the firing rate of BLA already increased following cocaine 

craving incubation alone. This is consistent with a possible role for the BLA-NAc pathway 

in driving cue-induced cocaine seeking during abstinence (Lee et al., 2013) and confirms a 

critical role for stress as an underlying contributor to relapse.

In fact, a wealth of human literature has identified dysregulation of the stress responses 

in individuals with SUD on a variety of drugs of abuse (Adinoff et al., 1991; Kreek 

and Koob, 1998). Persisting into abstinence from the drug, these could contribute to the 

pathophysiology of craving and vulnerability to relapse (Karoly and Hutchison, 2012). A 
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few papers have therefore used pharmacological manipulations to assess whether toning 

down stress signals interferes with the phenomenon of incubation of craving. As antagonism 

of the CRF receptor 1 (CRFr1) seems to attenuate the behavioral expression of withdrawal 

from opioids (Iredale et al., 2000), reinstatement of opioid conditioned place preference (Lu 

et al., 2000) and drug seeking following forced abstinence (Erb et al., 1998; Shaham et al., 

1997). Martin et al. (2021) extended these findings to the incubation of fentanyl craving. 

A CRFr1 antagonist injected in the bed nucleus of the stria terminalis (BNST) blocked 

the development of incubation of craving for fentanyl measured on day 30 of abstinence. 

In a second experiment, adopting a procedure to make rats opioid-dependent post self-

administration, the same treatment did not differentially affect dependent and nondependent 

rats. In this case, however, no incubation of craving was evident. More recently, instead, 

chronic oxytocin administered in early abstinence inhibited the development of incubation 

of craving in rats with a history of long access to methamphetamine (Everett et al., 

2021). Given the putative role for the oxytocin system in both stress regulation (Nylander 

and Roman, 2012) and susceptibility to develop SUD (Baracz et al., 2020), a possible 

modulatory action of this peptide in the emotional control of relapse to methamphetamine 

could be speculated, purportedly through inhibitory activity within the CeA (Li et al., 

2015c).

Expanding the set of experiments here presented may help interpret the (as yet limited) 

human literature where cue-induced craving incubates over time whilst baseline reported 

craving and withdrawal symptoms show a time-dependent decrease (Bedi et al., 2011; 

Li et al., 2015a). A history of exposure to a drug could perhaps selectively increase 

the vulnerability to cues by inducing rapid “phasic” stress that CRFr1 antagonists could 

therapeutically target, while the “tonic” level of stress inherent to a forced abstinence from 

a drug, decreases as withdrawal signs/symptoms subside. It should be noted though, that 

two human translational medicine studies reported negative results in patients with alcohol 

use disorder on the effect of the CRFR1 antagonists verucerfont and pexacefront on alcohol 

craving and relapse (Kwako et al., 2015; Schwandt et al., 2016).

Finally, Fredriksson et al. (2020) tested the effect of the dopamine stabilizer (-)-OSU6162 on 

incubation, using an electric barrier-based abstinence procedure. Females were less sensitive 

to the systemic administration of (-)-OSU6162, while incubation of oxycodone craving in 

male rats after either forced or voluntary abstinence was dose-dependently decreased by the 

treatment. Notably, this effect is in line with previous results where (-)-OSU6162 attenuated 

alcohol craving in preclinical (Fredriksson et al., 2019) and clinical studies (Khemiri et al., 

2015).

3.4. Abstinence reinforcement procedures

For people with SUD, abstinence can be promoted by providing access to alternative 

nondrug rewards (e.g., vouchers, participation in support groups and job training) in 

exchange for drug-free tests. For humans, this knowledge is incorporated into treatments 

such as the contingency management and the community reinforcement approach (Aklin et 

al., 2014; Azrin et al., 1996; Higgins et al., 2004; Preston et al., 2002; Silverman et al., 

2012). From a translational perspective, choice procedures are well-suited to capture this 
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critical aspect of human SUD (Ahmed, 2018; Fredriksson et al., 2021; Venniro et al., 2020a, 

2016, 2019a). In monkeys and rodents, drug self-administration in a choice procedure is 

reliably decreased by palatable food reward (Cantin et al., 2010; Caprioli et al., 2015; Lenoir 

et al., 2007; Spragg, 1940) or social rewards (Venniro et al., 2020b; Venniro and Shaham, 

2020; Venniro et al., 2018). Below we describe and discuss recent findings using these two 

models.

3.4.1. Food-based model

3.4.1.1. Behavioral findings (Fig. 2A and Fig. 2C).: The food choice-induced abstinence 

model (Caprioli et al., 2015) can be used to study drug relapse and mimic some aspects 

of contingency management in which small prizes or monetary vouchers can maintain 

abstinence for many months. Notably, when contingency management is discontinued, 

humans often relapse to drug use (Higgins et al., 2004; Preston et al., 2002). Based 

on the above-mentioned ‘translational’ considerations, Caprioli et al. (2015) showed that, 

independently of training conditions [i.e., drug escalation (Ahmed and Koob, 1998) or 

DSM-IV-based rodent SUD models (Deroche-Gamonet et al., 2004)], food-sated male rats 

voluntarily abstain from methamphetamine. This is because of their preference to palatable 

pellets over methamphetamine in a mutually exclusive choice procedure. However, once the 

contingencies with the alternative nondrug reward was discontinued, rats showed reliable 

incubation of methamphetamine craving. In a follow-up study, Venniro et al. (2017b) 

extended the food choice-induced voluntary abstinence model to female rats reporting 

no sex differences in either the choice procedure or incubation of methamphetamine 

seeking. However, the food choice-induced voluntary abstinence prevented the emergence of 

incubation of heroin seeking in both male and female rats. In a recent paper, Reiner et al. 

(2020), showed that this effect generalizes to the synthetic opioid fentanyl.

3.4.1.2. Neurobiological findings (Fig. 3).: In an initial study, Caprioli et al. (2015) 

showed that the novel mGluR2 positive allosteric modulator, AZD8529 (Justinova et al., 

2015), decreased incubated methamphetamine seeking after forced or food-based voluntary 

abstinence. Subsequently, using a variety of approaches including RNAscope, classic 

pharmacology and chemogenetic Daun02 inactivation with transgenic Lac-Z rats (Koya et 

al., 2009), Caprioli et al. (2017) showed the role of selectively activated neuronal ensembles 

in the dorsomedial striatum (DMS) in mediating incubation of methamphetamine craving 

after food choice-induced voluntary abstinence. These findings extend also to the ventral 

striatum. Rossi et al. (2020) showed that incubation of methamphetamine seeking after food 

choice voluntary abstinence is mediated by dopamine transmission through Drd1 and Drd2 

in NAc core but not shell.

Using the same model, Venniro et al. (2017a) showed the critical role CeA Drd1- 

(but not Drd2)-mediated transmission in relapse to methamphetamine seeking after food 

choice-induced voluntary abstinence. Furthermore, using anatomical tracing approaches 

in combination with electron microscopy, in vitro electrophysiology, and chemogenetic 

manipulations the same authors demonstrate the unique role of the monosynaptic 

glutamatergic projection from the anterior ventral insular cortex (AIV) to CeA 
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(preferentially the lateral part) for relapse to methamphetamine seeking after discontinuation 

of successful food choice-induced voluntary abstinence.

Finally, Reiner et al. (2020) showed the critical role of orbitofrontal cortex (OFC), 

Piriform cortex (Pir) and AIV in relapse to fentanyl seeking after food choice-induced 

voluntary abstinence in both male and female rats. Additionally, the same authors found 

that anatomical disconnection of Pir from OFC decreased fentanyl relapse after voluntary 

abstinence identifying a role of Pir-OFC projections in relapse to fentanyl seeking after 

food-induced abstinence.

3.4.2. Social-based model

3.4.2.1. Behavioral findings (Fig. 2A and Fig. 2C).: The quality of the social context 

and the emotional valence of the social experience have a profound impact on mental health 

and illness (Cohen, 2004). Accordingly, social epidemiological evidences support a strong 

connection between the severity of SUD and social interaction (Berkman and Kawachi, 

2000). In humans, triggers of relapse are often negatively valanced social experiences 

such as bullying, physical attack, or problems associated with a low socioeconomic 

status (Havassy et al., 1991; Sinha et al., 2011). Despite the robustness of these clinical 

findings, and the abundance of preclinical animal models that enquire the neurobiological 

underpinnings of social interactions on drug relapse, very few studies investigated their 

interaction [for a few exceptions refer to (Heilig et al., 2016; Mantsch et al., 2016; Miczek 

et al., 2008)]. A possible reason for why more research is not being done on this topic 

is the large inconsistency of the findings (Miczek et al., 2008; Neisewander et al., 2012). 

Indeed, studies investigating the relationship between early or late maternal separation, 

social defeat and social subordination on drug self-administration vary as a function of the 

species employed, the procedure adopted and the drug under investigation.

To the best of our knowledge, no preclinical studies investigated the impact of social 

stressors on time-dependent changes in cue-induced drug seeking. Refer to Section 3.3 for 

time-dependent changes in footshock-stress-induced reinstatement.

Positively-valanced social experiences can have a protective and restorative effects over drug 

relapse (Havassy et al., 1991). For humans this is because social interactions, like other 

rewards, can generate a positive feeling [for review (Trezza et al., 2011) also refer to (Heilig 

et al., 2016; Miczek et al., 2008; Neisewander et al., 2012)]. Additionally, ideal treatments 

for SUD should promote a reallocation of behavior towards nondrug activity (Banks and 

Negus, 2017). In humans, these activities have intrinsic social components (Pickard, 2012, 

2017; Stitzer et al., 2011). To implement these translational aspects in the current animal 

models of drug relapse, Venniro et al. (2018) developed a social choice procedure showing 

that rats strongly prefer social interaction over drugs (either psychostimulant or opioids), and 

that this effect was independent of “DSM-IV-based addiction score” [numbers of addiction-

like behaviors as in (Deroche-Gamonet et al., 2004)], dose, self-administration procedure, 

housing conditions (single versus paired housing), sex, and duration of social housing 

(Venniro et al., 2020b, 2018). Surprisingly, social choice-induced voluntary abstinence 

prevented incubation of methamphetamine craving, even one month after the last social 

choice session housing (Venniro et al., 2018). In a follow-up study, Venniro et al. (2021) 
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showed that social choice-induced voluntary abstinence is protective against incubation 

of cocaine craving after either prolonged (12 h/d) or intermittent (5 ON – 25 OFF x12 

h/day) access to cocaine self-administration. Additionally, Venniro et al. (2019b) showed 

that incubation of heroin craving is reduced (relative to the reliable heroin incubation 

observed after forced abstinence) after social choice-induced voluntary abstinence. The 

reasons for this dissociation between the drug type are unknown. Venniro et al. (2019b) We 

speculate that the different effect of social choice on incubation of methamphetamine versus 

heroin craving may be due to the differential impact of social interaction on dissociable 

behavioral and brain mechanisms controlling opioid versus psychostimulant reward and 

relapse (Badiani et al., 2011; Caprioli et al., 2009, 2008; 2007; Celentano et al., 2009; De 

Luca et al., 2019; De Pirro et al., 2018; Paolone et al., 2007).

3.4.2.2. Neurobiological findings (Fig. 3).: Why does social choice-induced abstinence 

prevent incubation of methamphetamine craving? To explore a possible mechanistic 

explanation, Venniro et al. (2017a) examined the role of CeA which is involved in 

incubation of drug craving after forced abstinence (Li et al., 2015c) and in drug 

seeking after food-choice-induced voluntary abstinence. The reported correlational data 

demonstrating that the protective effect of social choice-induced abstinence on incubation of 

methamphetamine seeking was associated with activation (assessed by Fos) of inhibitory 

protein kinase-Cδ (PKCδ)-expressing neurons in central lateral amygdala (CeL) and 

decreased activity of output neurons in central medial amygdala (CeM). In contrast, the 

strong incubation of methamphetamine seeking after forced abstinence was associated with 

activation of CeL-expressing somatostatin (SOM) neurons and CeM output neurons. In a 

subsequent study, Venniro et al. (2020b) determined the causal role of CeL PKCδ and 

SOM in inhibition of incubation of methamphetamine seeking after social choice-induced 

abstinence and expression of incubation of drug seeking after homecage forced abstinence, 

respectively. For this purpose, the authors developed short-hairpin RNAs against PKCδ 
or SOM and, using immunohistochemistry and in slice electrophysiology, they validated 

the knockdown efficacy of the viruses. In the behavioral experiments, the authors found 

that viral knockdown of PKCδ enzyme in CeL decreases Fos in CeL PKCδ-expressing 

neurons, increases Fos in CeM output neurons, and reverses the inhibitory effect of 

social choice-induced abstinence on incubation of methamphetamine seeking. In contrast, 

viral knockdown of SOM CeL injections decreased Fos in CeL SOM-expressing neurons, 

decreased Fos in CeM output neurons, and decreased incubation after forced abstinence. 

Questions for future research are whether PKCδ and SOM long projections play a causal 

role, or what afferent and efferent CeL projections contribute to this protective effect.

4. Nondrug rewards and incubation of craving (Fig. 1A and Fig. 1C)

Incubation of craving occurs for non-drug rewards. Thus far, many studies have focused on 

sucrose in rats where incubation occurs for responding for sucrose cues or for sucrose itself 

[e.g., (Harkness et al., 2010)]. However, incubation of craving has also been reported for 

standard or high-fat food pellets (Darling et al., 2016; Dingess et al., 2017; McCue et al., 

2019), saccharin (Aoyama et al., 2014), and water (Grimm et al., 2012) (non-deprived rats). 
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See Grimm (2020) for a detailed review of these findings. Incubation of craving in response 

to a sucrose-associated discriminative stimulus was not observed (Madangopal et al., 2019).

There are translational implications for incubation of food craving. As with SUD, 

individuals with eating disorders experience intense cravings that precede diet recidivism 

(Boswell and Kober, 2016). Very recently in a clinical study, food craving (hunger) was 

found to incubate (Coutinho et al., 2018). It is therefore possible that for some individuals, 

the ability to maintain a healthy food plan is compromised by incubation of craving for 

restricted foods.

There is also a basic science implication for the fact that there is generality of incubation of 

craving. It could be that incubation is a general phenomenon selected for, as it invigorates 

the saliency of rewards that have not recently been available (Lu et al., 2004a). For example, 

consider a valuable nutrient source that is only seasonally available. Over a period of 

unavailability, an increase in saliency of the nutrient (including saliency of cues that predict 

it) would more easily attract an individual should it become available again. Abstinence 

from drugs of abuse and palatable food likely recruit neuroadaptations in the circuitry 

that underlie this behavior but also in divergent circuits that underlie abstinence-dependent 

reward class specific effects, such as dysphoria that accompanies cocaine withdrawal (Haake 

et al., 2019).

A handful of laboratory studies have explored the behavioral and neurobiological substrates 

of incubation of food craving with focus on a critical role for motivational processes and 

mesocorticolimbic dopamine signaling. These results may eventually yield a consensus of 

what incubation of craving “is” or “isn’t” possibly for both incubation of drug and food 

craving. For example, incubation of sucrose craving following prolonged abstinence is not 

reduced by overnight devaluation of sucrose with satiation (Haake et al., 2019; Harkness 

et al., 2016) nor with punishment during abstinence (Krasnova et al., 2014). However, 

incubation is blocked by devaluation of sucrose with illness (LiCl) only if that devaluation 

occurs in the days immediately prior to testing (Harkness et al., 2016). From these studies, 

it is apparent that re-evaluation of the reinforcing value of sucrose is still possible after 

prolonged abstinence with illness pairing (LiCl results) and perhaps behavioral contrast 

(EE, see below) but not with sucrose itself or with punishment. These findings indicate 

that treating sucrose craving with sucrose itself will not satisfy incubated sucrose craving. 

Furthermore, only some types of negative re-valuation of sucrose reduce incubated sucrose 

craving. Future studies may reveal whether incubation of drug craving has similar features.

The literature examining incubation of craving of non-drug rewards is smaller than for drug 

rewards and there are several questions that have only begun to be examined or have not 

yet been explored with non-drug rewards. The impact of age has received some attention. 

Counotte et al. (2014) identified age of sucrose self-administration onset specific effects: 

onset in young adolescence (postnatal day 35, P35) did not result in incubation over 21 

days of forced abstinence, while incubation was observed if onset was in adolescence (P42) 

or early adulthood (P70). Thus far there are no reports of sex, age, sleep, withdrawal 

factors, chronic stress, or priming and stress-induced incubation of non-drug craving. Sex-

related effects are currently being evaluated (e.g., Grimm lab) for incubation of sucrose 
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craving. In addition, there are only a handful of studies that directly compare incubated 

drug with non-drug craving. Hopefully, the other factors listed here will be evaluated 

in future studies, either side-by-side with studies of incubation of drug craving or as 

stand-alone studies. Below are relevant findings related from evaluation of environmental 

factors including EE and social housing (social factor). This is followed by a brief review 

of neurobiological (behavioral pharmacology and molecular biology correlation studies) 

evaluation of incubation of sucrose craving in rats including findings reported from studies 

using incubation of food craving as a comparison (or control) in neurobiological studies of 

incubation of drug craving or as stand-alone investigations into incubation of food craving.

4.1. Enrichment (Fig. 2A and Fig. 2C)

As recently reviewed (Grimm, 2020), EE robustly decreases sucrose seeking in rats (Grimm 

et al., 2008) whether EE is provided for the duration of 4 weeks of abstinence (chronic 

EE) or if it is provided overnight (acute EE) in either early or late abstinence (Grimm 

et al., 2013). Either chronic EE or acute EE just before testing on day 30 of abstinence 

reduces sucrose seeking (and taking, the next day) to levels similar to non-enriched rats 

in the first days of abstinence (Grimm et al., 2013). The effect of EE on cue-reactivity is 

similar to that observed with rats with history of cocaine self-administration (Thiel et al., 

2012) and could be interpreted as EE blocking incubation of craving. That being stated, 

EE-reduced responding on day 30 of abstinence is greater than EE-reduced responding on 

day 1 of abstinence (although both are less than day 1 controls) so there is still incubation of 

responding occurring, albeit extremely reduced from control conditions. Factors that mediate 

the EE effect on sucrose seeking and taking have been parametrically evaluated in some 

detail. For acute EE, novelty, a social partner, and the enrichment cage all reduce sucrose 

seeking, but being in the enrichment cage with or without conspecifics is most potent. 

For chronic EE, the enrichment cage itself was again most critical. Surprisingly, chronic 

housing with a conspecific did not robustly decrease subsequent sucrose seeking (Grimm et 

al., 2013). One working hypothesis for why EE reduces craving is by creating a negative 

behavioral contrast between the EE and the self-administration context (Grimm et al., 2019).

4.2. Parametric considerations

While the incubation of food caving is a robust phenomenon in several laboratories, there 

are reports of not finding incubation of food craving in rats (Jones et al., 2008; Noye Tuplin 

et al., 2018; Xi et al., 2013) and, as yet, incubation of food craving has not been observed 

in mice (Nugent et al., 2017). Several factors might contribute to this, requiring parametric 

evaluation within a laboratory. For example, food deprived animals will likely have higher 

response rates for food during training and this could elevate responding in early abstinence. 

Higher response rates could also be due to the reinforcement schedule (e.g., variable interval 

vs. fixed ratio), age of subjects, type of food reward, amount of handling, and housing 

conditions. As an example of parametric evaluation, Terrier et al. (2016) found in mice 

that by increasing the dose of cocaine self-administered during training, response rate was 

decreased. This manipulation led to lower responding on day 1 of abstinence followed by 

incubation on day 30. The importance of measuring reliable incubation for food is especially 

critical in studies comparing drug vs non-drug incubation of craving.
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4.3. Neurobiology of incubation of food craving (Fig. 4)

4.3.1. Pharmacology of dopamine—SCH 23390 (dopamine D1 antagonist) blocked 

incubated sucrose craving, but only at a dose 25X higher than necessary to reduce sucrose 

seeking in early abstinence (Grimm et al., 2011). This incubation aspect was not mediated 

by the NAc core or shell as there was no abstinence-dependence to the anti-craving effect of 

SCH 23390 when administered directly to these brain regions (Grimm et al., 2011).

4.3.2. Pharmacology of opiates—Naloxone (opiate antagonist) blocks incubated 

sucrose craving (Grimm et al., 2007).

4.3.3. Pharmacology of glutamate—LY379268 (mGluR2/3 agonist) blocks incubated 

sucrose craving (systemic and intra-CeA) (Uejima et al., 2007). Incubation of craving 

resembles the time-dependent increase in locomotor behavior described as psychostimulant 

sensitization (Kalivas et al., 1988). Indeed, incubated sucrose cue reactivity is accompanied 

by increased locomotor activity (Grimm et al., 2018). However, results thus far using 

behavioral pharmacology approaches have not confirmed an overlap between incubation 

and sensitization. For example, although there is an abstinence-dependent increase in 

dopamine D1 agonist enhanced sucrose cue-reactivity (Glueck et al., 2017) and a shift in 

dose-response of cocaine enhanced sucrose cue-reactivity (Grimm et al., 2006), the effects 

are dissociable from stimulant-induced locomotor activity.

4.3.4. Molecular biology—There are only a few studies correlating molecular markers 

with incubation of both drug and non-drug craving. In these, either there were no changes in 

analytes related to either drug or non-drug (e.g., (Grimm et al., 2002): cocaine vs sucrose, 

TH and DAT in mesolimbic terminals) or correlations reported were only between drug 

seeking and molecular changes. For example, BDNF levels in ventral tegmental area (VTA), 

NAc, and amygdala (AMY) incubate with cocaine craving but not sucrose (Grimm et al., 

2003). There is less potency of serotonin 2C receptor agonist (WAY 163909) to reduce 

incubated cocaine seeking, and mPFC serotonin 2C receptors are decreased with incubated 

cocaine, but not sucrose craving (Swinford-Jackson et al., 2016). There are also no changes 

in ventromedial prefrontal cortex glutamate or glutamate (microdialysis) associated with 

incubation of sucrose craving, but neurotransmitter overflow is correlated with incubation of 

cocaine craving (Shin et al., 2016).

In studies examining incubation of food craving specifically, there are reports both of 

absence and presence of molecular changes associated with incubation. For example, there 

was no change in cortical perineuronal net density related to incubation of sucrose craving 

(Slaker et al., 2016) nor were there associations between Fos immunohistochemistry and 

incubation of chocolate-flavored pellets craving in cortical regions in rats (Noye Tuplin and 

Holahan, 2019). In contrast, for sucrose craving, Fos IR (immunoreactivity) “incubated” 

in prelimbic, infralimbic, anterior cingulate, somatosensory cortices, dorsolateral striatum 

(DLS), core and shell of the NAc, and CeA (Grimm et al., 2016). There were also 

abstinence-dependent changes in DARPP32 signaling (phosphorylation at Threonine 34) 

in VTA, DLS and DMS, and OFC (Grimm et al., 2018). Finally, Counotte et al. (2014) 

reported incubation of sucrose craving associated with decreased AMPA/NMDA ratio in 
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NAc (in adult rats). With incubation of high-fat food, McCue et al. (2019) reported that 

knockdown of neuromedin U receptor 2 in the paraventricular nucleus of the hypothalamus 

prevents incubation of craving. Dingess et al. (2017) reported spine density changes in NAc 

and an increase in CP-AMPARs and CI-AMPARs.

To sum up, there are inconsistencies, in the neuroanatomical and neuroanatomical substrates 

of incubation of craving for drug and non-drug rewards. There are also many comparisons 

that have not yet been made. Future studies are required to discern whether these substrates 

are clearly distinguishable, or whether there is a common substrate that is further impacted 

itself, or by related neurocircuitry, affected by the pharmacological actions of drugs of 

abuse. A strong example of research aiming to define commonalities of incubation across 

rewards is a recent study from Roura-Martinez et al. (2019). In this study incubation of 

heroin, cocaine, and sucrose craving are compared using measures of several genes and 

related proteins and neurotransmitters in several mesocorticolimbic brain regions. Functional 

“mapping” revealed common and divergent circuits recruited for incubation of the rewards. 

A structure common to all was the CeA. This result is especially salient as the CeA was 

previously identified as being critical to incubation of drug craving [(Lu et al., 2005) and 

subsequent studies], CeA Fos incubates along with incubation of sucrose craving (Grimm et 

al., 2016), and intra-CeA mGluR2/3 agonist blocks incubation of both cocaine and sucrose 

craving (Lu et al., 2007; Uejima et al., 2007).

4.4. Summary

There are inconsistencies, thus far, in the neuroanatomical and neuroanatomical substrates 

of incubation of craving for drug and non-drug rewards. Future studies examining overlap 

in the neurobiology [e.g., (Roura-Martinez et al., 2019)] would be valuable, as would 

studies examining efficacy of potential psychotherapeutics or environmental manipulations 

aimed at reducing incubation of craving across rewards. These results would inform about 

the potential applications for treatments and also side-effects (e.g., a decrease in food 

appetite may be contraindicated for some patients). Even so, the incubation of craving for 

palatable foods has clear translational implications for diet recidivism. Further research on 

the incubation of food craving may yield novel treatment approaches for disordered eating 

that is associated with negative health outcomes such as obesity.

5. Concluding remarks

Drug craving is a dynamic, multidimensional construct of considerable value for predicting 

the longitudinal trajectory of SUD, and as such a potential target for treatment (Tiffany 

and Wray, 2012). The preclinical studies here reviewed illustrated the importance of using 

multiple animal models to better comprehend the biological and environmental determinants 

of the nature of craving over time (Venniro et al., 2018). This knowledge is essential for 

a timely comprehension of the neurobiological adaptations occurring in a given individual 

in a given environment during drug abstinence to estimate the subject’s vulnerability to 

relapse. In turn, we hope that this will allow forward translation of novel medications 

tailored to the environmental circumstances. A foreseeable option for their timely delivery 

comes from the mobile/ wearable technology, deployed by researchers to study substance 
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use “in the moment” (Burgess-Hull and Epstein, 2021), by monitoring both the individual 

and the environment, to better understand its causes and consequences. Indeed, mobile 

contingency management already includes technology to alert participants of the need for 

sample collection, to test samples, and to announce or deliver consequences [reviewed by 

Kurti et al. (2016)].

Our take home message is also consonant with the reverse translation strategy proposed by 

Venniro et al. (2020a) whose goal is to develop models that mimic successful treatments. 

The reverse translation approach capitalizes by the beneficial effect of contingency 

management, the community-reinforcement approach, environmental enrichment, physical 

exercise and insomnia interventions and provide an ecologically relevant platform from 

which to discover new circuits, test new medications and improve translation.
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Abbreviations

SUD Substance Use Disorder

DSM-5 Diagnostic and Statistical Manual of Mental Disorders 5

GWAS genome-wide associations

EE environmental enrichment

REM rapid eye movement

NREM non-rapid eye movement

SR sleep restriction

mPFC medial prefrontal cortex

NAc nucleus accumbens

BDNF brain-derived neurotrophic factor

AMPARs AMPA receptors

CP-AMPARs Ca2+-permeable AMPA receptors

CI-AMPARs Ca2+-impermeable AMPAR receptors

CeA central amygdala

BLA basolateral amygdala

ERK extracellular signal-regulated kinase
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LTD long-term depression

CRFr1 CRF receptor 1

BNST bed nucleus of the stria terminalis

DMS dorsomedial striatum

AIV anterior ventral insular cortex

OFC orbitofrontal cortex

Pir piriform cortex

Drd1 dopamine receptor D1

Drd2 dopamine receptor D2

PKCδ protein kinase-Cδ

CeL central lateral amygdala

CeM central medial amygdala

LiCl lithium chloride

TH tyrosine hydroxylase

DAT dopamine transporter

VTA ventral tegmental area

DLS dorsolateral striatum

IR immunoreactivity

pERK phosphorylated extracellular signal-regulated kinase

AMY amygdala

NMUR2 neuromedin U receptor 2

PVN paraventricular nucleus of hypothalamus
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Figure 1. 
(A) Timeline. Incubation of drug craving procedure: rats are trained to self-administer a 

reward (up to 5 weeks) and then relapse is tested in early and late phases of abstinence, 

between tests rats undergo a forced-abstinence period (up to 25 weeks). During the relapse 

tests rats are re-exposed to the self-administration chambers and lever presses lead to 

contingent presentations of a discrete cue previously paired with reward delivery. (B) 

Incubation of drug craving in rats. Relapse tests: data are Mean±SEM number of non-

reinforced lever presses during relapse tests at different days of abstinence from cocaine 

(Grimm et al., 2001), nicotine (Abdolahi et al., 2010), oxycodone (Fredriksson et al., 2020), 

heroin (Shalev et al., 2001), methamphetamine (Shepard et al., 2004), alcohol (Shepard et 

al., 2004) and fentanyl (Gyawali et al., 2021). (C) Incubation of non-drug rewards in rats. 

Relapse tests: data are Mean±SEM number of non-reinforced lever presses during relapse 

tests at different days of abstinence from sucrose (Harkness et al., 2010), saccharin (Aoyama 

Venniro et al. Page 38

Neurosci Biobehav Rev. Author manuscript; available in PMC 2022 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2014), high-fat diet (Darling et al., 2016), and water (Grimm et al., 2012). *Different 

from abstinence day 1, p < 0.05. Data were redrawn, with permission, from the above cited 

references.
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Figure 2. 
(A) Putative temporal trajectory of incubation of craving. Drug craving progressively 

increases during early phases of abstinence, remains stationary for long periods of time and 

falls after prolonged abstinence periods. (B) Influence of biological factors on incubation 

of craving. Sex (left): incubation of craving is potentiated in female, relative to male rats 

trained to self-administer cocaine (Kerstetter et al., 2008; Nicolas et al., 2019), but not 

heroin and methamphetamine (Venniro et al., 2017b). Age (right): incubation of craving 

is potentiated in young, relative to adult rats trained to self-administer cocaine (Li and 

Frantz, 2009, 2017; Li et al., 2018a), heroin (Doherty et al., 2013; Doherty and Frantz, 

2012) and nicotine (Funk et al., 2016), after short access self-administration. While, 

after extended access cocaine (Madsen et al., 2017) and oxycodone self-administration, 

incubation of craving is similar between young and adult rats, except that young relative 

to adult rats exhibit decreased seeking during early abstinence (Altshuler et al., 2021). 
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(C) Influence of environmental factors on incubation of craving. Enrichment (left, top): 

incubation of cocaine (Thiel et al., 2012; Thiel et al., 2010) and sucrose (Grimm et al., 2013) 

craving is decreased in rats maintained in enriched, relative to non-enriched environmental 

conditions. Sleep (right, top): incubation of cocaine craving is potentiated by fragmented 

sleep and decreased with SR procedure (Chen et al., 2015). Abstinence procedures (left, 

bottom): incubation of cocaine (Venniro et al., 2021), heroin (Venniro et al., 2019b), and 

methamphetamine (Venniro et al., 2018) craving is decreased in rats that undergo to social-

based voluntary abstinence, relative to forced; incubation of heroin (Venniro et al., 2017b) 

craving is decreased in rats that undergo to contingency management (CM)-based voluntary 

abstinence, relative to forced abstinence. Chronic stress (right, bottom): incubation of 

cocaine (Glynn et al., 2018) and oxycodone (Fredriksson et al., 2020) craving is potentiated 

in rats exposed to chronic stress, relative to no-stress conditions.
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Figure 3. Effects of biological and environmental factors on incubation of drug craving.
Graphic overview of brain regions and molecular mechanisms underlying biological (top 

box) and environmental (bottom box) factors that exacerbate (Chen et al., 2015; Munshi 

et al., 2021; Nicolas et al., 2019; Venniro et al., 2017a) or attenuate (Chen et al., 2015; 

Doherty et al., 2013; Gyawali et al., 2021; Li et al., 2018a; Thiel et al., 2012; Thiel et al., 

2010; Venniro et al., 2018) incubation of drug craving. Pink and green balls indicated causal 

and correlational findings, respectively. Abbreviations: Arc, activity-regulated cytoskeleton-

associated protein; BDNF, brain-derived neurotrophic factor; meth, methamphetamine; CM- 

based, contingency management based voluntary abstinence; EE; environmental enrichment; 

pERK, phosphorylated extracellular signal-regulated kinase; mPFC, medial prefrontal 

cortex; HIPP, hippocampus; NAc, nucleus accumbens, AIV, anterior ventral insular cortex; 

AMY, amygdala; BNST, bed nucleus of the stria terminalis; SR, sleep restriction; CP-

AMPARs, calcium permeable AMPA receptors; CRFr1, CRF receptor 1.
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Figure 4. Neurobiology of incubation of food craving.
Graphic overview of pharmacological manipulations and molecular adaptations underling 

the attenuation (blue) (Grimm et al., 2007; Uejima et al., 2007; Grimm et al., 2011; McCue 

et al., 2019) or the exacerbation (red) (Grimm et al, 2002; Grimm et al., 2003; Glueck 

et al, 2017; Grimm et al., 2006; Cuonotte et al., 2014; Grimm et al., 2016; Grimm et al., 

2018) of incubation of food craving. Green indicates the pharmacological manipulations; 

orange indicate the molecular mechanisms. Abbreviations: NAc, nucleus accumbens, CeA, 

central amygdala; NMUR2, neuromedin U receptor 2; PVN, paraventricular nucleus of 

hypothalamus; VTA, ventral tegmental area; OFC, orbitofrontal cortex; DMS, dorsomedial 

striatum; DLS, dorsolateral striatum; mPFC, medial prefrontal cortex; ACC, anterior 

cingulate cortex; SMA, somatosensorial cortex.

Venniro et al. Page 43

Neurosci Biobehav Rev. Author manuscript; available in PMC 2022 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Brief history of incubation of craving (Fig.
1A and Fig. 1B)

	Biological factors modulating incubation of drug craving
	Sex
	Behavioral findings (Fig. 2A and
Fig. 2B)
	Neurobiological findings (Fig.
3)

	Age
	Behavioral findings (Fig. 2A and
Fig. 2B)
	Neurobiological findings (Fig.
3)

	Genetic factors

	Environmental factors modulating incubation of drug craving
	Sleep architecture
	Behavioral findings (Fig. 2A and
Fig. 2C)
	Neurobiological findings (Fig.
3)

	Enrichment and physical exercise
	Behavioral findings (Fig. 2A and
Fig. 2C)
	Neurobiological findings (Fig.
3)

	Acute and chronic stress
	Behavioral findings (Fig. 2A and
Fig. 2C)
	Neurobiological findings (Fig.
3)

	Abstinence reinforcement procedures
	Food-based model
	Behavioral findings (Fig. 2A and
Fig. 2C).
	Neurobiological findings (Fig.
3).

	Social-based model
	Behavioral findings (Fig. 2A and
Fig. 2C).
	Neurobiological findings (Fig.
3).



	Nondrug rewards and incubation of craving (Fig.
1A and Fig. 1C)
	Enrichment (Fig. 2A and Fig. 2C)
	Parametric considerations
	Neurobiology of incubation of food craving (Fig. 4)
	Pharmacology of dopamine
	Pharmacology of opiates
	Pharmacology of glutamate
	Molecular biology

	Summary

	Concluding remarks
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

