
Abstract. Background/Aim: The development of colon cancer
is influenced by the tumour immune microenvironment, in
which specific immune cell subsets may be useful predictors
for patient’s clinical outcome and devising treatment strategies.
Materials and Methods: The distribution of tumour-infiltrating
immune cell subpopulations of three cohorts of The Cancer
Genome Atlas (n=225), GSE39582 (n=493), and GSE17536
(n=137) datasets were analysed on the basis of single cell RNA
sequencing data via the Cibersortx software. A prognostic
model was constructed via a penalised Cox regression model
with least absolute shrinkage and selection operator (LASSO)
penalty according to the one standard error rule. Results:
Conventional type 2 dendritic cells were correlated with a good
prognosis, whereas NLRP3-expressing macrophages, C1QC-
expressing tumour-associated macrophages, and GALTB-
expressing B cells were correlated with a poor prognosis. We
constructed a prognostic model based on prognosis related cell
subsets including nine specific immune cell subsets. By using
the LASSO method, we found that the model had a superior
prediction ability in all three cohorts of patients. Conclusion:
Multiple immune cell subpopulations in the tumour

microenvironment are associated with the prognosis of colon
cancer. The established prognostic model has important
clinical value in predicting the clinical outcome of patients with
colon cancer and in treatment decision.

Colon cancer is one of the most common aggressive tumours
worldwide (1). Current treatment methods, including surgery,
chemotherapy, radiotherapy, or their combination have
significantly improved patient survival rate (2). In addition, the
application of biomarkers enables effective screening and helps
identify patients with a high risk of relapse and resistance to
therapy, which in turn makes individualised treatment plans
and follow-up strategies possible. In particular, treatment
modalities involving immune checkpoint inhibitors have
improved the survival of patients with malignant tumours (3).
However, in patients with colon cancer, the therapeutic efficacy
of immune checkpoint inhibitors is poor, except for those with
deficient mismatch repair (dMMR) associated with a high
degree of microsatellite instability (4).

The immune tumour microenvironment (TME) is now
considered as a potential target for immunotherapy (5). The
TME includes tumour cells, stromal cells such as fibroblasts,
endothelial cells, and immune cells, and non-cellular components
of extracellular matrix such as collagen, fibronectin, hyaluronan,
and laminin. The interaction of tumours with cellular and non-
cellular components of the TME results in the generation of a
complex network that can be used by tumour cells to ensure
favourable conditions for their proliferation, dissemination, and
resistance to therapy (6). In colon cancer, CD8-positive T cells,
tertiary lymphoid structures, regulatory T cells, and macrophages
have shown strong correlation with prognosis (7). Recently,
Zhang et al. (8) performed systematic evaluation of the subgroup
composition among B cells, T cells, and myeloid cells in the
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colon cancer TME via single cell RNA sequencing (scRNA-seq)
and revealed that critical cellular interactions regulated tumour
immunity, thus, indicating the importance of the analysis of the
TME. These results also emphasize the complexity of the TME
and the need to precisely identify immune cell subgroups and
determine their interrelationship to reveal their role in the
prognosis of colon cancer.

The Cibersort analytical tool can be used to calculate the
relative content of 22 specific immune cell subtypes in the
TME based on machine learning algorithms (9). Based on this
approach, several studies have established prognostic models
for various types of cancer (10-14). Cibersortx, an upgraded
version of Cibersort, could be applied to establish multi-gene
signatures of cell subpopulations based on scRNA-seq data and
be used to analyse the relative content of these subpopulations
(15). We believe that in colon cancer, a prognostic model based
on a more detailed subpopulation structure can help discover
specific immune cell subsets in the TME, further identify new
biomarkers and explore novel treatment modalities.

In the present study, we aimed to use the Cibersortx
software to establish gene signatures for myeloid and T- and
B-cell lineages in colon cancer on the basis of the scRNA-
seq dataset GSE146771 (8) and to calculate the proportions
of each immune cell subpopulation in public data cohorts.
This led to construction of a prognostic model for subsequent
verification and analysis.

Materials and Methods
Study cohorts. The scRNA-seq dataset GSE146771 generated via the
10×genomics platform was downloaded from the Gene Expression
Omnibus (GEO) website. The data on the cells from peripheral blood
and adjacent tissues were excluded and only those on tumour tissues
of 10 patients were used. The expression profiles of a total of 10,694
cells were analysed, including 5 B-cell, 3 innate lymphoid cell, 13
myeloid cell, and 17 T-cell subgroups. The transcripts per million
(TPM) values were used for subsequent analyses.

The data on RNA-seq, exome sequencing (VarScan2 variant
aggregation and masking), and clinicopathological characteristics,
including sex, age, TNM staging, and follow-up information on
colon cancer patients were downloaded from The Cancer Genome
Atlas (TCGA). After exclusion of patients with American Joint
Committee on Cancer (AJCC) stage IV, with incomplete clinical
pathological information, and with a follow-up period less than one
month, a total of 225 patients were analysed.

The microchip gene expression datasets GSE39582 and
GSE17536 were downloaded from the GEO website. Similarly,
patients with AJCC stage IV, with incomplete clinicopathological
information and with a follow-up period less than one month were
excluded. This allowed the analysis of 493 patients from GSE39582
and 137 from GSE17536, all of the patients received surgical
treatment. All gene expression data were normalised and converted
into the log 2 format. Clinicopathological data, including age, sex,
TNM staging, dMMR status, BRAF, KRAS, and TP53 mutation
status, and follow-up information were also analysed. The study was
approved by the Ethical Committee of The First Medical Center of
PLA General Hospital.

Construction of an scRNA-seq signature matrix. To identify cell
type-specific gene expression signatures, an scRNA-seq matrix was
constructed with the Cibersortx software (15). We first segmented
the GSE146771 data in accordance with immune cell types: B cells,
myeloid and innate lymphoid cells, and CD4-positive and CD8-
positive T cells. The data were uploaded following Cibersortx
protocol. The ‘create signature matrix’ module was then used to
obtain the gene signature matrix of the immune cell types with the
following settings: the minimum expression level set to 0, number
of replicates to 5, sampling to 0.75, kappa to 999, q-value to 0.01,
and number of barcode genes to 300-500.

Estimation of cell proportions using Cibersortx. We continued to
upload the data from TCGA, GSE39582, and GSE17536, and
estimated the proportions of each immune cell subgroup based on
the gene signature matrix of the major cell groups mentioned in the
previous section. The parameters were set as default, and batch
calibration was performed with the b-mode. In the three datasets,
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Table I. Representative genes of each cell type.

Cell type                                        Representative genes

hM01                               TPSB2, TPSAB1, CPA3, CD63, CLU
hM02                             GZMB, GPX1, PTGDS, PLAC8, CYBB
hM03                  CST3, HLA. DPB1, HLA.DPA1, FCER1A, RNASE6
hM04                             TXN, GSTP1, BIRC3, LGALS2, S100B
hM05                           S100A8, S100A9, LYZ, S100A6, S100A12
hM06                              LST1, AIF1, IFITM3, FCER1G, MT2A
hM07                        TYROBP, MNDA, AP1S2, C1ORF162, FPR1
hM08                              IL1B, CXCL8, TIMP1, CXCL2, G0S2
hM10                        HLA.DRA, CD74, HLA.DRB1, C1QA, CCL3
hM11                            RETN, TYMP, IFI30, HMOX1, KCTD12
hM12                                 FTL, APOC1, APOE, PSAP, C1QC
hM13                          SSR4, MZB1, HSP90B1, XBP1, HERPUD1
hB01                           JCHAIN, HSPB1, ID3, PABPC4, TXNDC5
hB02                           JCHAIN, HSPB1, ID3, PABPC4, TXNDC5
hB03                              CD79A, MEF2C, NCF1, GNG7, FCER2
hB04                       MS4A1, BANK1, VPREB3, TNFRSF13B, LY86
hB05                       HIST1H4C, HMGB2, TUBA1B, ISG20, CD79B
hI01                                   GNLY, NKG7, CST7, PRF1, CTSW
hI02                          PYHIN1, C5ORF56, TRG.AS1, SYNE1, TXK
hI04                                   JUN, CD69, DNAJB1, IER2, EGR1
hT01                        GIMAP7, FAM65B, RPS4Y1, NDFIP1, NOSIP
hT02                       IL7R, OXNAD1, TRADD, TTC39C, THUMPD3
hT03                          C16ORF54, SCML4, HMHA1, MIAT, TC2N
hT04                                 CCR7, RCAN3, LEF1, SC5D, MYC
hT05                            CXCR4, KLF6, PTGER4, DNAJB4, PLK3
hT06                         ITM2A, CXCL13, LIMS1, NR3C1, CORO1B
hT07                             OCIAD2, DCBLD1, RLN2, CLMP, ARC
hT08                                LTB, CD3D, CD2, TNFRSF4, IL17A
hT09                             TUBB, PCNA, TYMS, NUSAP1, GALM
hT11                                 IL32, TIGIT, BATF, ARID5B, GBP2
hT12                            HSPA6, CD8B, CD8A, PLEK, TBC1D10C
hT13                            KLRD1, KLRB1, CMC1, KLRF1, KLRG1
hT14                          GZMH, FGFBP2, LYAR, LAIR2, C12ORF75
hT15                           CCL4, GZMK, DUSP2, TUBA4A, CRTAM
hT16                              CD3E, XCL1, RGL4, HBA2, DYRK1B
hT17                                  CCL5, GZMA, RGS1, CD7, CREM
hT18                            LAG3, CCND2, SH2D2A, PTMS, KRT86



the ‘impute cell fractions’ module was applied to determine the
proportions of 5 B-cell, 3 innate lymphoid cell, 13 myeloid cell, 10
CD4-positive T-cell, and 7 CD8-positive T-cell subgroups.

Establishment and verification of the prognostic model. The
GSE39582 dataset was used as a training cohort to construct the

prognostic model. In the training cohort, we determined the optimal
cut-off value of the above-mentioned proportion of immune cell
subpopulations with the X-tile software (Yale University, New
Haven, CT, USA) (16). The proportions of the subpopulations above
or below the cut-off value were considered to be high or low,
respectively. We then used all estimated cell subpopulation
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Figure 1. Gene expression heatmap of signature matrix based on the cluster of GSE146771.



parameters as predictors in a penalised Cox regression model with
the least absolute shrinkage and selection operator (LASSO) penalty
on the basis of the one standard error (SE) rule to obtain the
combination of cell subpopulations with the greatest impact on
cancer prognosis. The coefficients corresponding to the selected
parameters were extracted from the LASSO model and used to build
a prognostic model for the microenvironment score (MES):

MES=Σ (LASSO coefficient of cell type i×status of cell type i)
The best MES cut-off value was determined with the X-tile

software, and the samples were divided into high- and low-MES
groups. The differences in prognosis between the two groups were
compared, and the prognostic model was validated with TCGA and
GSE17536 cohorts.

Gene set enrichment analysis (GSEA) and comparison of mutant
genes and immune gene scores. To compare the differences in

genetic signatures between the low- and high-MES groups, GSEA
was performed via the GSEA Java software and the
c2.cp.kegg.v7.4.symbols database. The maftools R package was
used to analyse the differences between the mutation spectra of
the two groups to determine potential cancer driver genes.
Immunity-associated gene scores were also compared between the
two groups, including IFN-γ-related genes (IDO1, CXCL10,
CXCL9, HLA-DRA, STAT1, IFNG) (17), expanded immune
signature (CD3D, IDO1, CIITA, CD3E, CCL5, GZMK, CD2, HLA-
DRA, CXCL3, IL2RG, NKG7, HLA-E, CXCR6, LAG3, TAGAP,
CXCL10, STAT1, GZMB) (17), cytolytic activity (CYT) score
(GZMA, PRF1) (18), T cell-inflamed signature (IRF1, CD8A,
CCL2, CCL3, CCL4, CXCL9, CXCL10, ICOS, GZMK, HLA-DMA,
HLA-DMB, HLA-DOA, HLA-DOB) (19), and immune checkpoint
index (CD274, IDO2, PDCD1LG2, CTLA4, IDO1, ADORA2A,
LAG3, PDCD1, TIGIT, HAVCR2, VISTA, VTCN1) (20). These
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Figure 2. Construction of prognostic model based on the estimation of the proportion of cell subpopulations. A. Summary of the proportion of each
cluster in GSE17536, GSE39582, and TCGA cohorts. B. Tenfold cross-validation for the tuning parameter selection in the LASSO model. C. LASSO
coefficient landscapes of the fractions of the 38 cell types. D. Coefficients of selected cell types used for construction of the prognostic model.



gene signatures were chosen due to their relevance to anti-tumour
immunity, which may indicate potential immunotherapeutic
benefits (21, 22).

Statistical analyses. Statistical analyses were performed with
Statistical Package for the Social Sciences (SPSS 25.0, SPSS
Inc., Chicago, IL, USA) and the R software. Comparisons
between the groups were performed by analysis of variance
(ANOVA) or non-parametric tests. Survival was evaluated by the
Kaplan-Meier method, and the difference in survival between the
groups was analysed by the log-rank test. The Cox risk ratio
model was used for univariate and multivariate analyses to
identify independent prognostic factors. The time-dependent
curve was used to analyse the predictive ability of the MES
model. All statistical tests were two-sided, and statistical
significance was set at p<0.05. 

Results

Establishment of a representative gene matrix for cell
subpopulations. By running the ‘create signature matrix’
module of Cibersortx, we obtained the gene signature matrix
of immune cell subgroups. The top 5 representative genes in
each subgroup are shown in Table I. In terms of the myeloid
lineage, the genes were TPSB1, TPSAB1, CD63, HLA-DPB1,
and C1QC. The detectable myeloid cell subpopulations in the
TME were mast cells (hM01), plasmacytoid dendritic cells
(DCs) (hM02), classic DCs 2 and 1 (hM03 and hM04,
respectively), CD14-expressing monocytes (hM05), CD16-
and CD14/CD16-expressing monocytes (hM06 and hM07,
respectively), NLRP3- and IL-1B-expressing macrophages
(hM08 and hM10, respectively), monocyte-derived FCN1-
expressing macrophages (hM11), and C1QC-expressing
tumour-associated macrophages (hM12). Representative B-cell
genes included JCHAIN, ID3, CD79A, and MS4A1. The B-cell
population consisted of IgG-producing plasma B cells (hB01),
IgA-producing GALT B cells (hB02), IgD-producing follicular
B cells (hB03), MS4A1-expressing follicular B cells (hB04),
and GC B cells (hB05). The T-cell population was comprised
of naïve T cells (hT01 and hT12), central memory T cells
(hT04 and hT13), resident memory T cells (hT05 and hT16),
Th1 cells (hT07 and hT09), and Th17 cells (hT08). The
subgroups and representative genes are shown in Figure 1.

Estimation of the proportions of cell subpopulations. The
proportions of cell subpopulations in each sample of the three
cohorts were determined, and the average values were calculated
for each cohort (Figure 2A). Among myeloid cells, the highest
proportion was observed for hM12 in all cohorts: 48.7% in
GSE39582, 55.1% in GSE17536, and 43.7% in TCGA, followed
by hM04 proportion in GSE39582 and GSE17536 (11.7% and
10.8%, respectively) and hM03 proportion in TCGA (20.6%).
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Table II. Average proportion of each cell type in three cohorts.

                                 GSE39582                 GSE17536                  TCGA

hM01                         0.093745                   0.064044                 0.107484
hM02                         0.028246                    0.03499                  0.004521
hM03                         0.087772                   0.049063                 0.206248
hM04                         0.117266                   0.107965                 0.053892
hM05                         0.001451                   0.000743                 0.001432
hM06                          0.00756                    0.004594                 7.09E-05
hM07                         0.031563                   0.026802                 0.024781
hM08                         0.106827                   0.104956                 0.100389
hM09                         0.015681                   0.011445                  0.01443
hM10                         1.45E-05                   0.000499                        0
hM11                          0.02266                    0.044202                 0.049643
hM12                         0.487216                   0.550696                 0.437108
hB01                          0.182946                   0.219592                  0.05921
hB02                          0.334822                   0.343713                 0.566211
hB03                          0.000281                   0.000887                 0.010068
hB04                          0.196214                   0.170955                 0.181892
hB05                          0.285736                   0.264854                 0.182619
hI04                           0.185648                   0.192088                 0.193101
hI02                           0.620466                    0.62946                  0.607203
hI01                           0.193886                   0.178452                 0.199696
hT01                          0.024616                   0.024772                 0.000593
hT02                          0.074223                   0.060689                  0.03621
hT03                          0.000488                          0                              0
hT04                          0.254895                    0.26514                  0.322257
hT05                          0.047173                   0.060678                 0.106325
hT06                          0.039964                   0.027683                 0.012222
hT07                          0.096384                   0.090227                 0.144084
hT08                          0.002963                   0.000936                 0.004216
hT09                          0.442659                    0.45527                  0.304509
hT11                           0.016634                   0.014604                 0.069585
hT12                          0.019868                   0.018694                 0.011795
hT13                          0.011061                    0.02158                   0.00525
hT14                          0.006113                   0.000318                 0.007485
hT15                          0.185761                   0.169406                 0.232102
hT16                           0.20245                     0.19467                  0.267461
hT17                          0.012531                   0.016418                 0.026553
hT18                          0.562216                   0.578914                 0.449353

Table III. Cutoff value of each cell type in the GSE39582 cohort.

Cell               Cutoff            Cell            Cutoff        Cell type      Cutoff 
type                 value             type              value             value

hM01            0.07156          hB02           0.28176          hT07       0.19527
hM02            0.04449          hB03           0                     hT08       0.00862
hM03            0.05381          hB04           0.1875            hT09       0.33097
hM04            0.12123          hB05           0.2697            hT11        0.05544
hM05            0                      hI04            0.19483          hT12       0.02827
hM06            0.02465          hI02            0.64007          hT13       0.00085
hM07            0.0155            hI01            0.21068          hT14       0.00497
hM08            0.18263          hT01           0.01472          hT15       0.24431
hM09            0.01509          hT02           0.05257          hT16       0.10883
hM10            0                     hT03           0                     hT17       0.0069
hM11             0.08454          hT04           0.22238          hT18       0.44596
hM12            0.57226          hT05           0.04819
hB01             0.2627            hT06           0.00775              



The largest subpopulation among B cells was hB02 (33.5%,
34.4%, and 56.6% in GSE39582, GSE1753, and TCGA,
respectively) and among innate lymphoid cells, it was hI02
(62.0%, 62.9%, and 60.7% in GSE39582, GSE1753, and TCGA,
respectively). Among CD4- and CD8-positive T cells, hT09 and
hT1 had the highest proportions; in GSE39582, GSE1753, and
TCGA, they were 44.3% and 56.2%, 45.5% and 57.9%, and
30.5% and 44.9% respectively. Overall, the three cohorts had

similar distributions of immune cell subpopulations (the details
are presented in Table II).

Establishment and verification of the MES model. GSE39582
was used to establish the prognostic model and the cut-off
values of each cell subgroup determined with X-tile are
presented in Table III. To build the model, 9 cell
subpopulations, namely hM03, hM08, hM12, hB02, hI04,
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Figure 3. Survival analysis in GSE17536, GSE39582, and TCGA cohorts. A. The overall survival curve of the GSE39582 cohort (p<0.0001). B.
The recurrence-free survival curve of the GSE39582 cohort (p=0.00053). C. The overall survival curve of the GSE17536 cohort (p=0.0021). D.
The disease-free survival curve of the GSE17536 cohort (p<0.0001). E. The overall survival curve of the TCGA cohort (p=0.041).



hT02, hT05, hT15, and hT18 (Figure 2B and C), were
selected as the best parameters via the LASSO algorithm.
The model was as follows: 

MES=–0.11910×status of hM03+0.32104×status of
hM08+0.04489×status of hM12+0.21291×status of
hB02+0.15438×status of hI04-0.00358×status of
hT02+0.02527×status of hT05+0.22393×status of hT15-
0.02227×status of hT18 

Then, we determined the MES cut-off value with X-tile and
divided the samples into high- and low-MES groups. In the
training cohort (GSE39582), overall survival and recurrence-
free survival were significantly better in the low-MES group
than those in the high-MES group (log-rank test p<0.001,
Figure 3A and B), and similar results were obtained in the
verification cohort (GSE17536; log-rank test p<0.05, Figure 3C
and D). In TCGA validation cohort, overall survival was also
significantly better in the low-MES group than that in the high-
MES group; however, recurrence events were recorded only on
9 patients in this cohort, which precluded analysis of recurrence-
free survival. Overall, these results showed that MES was
significantly related to the patient prognosis in each cohort.

Correlation between the MES and clinicopathological
characteristics. Next, we compared the differences in
clinicopathological characteristics between low- and high-

MES groups in the GSE39582 cohort. T4, positive lymph
node metastasis, dMMR, and BRAF mutations were associated
with a higher MES (Figure 4A, all p<0.05). The results of
univariate and multivariate Cox regression analyses revealed
that the MES was an independent prognostic factor (Table IV).
A comparison of the abilities between the MES and TNM
staging to predict 5-year survival showed that the area under
the curve (AUC) was significantly larger for the MES than
that for the TNM staging: 0.663 vs. 0.552 (p=0.015, Figure 4B
and C). The AUC of the MES was 0.618, higher than that of
the TNM staging, indicating that the MES was a better
prognostic marker than the TNM staging.

Comparison of mutation frequency between the low- and
high-MES groups. Analysis of the mutation rates indicated
that APC, TP53, and KRAS were the most frequent mutations
in both the low- and high-MES groups of the TCGA cohort
(Figure 5A and B), and the similarity between the groups
was confirmed by the results of variant allele frequencies
(Figure 5C and D). Further comparison revealed that there
was an increased mutation rate in SAMD9, NRAP, ZNF532,
and CDC20B genes of the high-MES group, as well as in
PTPN23, CPS1, and PI4KA genes of the low-MES group
and the differences between the two groups were significant
(Figure 5E). As these genes might potentially affect the
immune TME, in-depth mechanistic research is required.
Mutation signature analysis also indicated that in the low-
MES group, the cosine similarity with the spontaneous or
enzymatic deamination of 5-methylcytosine was 0.971 and
that with dMMR was 0.961 (Figure 5F), whereas in the high-
MES group, the cosine similarity with the spontaneous or
enzymatic deamination of 5-methylcytosine was 0.958 and
that with polymerase epsilon exonuclease domain mutation
was 0.891 (Figure 5G).

Comparison of the functional gene expression profiles
between the two MES groups. Calculation of the immune-
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Figure 4. The relationship between MES and clinicopathological
characteristics. A. MES values in different clinical subgroups. B.
Comparison of the prognostic performance of MES (AUC=0.663), MES
group (AUC=0.618), and TNM stage (AUC=0.552) using the time-
dependent ROC of the 5-year overall survival. C. Comparison of the
all-time prognostic performance of MES and TNM stage (p=0.015).

Table IV. Univariate and multivariate survival analyses of MES and
clinical variables.

                                                                UVA                          MVA

                                                       HR         p-Value        HR        p-Value

Age                                               1.039        <0.001       1.047       <0.001
Gender (vs. male)                        0.733         0.066        1.261        0.305
MES                                             6.711        <0.001       5.483       <0.001
Tumor location (vs. proximal)    0.834         0.281        0.907         0.69
Stage (II+III vs. stage I)              1.351         0.037        1.127        0.525
KRAS mutation                           1.409         0.043        1.528        0.078
BRAF mutation                           0.931         0.828        0.677        0.413
TP53 mutation                             1.189         0.384        1.384        0.151
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Figure 5. Somatic mutation characteristics of the two MES subgroups in the TCGA cohort. A. Top most frequently mutated genes of the low MES
subgroup. B. Top most frequently mutated genes of the high-MES subgroup. C. Variant allele frequencies of the low-MES subgroup. D. Variant
allele frequencies of the high-MES subgroup. E. Significantly different (p<0.01) mutated genes between the low- and high-MES subgroups. F. The
mutational signature of the low MES subgroup. G. The mutational signature of the high-MES subgroup.



related gene scores in each sample indicated that the high-
MES group had increased expression of the genes in the
IFN-γ signature, expanded immune gene signature, CYT and
T cell-inflamed signature scores, and immune checkpoint
index (Figure 6A, all p<0.05). These results suggested that
patients with a higher MES might have stronger anti-tumour
immune reactivity and a better therapeutic response to
immune checkpoint inhibitors. The GSEA results revealed
the enrichment of extracellular matrix-receptor interactions
and focal adhesion pathways in the low-MES group (Figure

6B) and that of butanoate metabolism and peroxisome
pathways in the high-MES group (Figure 6C).

Discussion

The development of the scRNA-seq technology enables
analysis of TME components at a high resolution (23, 24). In
colon cancer, a variety of cell subpopulations that sometimes
exhibit opposite biological and immunological functions have
been identified, thus, revealing the complexity of the TME (8,
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Figure 6. Comparison of the biological functional differences between the high- and low-MES groups. A. different values of the IFNγ signature
(p=0.003), expanded immune gene signature (p=0.001), CYT score (p=0.019), T cell inflamed signature (p<0.001), and immune checkpoint index
(p<0.001) among the MES subgroups. B. The top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the low-MES subgroup
based on GSEA. C. The top KEGG pathways enriched in high-MES subgroup based on GSEA.



24, 25). For example, in colon cancer, activated macrophages
promote metastasis (26), whereas CD8-positive T cells inhibit
disease progression (27). The regulatory role of DCs in colon
cancer development has also been established (28). It is
suggested that various cancer types may differ in the
proportions of immune cell subpopulations in the TME (24).
Furthermore, even in patients with the same cancer type,
tumours show heterogeneity in TME composition, accounting
for individual differences in cancer initiation and progression
and thus, could be used in personalised medicine to predict
treatment response and disease outcome.

In this study, we employed high-resolution scRNA-seq
technology to analyse, for the first time, the distribution of
immune cell subgroups in the TME of colon cancer and their
association with the biological characteristics of the tumour.
The results indicated that the increase in the DC2 (hM03)
subpopulation of myeloid cells was associated with a better
patient prognosis. A previous study has shown that the DC2
subgroup, which is highly heterogeneous among different
cancer types, plays a key role in carcinogenesis through
antigen presentation and is important for the anti-tumour
immunity in colon cancer (29). On the contrary, the high
proportions of two types of macrophages (hM08 and hM12)
were associated with a poor prognosis, which may be related
to their role in intestinal homeostasis and cancer-promoting
effects (30). In addition, we found that the B-cell subgroup
hB02 and the innate lymphoid cell subgroup hI04 were both
associated with a poor prognosis; however, the underlying
mechanism remains unknown (31) and requires further
exploration. Among T cells, the prognosis-related
subpopulations included CD4-positive resident and central
memory cells (hT02 and hT05) and CD8-positive effector
memory (hT15) and exhaustion (hT18) cells. These T-cell
subpopulations may be directly related to the anti-tumour
immune response and may provide important clues for
examining the sensitivity of patients to immunotherapy.

Our prognostic model based on the TME immune cell
profile (MES) showed a good predictive ability, revealing
that a high MES often suggested a poor clinical outcome. At
the same time, a high MES was also correlated with a high
score for immunity-related genes as well as with the dMMR
status, which indicated a good prognosis. However, this
study suggested that tumours with the dMMR status were
heterogeneous and were also found in patients with a poor
prognosis, who however may respond to immunotherapy. We
believe that patients undergoing radical surgery should also
be screened so that specific patients can be identified and
benefit from adjuvant immunotherapy.

In conclusion, the present study on large samples revealed
the distribution of immune cell subpopulations in the TME
of colon cancer. The identified differences in the TME
composition and cancer prognosis between patients with a
low and high MES should be beneficial to the development

of a new strategy for multimodal individualised treatment of
combined immunotherapy. The scRNA-seq technology
employed in this study may be helpful in future research on
specific immune cell subgroups, identification of new
prognostic biomarkers, and exploration of new combined
immunotherapy modalities; therefore, it is of vital
importance for improving disease outcome.
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