
Abstract. Background/Aim: Natural skin whiteners have
been investigated for centuries. The development of
preparations that safely achieve whitening of hyper-
pigmented skin lesions is a challenge for the cosmetics
industry. Furthermore, promoting rapid wound healing and
minimizing inflammation in injured skin are key to prevent
from abnormal pigmentation in scar tissue. Natural
products, including the fungus Tremella fuciformis (TF), are
attracting attention as potential sources of lead compounds
for these applications. Materials and Methods: We
investigated the in vitro effects of TF on melanogenesis in
murine B16F10 cells. Melanin and tyrosinase levels were

measured after treatment with TF. Wound healing in human
keratinocytes (HaCaT) and fibroblasts (Detroit 551) was
also determined via cell migration assay prior to TF
exposure. Results: TF significantly decreased melanin
content and tyrosinase expression in a concentration-
dependent manner in B16F10 cells. Furthermore, TF
promoted wound healing in human HaCaT keratinocytes
and Detroit 551 fibroblasts. Conclusion: TF proved
effectively on inhibiting melanogenesis and promoting
wound healing in vitro, demonstrating its potential as a
novel skin-whitening agent. However, further clinical studies
of safety and efficacy are required.

Many people equate a light complexion to youth and beauty
(1). Although a bronze tan is being increasingly recognized
as a desirable trait in some Western countries, there is a
greater overall interest in skin whitening, especially in
Eastern countries. The search for safe and effective natural
skin whiteners has persisted for centuries (2).

Melanin, a group of natural pigments found in most
organisms, is produced by epidermal melanocytes. It is a major
determinant of skin color and protects against ultraviolet (UV)
irradiation (3). Melanogenesis is a multistage chemical process,
involving tyrosinase and tyrosinase-related proteins, and the
oxidation and polymerization of the amino acid-tyrosine (4).
Tyrosinase, the rate-limiting enzyme in melanogenesis,
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catalyzes two critical steps in melanin production (5).
Numerous studies have reported that the inhibition of
melanogenesis prevents skin tanning and hyperpigmentation
(6). In addition, the management of cutaneous injury and
scarring has long been a challenge for plastic surgeons and
dermatologists. An inflammatory response is induced by
cutaneous injuries (1, 7). Melanocytes and their production by
melanogenesis are influenced by important cellular mediators
in various ways. Increased inflammation in skin lesions results
in increased and prolonged activation of melanogenesis, which
may lead to uncontrolled melanocyte proliferation and
melanoma (7, 8). Furthermore, skin injury with disruption
to normal melanogenesis causes dyspigmentation (9).
Consequently, substantial research effort is directed toward
promoting rapid wound healing and minimizing inflammation
in injured skin to prevent pigmentation abnormalities of the
resulting scar tissue (10, 11).

Mercury has historically been used as a key ingredient in
skin-lightening products. However, the health hazards of
mercury resulted in its elimination from skin-lightening
products in many countries in recent decades (12-14). The use
of other hazardous chemicals, such as hydroquinone in skin-
lightening products, have also raised public concern about
their dangers to health and emphasizes the importance of
government regulations (15, 16). Therefore, the development
of preparations that can safely achieve whitening and
bleaching of hyper-pigmented lesions is a major challenge for
the cosmetics industry. Natural products are attracting
considerable attention as potential sources of lead compounds
and drug candidates (17-20). The plant sources of such
natural products are generally also established herbal
medicines and dietary foods (21).

The fungus, Tremella fuciformis (TF) (Figure 1A),
commonly known as white auricularia, snow fungus, snow ear,
white jelly mushroom, and silver ear fungus, occurs widely,
especially in tropical areas (22, 23). It can be found growing
on the dead branches of broadleaf trees; however, TF is

commercially cultivated and popularly used in cuisine and
herbal medicine (24, 25). TF is commonly preserved as drying
mushroom (Figure 1B) and processed into powder for
medicinal use (Figure 1C). TF is rich in proteins,
polysaccharides, and dietary fiber but low in energy and lipid
content (26, 27). Various bioactivities have been attributed to
TF, including immunomodulation, anti-oxidation, anti-
hyperglycemia, anti-hypercholesterolemia, anti-tumor, anti-
aging, and helping with memory impairment (28). However, to
the best of our knowledge, no study has been reported for the
effects of TF on skin lightening and wound healing in vitro.
The goal of this study was to investigate the in vitro effects of
TF on the B16F10 murine melanoma cell line as well as
human HaCaT keratinocytes and Detroit 551 fibroblasts. 

Materials and Methods
Chemicals. Dried and preserved TF was pulverized as previously
described (29). Dulbecco’s modified Eagle’s medium (DMEM),
Minimum essential medium (MEM), fetal bovine serum (FBS),
trypsin-EDTA, L-glutamine, penicillin G, and streptomycin were
purchased from Thermo Fisher Scientific (Waltham, MA, USA).
The primary antibodies (against tyrosinase and β-actin) and anti-
rabbit immunoglobulin IgG HRP-linked secondary antibodies were
purchased from GeneTex International Corporation (Hsinchu,
Taiwan, ROC). All other chemicals were purchased from Sigma-
Aldrich, Merck KGaA (Darmstadt, Germany). 

Cell culture. B16F10 (a murine melanoma cell line from a
C57BL/6J mouse) and Detroit 551 (a human fibroblast cell line)
were purchased from the Bioresource Collection and Research
Center (Hsinchu, Taiwan, ROC). HaCaT, a human keratinocyte cell
line, was obtained from CLS Cell Lines Service GmbH (Eppelheim,
Germany). B16F10 and HaCaT cells were individually cultured in
DMEM supplemented with 10% FBS, 1% penicillin-streptomycin
(100 Units/ml penicillin G and 100 μg/ml streptomycin), and 2 mM
L-glutamine in a humidified atmosphere at 37˚C in 5% CO2. Detroit
551 cells were cultured at 37˚C in 75 cm2 culture flasks with 10%
FBS, 90% MEM, 100 Units/ml penicillin G, and 100 μg/ml
streptomycin in a humidified 5% CO2 atmosphere.
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Figure 1. Gross view (A) and dry preserved T. fuciformis (TF) (B). A typical powder for medicinal use (C). 



Morphology and cell viability assays. B16F10 cells were seeded in
a 96-well plate at an initial density of 1×104 cells/100 μl. The cells
were incubated at 37˚C with or without different concentrations of
TF (50, 100, 200, and 300 μg/ml) for 24 h. Cell images were then
photographed via a phase-contrast microscope at ×200
magnification (Leica Microsystems GmbH, Wetzlar, Germany).
After that, addition of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) solution (0.5 mg/ml) was

added to each well before further incubation at 37˚C for 4 h.
Subsequently, the culture medium was removed, and the formazan
crystals were dissolved with 100 μl dimethyl sulfoxide (DMSO) in
isopropanol. Absorbance was measured spectrophotometrically at
570 nm via SpectraMax iD3 multimode microplate reader
(Molecular Devices Ltd., San Jose, CA, USA). The cell survival
ratio was expressed as a percentage of the control, as previously
described (30).
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Figure 2. Effects of different concentrations of T. fuciformis (TF) (50, 100, 200, and 300 μg/ml) on B16F10 murine melanoma cell morphology.
Cell images were obtained via a phase-contrast microscope at ×200 magnification.



Melanin measurement. B16F10 cells (1×104 cells/100 μl) were
placed in a 96-well cell culture plate, and allowed to attach
overnight at 37˚C. The cells were exposed to different
concentrations of TF (50, 100, 200, and 300 μg/ml) for 48 h at
37˚C, and then incubated for an additional 24 h in the presence or
absence of 0.5 μM α-melanocyte stimulating hormone (α-MSH)
(Sigma-Aldrich). The cells were subsequently washed twice with
PBS, and lysed for 1 h at 90˚C in 1 M NaOH containing 10%
DMSO. The total melanin in each cell suspension was determined
by measuring the absorbance at 405 nm using a spectrophotometric
multi-plate reader (SpectraMax iD3 multimode microplate reader,
Molecular Devices Ltd.). The melanin content of the TF-treated
cells was expressed as a percentage of the untreated cells. The total
melanin content was determined according to a previously described
method (31), with slight modifications.

Western blot analysis. B16F10 cells (5×106 cells per 75T flask) were
incubated at 37˚C with TF at different concentrations (100, 200, and
300 μg/ml) for 24 h before exposure to 0.5 μM α-MSH for an
additional 24 h. Cell samples were lysed in Trident RIPA Lysis
Buffer (GeneTex). Protein concentrations were determined using a
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal
amounts of the protein sample (40 μg) were prepared and loaded
onto 10% sodium dodecyl sulfate-polyacrylamide gels (32, 33).
Proteins were then transferred to an Immobilon-P polyvinylidene
difluoride transfer membrane (Merck KGaA, Darmstadt, Germany)
prior to blocking with 5% skim milk for 1 h at room temperature.
The membrane was subsequently incubated overnight at 4˚C with
primary antibodies against tyrosinase and β-actin at a dilution of
1:1,000. Membranes were then incubated for 1 h at 25˚C with an
anti-rabbit IgG horseradish peroxidase (HRP)-linked secondary
antibody at a dilution of 1:10,000. Blot visualization was performed
using the Immobilon Western Chemiluminescent HRP Substrate
(Merck KGaA), and all bands of immunoblots were normalized to
the densitometric value of β-actin. The bands were quantified by
densitometry using ImageJ software (version 1.41; National Institutes
of Health, Bethesda, MA, USA) (34, 35).

Dynamic wound healing assay. HaCaT cells (1×104 cells/well) into a
96-well plate overnight were scratched using Incucyte 96-Well
Woundmaker Tool (Essen BioScience, Ann Arbor, MI, USA) and then
treated with or without 100 and 200 μg/ml TF in serum-free DMEM.
The cell migration images and wound width were recorded over 12
h with data collection every 30 min and monitored using Incucyte S3
Live-Cell Analysis System and Incucyte Scratch Wound Analysis
Software Module (Essen BioScience), as previously described (36).

Cell migration assay. Detroit 551 cells were transferred to a 6-well
tissue culture plate for 24 h, and the cells were grown up to 90%
confluence. Subsequently, each well was scratched with a
micropipette tip to create a denuded zone of constant width (1 mm).
The cells were then cultured in serum-free MEM and incubated at
37˚C with different concentrations of TF (100, and 200 μg/ml) for
24 h. The cells and the denuded zones were photographed under
phase-contrast microscopy (×100), as previously described (34, 37). 

Statistical analysis. All data are presented as the mean±standard
deviation of three separate experiments. One-way analysis of
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Figure 3. Effects of different concentrations (50, 100, 200, and 300
μg/ml) of T. fuciformis (TF) on B16F10 murine melanoma cell viability.
The results shown are the averages of triplicate experiments±standard
deviation. N.S.: Not significant.

Figure 5. Effects of different concentrations of T. fuciformis (TF) on
tyrosinase expression in B16F10 murine melanoma cells. The cells were
exposed to TF (100, 200, and 300 μg/ml) for 48 h, followed by 24 h
incubation with or without 0.5 μM α-melanocyte-stimulating hormone
(α-MSH). Tyrosinase protein levels were detected via western blot. β-
Actin was to ensure equal loading.

Figure 4. Effects of different concentrations of T. fuciformis (TF) on
melanin content in B16F10 murine melanoma cells. The cells were
exposed to TF (50, 100, 200, and 300 μg/ml) for 48 h, followed by 24
h incubation with or without 0.5 μM α-melanocyte-stimulating hormone
(α-MSH). The results shown are the averages of triplicate
experiments±standard deviation. #p<0.05 vs. the α-MSH-untreated
control group. ***p<0.001 vs. α-MSH-treated control.



variance followed by Dunnett’s test was conducted to analyze the
differences between groups and multiple comparisons (SPSS
software version 26.0, Chicago, IL, USA). The statistical
significance was set at p<0.05 or p<0.001.

Results

In vitro proliferation of murine melanoma B16F10 cells was
unaffected by TF concentrations of up to 300 μg/ml. The
cells were treated with various concentrations of TF (50,
100, 200, and 300 μg/ml) and analyzed using the MTT cell
viability assay. TF treatment did not induce any changes in
cell morphology (Figure 2), and no significant effect of the
number of viable B16F10 cells was found when compared
with untreated cells (Figure 3). Therefore, treatment with TF
at the highest tested concentration of 300 μg/ml was suitable

for subsequent evaluation in the melanin synthesis and
tyrosinase activity.

TF decreased melanin content and tyrosinase levels in B16F10
cells. Melanin production is a multistage chemical process
involving tyrosinase and tyrosinase-related proteins (5, 38). We
measured the melanin content of B16F10 cells (Figure 4),
which exhibited a concentration-dependent decreasing trend in
response to TF treatment. Significant reductions in melanin
content were observed in the 100, 200, and 300 μg/ml of TF
treatment groups compared with the α-MSH-treated group.
Tyrosinase is the rate-limiting enzyme in melanogenesis and
catalyzes two critical steps (39). Therefore, we further evaluated
the tyrosinase levels in B16F10 cells after TF treatment at 100,
200, and 300 μg/ml, showing that tyrosinase expression was
decreased in a concentration-dependent manner (Figure 5). 
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Figure 6. Effects of different concentrations of T. fuciformis (TF) (100, and 200 μg/ml) on wound healing in human keratinocytes (HaCaT cell line).
The cells were photographed (A), and cell migration (B) was quantified. The results shown are the averages of triplicate experiments±standard
deviation. ***p<0.001 vs. the control group.



TF promoted cell motility in human keratinocytes (HaCaT)
and human skin fibroblasts (Detroit 551). Previous studies
have reported that rapid wound healing prevents from
abnormalities of pigmentation and hyperpigmentation (40).
Thus, we treated human keratinocyte HaCaT cells and human
fibroblast Detroit 551 cells with different concentrations of
TF (100 and 200 μg/ml) to evaluate cell migration using a
wound-healing assay. The results for HaCaT and Detroit 551
cells (Figure 6 and Figure 7, respectively), revealed that the
edge distances in the TF treatment groups were significantly
shorter than that in the control group. Furthermore, the
dynamic observation via Incucyte S3 Live-Cell Analysis
System also showed that the wound was closing progressively
after incubation with or without TF (100 and 200 μg/ml) in
HaCaT cells (supplementary video, available at:
https://youtu.be/4uYg3wg7l0g). Therefore, TF promoted both

HaCaT and Detroit 551 cell migration in a concentration-
dependent manner.

Discussion

Natural skin whitening has been explored for centuries
because of its cultural associations with the youth and beauty
(41). Mercury-containing skin lighteners were once widely
used; however, their popularity declined as following their
association with health hazards (12). Natural compounds are
receiving significant attention as potential skin-whitening
agents. To the best of our knowledge, this is the first study
to report on the effects of TF on skin complexion. TF
effectively reduced melanin production in B16F10 cells and
promoted wound healing in human HaCaT keratinocytes and
Detroit 551 fibroblasts.

in vivo 36: 713-722 (2022)

718

Figure 7. Effects of different concentrations of T. fuciformis (TF) (100, and 200 μg/ml) on cell migration in human skin fibroblasts (Detroit 551
cells). The cells were photographed (A), and cell migration (B) was quantified. The results shown are the averages of triplicate experiments±standard
deviation. *p<0.05 and ***p<0.001 vs. the control group.



Melanin is produced by epidermal melanocytes, which are
the main determinants of skin color (42). Interestingly, skin
color and pigmentation are not determined by the number of
melanocytes within the epidermis and dermis, but rather by
the activity of melanocytes (43). Staricco et al. (44, 45)
reported that there was no significant difference in the
number of melanocytes between black and white-skinned
individuals. Within a particular individual, the highest
numbers of melanocytes typically occur in the head, neck,
limbs, and genitalia, and the lowest numbers on the chest and
abdomen (44, 45). Iozumi et al. (46) subsequently
demonstrated that tyrosinase levels and activity determine
pigmentation in cultured human melanocytes. The rate-
limiting enzyme, tyrosinase, catalyzes two critical steps in
melanin production, namely the hydroxylation of L-tyrosine
to form L-dihydroxyphenylalanine (L-DOPA), and the
oxidation of L-DOPA into the corresponding dopaquinone
(47). The inhibition of melanogenesis has been reported in
many studies to prevent skin tanning and hyperpigmentation
(6). B16F10, a mouse melanoma cell line, is known to have
stable melanin production, and that is an excellent cellular
model for evaluating melanogenic effects (48, 49). TF
treatment neither induced any changes in cell morphology
(Figure 2) nor significantly affected B16F10 cell viability
(Figure 3). Furthermore, melanin content (Figure 4) and
tyrosinase expression (Figure 5) in B16F10 cells were
decreased in a concentration-dependent manner as a result of
treatment with TF. 

Skin injury disrupts normal melanogenesis, resulting in
dyspigmentation, which has long been a challenge for plastic
surgeons and dermatologists (50). Wound healing following
skin injury is involved in three main stages: inflammation,
proliferation, and remodeling (51). Excess inflammation plays
a major role in impaired wound healing and the etiology of
scarring. Furthermore, increased inflammation results in
increased and prolonged activation of melanogenesis, leading
to uncontrolled melanocyte proliferation, dyspigmentation, and
melanoma (7, 8). Recent studies indicated that TF can modulate
the body’s immune functions by regulating immune cells and
molecules and their activities without significant side effects
(52). Shi et al. (53) reported that TF modulated CD4+ T cell
proliferation and polarization in mice with Pseudomonas
aeruginosa-infected, full-thickness burn injuries, resulting in
reduced levels of IL-10. The use of TF may effectively enhance
immune status (54). Furthermore, TF has been shown to possess
antioxidant properties and may act as a potential therapeutic
agent for oxidative-stress-associated skin diseases and aging
(55). Shen et al. (56) reported that TF suppressed hydrogen
peroxide-triggered injury in human skin fibroblasts via up-
regulation of SIRT1, while Wen et al. (57) reported that TF
scavenged 87% and 80% of superoxide and hydroxyl radicals,
respectively, in a rat model of UV-induced skin damage. 

In the proliferation stage of wound healing, greater numbers
of keratinocytes and fibroblasts proliferate and migrate to
wound margins, thereby promoting wound formation (58). A
previous study reported that TF pretreatment reduced
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Figure 8. Summarized in vitro effects of Tremella fuciformis (TF) on skin whitening and wound healing in the present study.



oxidative stress and cell apoptosis in hydrogen peroxide-
treated skin fibroblasts. Moreover, it was also shown that TF
inhibited p16, p21, p53, and caspase-3 expression, and
activated extracellular signal-regulated kinase and Akt
serine/threonine kinase 1 (59). To the best of our knowledge,
no study has discussed the effects of TF on wound healing.
Herein, we showed that TF significantly promoted wound
healing in human HaCaT keratinocytes (Figure 6) and human
Detroit 551 fibroblasts (Figure 7). Promoting rapid wound
healing and minimizing the inflammatory process in injured
skin are key factors in preventing pigmentation abnormalities
of the resulting scar (60).

In summary, we are the first to report the effects of TF on
melanogenesis and the promotion of wound healing (Figure
8). TF significantly reduced melanin production and
tyrosinase protein levels in B16F10 cells; TF also effectively
promoted the migration of human keratinocytes and
fibroblasts. Our data suggest that TF may prove useful as a
novel skin-whitening candidate in the future. Further clinical
studies are required to assess the safety and efficacy of TF
in the near future.
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