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Abstract

Efficient quality control and export of procollagen from the cell is crucial for extracellular matrix 

homeostasis, yet it is still incompletely understood. One of the debated questions is the role of 

a collagen-specific ER chaperone HSP47 in these processes. Most ER chaperones preferentially 

bind to unfolded polypeptide chains, enabling selective export of natively folded proteins from 

the ER after chaperone release. In contrast, HSP47 preferentially binds to the natively folded 

procollagen and is believed to be released only in the ER-Golgi intermediate compartment 

(ERGIC) or cis-Golgi. HSP47 colocalization with procollagen in punctate structures observed 

by immunofluorescence imaging of fixed cells has thus been interpreted as evidence for HSP47 

export from the ER together with procollagen in transport vesicles destined for ERGIC or Golgi. 

To understand the mechanism of this co-trafficking and its physiological significance, we imaged 

the dynamics of fluorescently tagged type I procollagen and HSP47 punctate structures in live 

MC3T3 murine osteoblasts with up to 120 nm spatial and 500 ms time resolution. Contrary to the 

prevailing model, we discovered that most bona fide carriers delivering procollagen from ER exit 

sites (ERESs) to Golgi contained no HSP47, unless the RDEL signal for ER retention in HSP47 

was deleted or mutated. These transport intermediates exhibited characteristic rapid, directional 

motion along microtubules, while puncta with colocalized HSP47 and procollagen similar to the 

ones described before had only limited, stochastic motion. Live cell imaging and fluorescence 

recovery after photobleaching revealed that the latter puncta (including the ones induced by 

ARF1 inhibition) were dilated regions of ER lumen, ERESs, or autophagic structures surrounded 

by lysosomal membranes. Procollagen was colocalized with HSP47 and ERGIC53 at ERESs. 

It was colocalized with ERGIC53 but not HSP47 in Golgi-bound transport intermediates. Our 
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results suggest that procollagen and HSP47 sorting occurs at ERES before procollagen is exported 

from the ER in Golgi-bound transport intermediates, providing new insights into mechanisms of 

procollagen trafficking.
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Introduction

Procollagen trafficking and secretion has been a subject of numerous studies over the years, 

yet the mechanism of procollagen delivery from the Endoplasmic Reticulum (ER) to Golgi 

is still being debated [1–3]. Collagens are by far the most abundant vertebrate proteins 

distinguished by triple helical domains, which have the distinct sequence of repeating Gly-

X-Y triplets with many Pro and Hyp in the X and Y positions. Collagens are essential 

for forming structural scaffolds of extracellular matrix in all tissues and organs. They are 

synthesized by cells as procollagen precursors, in which triple helical domains are flanked 

by globular N- and C-terminal domains. The most abundant and widely studied is type I 

collagen, which is the main structural protein in bones, tendons, and ligaments.

Procollagens are assembled and folded in the ER, transported through Golgi, and secreted. 

Like other secretory proteins, procollagen trafficking from the ER to Golgi involves COPII 

coat and TANGO1/cTAGE machinery of ER exit sites (ERESs) [1–3]. However, whether 

procollagen is exported from ERESs in enlarged COPII-coated vesicles [4–6], in ERGIC-

membrane-derived megacarriers [7, 8], through “short-loop” ER-Golgi connections [9], 

or through a combination of these and other pathways is unclear. From the cell biology 

perspective, the membrane trafficking pathways followed by procollagen exemplify a 

general problem of poorly understood secretory pathways for large cargoes [1–3]. It is 

not even resolved whether ER-Golgi intermediate membrane structures represent a distinct 

subcellular compartment (ERGIC, aka IC) or just transport intermediates between the ER 

and Golgi [10]. From the matrix biology and pathophysiology perspective, procollagen 

trafficking defects likely underlie skeletal dysplasias caused by mutations in COPII proteins 

[11–17], CREB3L1 that regulates COPII protein expression [18–20], and TANGO1 [21]. In 

general, deficient trafficking of procollagens and other matrix molecules might be involved 

in a wide plethora of diseases since extracellular matrix remodeling is a crucial regulator of 

tissue homeostasis [22, 23].

An important part of the puzzle of ER-to-Golgi procollagen trafficking is the role of 

HSP47 in its regulation. HSP47 is a collagen-specific ER chaperone co-expressed with 

procollagen, which is required for proper folding of procollagen’s triple helix [24–26]. Other 

ER chaperones, such as BIP and HSP90B (GRP94), assist protein folding by preferentially 

binding to unfolded, mostly hydrophobic regions of polypeptide chains, thereby preventing 

non-native interactions and aggregation [27]. Once native conformation of a protein is 

attained, these chaperones are released, which is a signal for protein loading into ERESs and 

export from the ER. In contrast, HSP47 enables folding of intrinsically unstable procollagen 
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by preferentially binding to the triple helical rather than unfolded conformation [28–31]. 

Unlike other ER chaperones, HSP47 is accrued at multiple binding sites along the triple 

helix instead of being released upon completion of procollagen folding. It might also serve 

as an adapter for procollagen loading into ERESs by TANGO1 [32]. Thus, it is widely 

thought that HSP47 is co-transported with procollagen from the ER to ERGIC or cis-Golgi, 

followed by its release at lower pH [33, 34], capture by KDEL/RDEL receptors, and 

retrograde traffic to the ER [25, 26].

Previously, HSP47 was observed by immunofluorescence in vesicle-like procollagen puncta 

after brefeldin A [35] or GTPγS [36] disruption of ER-Golgi trafficking. It was also 

reported to be colocalized with TANGO1 and COPII in large procollagen carriers by 

immunofluorescence and by fractionation in a cell-free vesicle budding reaction [6]. 

However, these techniques cannot unambiguously identify bona fide transport vesicles. 

In fixed cells imaged by immunofluorescence, procollagen/HSP47 puncta might instead 

represent dilated regions of the ER, ERESs, autophagic structures, other cell compartments, 

or non-physiological structures caused by the disruption of cellular function with brefeldin 

A or GTPγS. Cell-free assays might produce vesicles that do not form inside the cell 

under physiological conditions. Unambiguous identification of any procollagen puncta as 

transport intermediates requires a proof of their disconnection from the ER, directional (non-

stochastic) motion, and entry into Golgi. Having developed an assay for live cell imaging 

capable of monitoring these processes [37], we therefore decided to revisit procollagen 

trafficking regulation by HSP47.

Here we describe dynamic imaging of puncta containing fluorescently tagged type I 

procollagen and HSP47 in live cells with ~120 nm spatial and up to 500 ms/frame 

time resolution, which reveals that procollagen is normally exported from osteoblast ER 

without HSP47. We created fluorescent constructs of type I procollagen and HSP47 and 

imaged them in a murine osteoblastic cell line MC3T3 together with protein markers 

of the ER lumen, COPII coat, ERGIC membranes, cis-Golgi, autophagic structures, and 

lysosomes. Osteoblasts, which are the cells responsible for making bone, are some of the 

most active secretory cells that produce and secrete massive amounts of type I collagen. 

Expression of the fluorescent procollagen and HSP47 constructs in these cells did not 

disrupt their function. The constructs faithfully reproduced the subcellular localization 

of the corresponding endogenous proteins observed by immunofluorescence as well as 

procollagen/HSP47 localization patterns previously reported in static snapshots of fixed 

cells. Upon live cell imaging, however, we found no evidence for HSP47 accompanying 

procollagen out of the ER in Golgi-destined transport intermediates. Rather, we observed 

HSP47 only in the ER and in stochastically moving vesicle-like structures, which were 

distinct from bona fide procollagen carriers that moved directionally toward the Golgi 

apparatus. Upon deleting or modifying the RDEL retention signal, HSP47 was co-trafficked 

with procollagen to Golgi in directionally moving vesicles. Our results support a revised 

trafficking mechanism in which HSP47 dissociates from procollagen at ERESs, before the 

latter is exported in ERGIC53-postive transport intermediates bound for the Golgi.
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Results

Fluorescently tagged HSP47, proα1(I), and proα2(I) constructs for live cell imaging of 
procollagen and HSP47 trafficking

We built fluorescent protein (FP)-tagged mouse HSP47 constructs, in which different color 

FPs were added on the N-terminus of the molecule, between the ER signal peptide and 

the start site of HSP47. GFP-HSP47 transiently transfected into the MC3T3-E1 mouse 

osteoblast line [38] co-immunoprecipitated with procollagen, suggesting that its binding to 

collagen was similar to endogenous HSP47 (Kd ~ 1 μM, Fig. 1A). We observed complete 

colocalization of FP-tagged HSP47 molecules with each other and antibody-tagged HSP47, 

i.e. all spots positive for one of the tags were also positive for the other tags (Fig. 1B). 

Variation in the relative intensity of the tags at different spots appeared to be related 

primarily to antibody accessibility, since the largest difference was observed behind the 

cell nucleus. Localization of all FP-HSP47 constructs (TagBFP2, GFP, Venus, Apple, and 

Cherry) was similar to endogenous HSP47.

We performed procollagen/HSP47 sorting experiments separately with FP-proα1(I) and FP- 

proα2(I) constructs because of the difference in cell adaptation mechanisms responding to 

overexpression of proα1(I) and proα2(I) chains. Excessive synthesis of proα2(I) due to 

the exogenous Col1a2 produces unassociated proα2(I) chains that must be removed from 

the ER and degraded (only one proα2(I) can be incorporated into trimeric procollagen). In 

contrast, excess of proα1(I) relative to proα2(I) causes formation of proα1(I) homotrimers, 

which appear to be secreted normally by osteoblasts and cause no significant bone pathology 

even in individuals who do not produce proα2(I) at all [39, 40].

The design and validation of the FP-proα1(I) and FP- proα2(I) constructs was described 

in more detail in our previous study [37]. Briefly, we found that both FP-proα1(I) and FP-

proα2(I) chains assembled into procollagen heterotrimers, progressed through the normal 

secretory pathway, and after being secreted were incorporated into extracellular collagen 

fibers. In MC3T3 cells with low-to-moderate amounts of FP-procollagen (i.e., 12–24 h post 

transfection) we observed no overexpression artifacts and the results were the same for both 

constructs. In MC3T3 cells with excessive expression of FP-procollagen and after more 

than 24 h post transfection, we noticed the formation of large dilated ER regions filled by 

FP-procollagen chains (Supp. Fig. 1), which was probably due to irreversible aggregation 

of procollagen. The effects were more pronounced after FP-proα1(I) transfection, probably 

because of larger disruptions in procollagen folding and trafficking caused by incorporation 

of more than one FP-proα1(I) chain into the same molecule.

Since FP tags used for live cell imaging might perturb folding and trafficking of the 

corresponding proteins, we performed multiple control experiments. We utilized only the 

tags that have been well characterized before or additionally validated by colocalization 

with each other and endogenous protein antibodies (Fig. 1B, Supp. Fig. 2, and Experimental 

Procedures). To avoid ER disruption caused by slow accumulation of FP-tagged proteins, we 

did not use over-transfected cells with large regions of dilated ER and limited experiments 

to 18–24 h post transfection. We compared FP-proα1(I) and FP-proα2(I) transfections, 

exploiting the difference in the number of FP-tagged chains that can be incorporated into the 
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same procollagen molecule. We performed key experiments with different combinations of 

FP tags, since different FPs might produce different artifacts. To emphasize the importance 

of such controls, most images in this manuscript are shown for both FP-proα1(I) and FP- 

proα2(I) transfections and different combinations of FP tags.

Additionally, we generated an MC3T3 cell line, in which one endogenous Col1a2 allele was 

modified with CRISPR/CAS9 to produce the same proα2(I) chain as the GFP-proα2(I) 

construct used here. The endogenous GFP-procollagen was trafficked similar to the 

transfected one. It also gradually accumulated in the ER after stimulation of procollagen 

synthesis with ascorbic acid, eventually causing ER disruption and suppression of collagen 

synthesis or cell demise. This cell line provided no added benefits for the present study and 

its generation, characterization, and possible utilization will be described in detail separately.

Dynamic imaging of FP-HSP47 co-localization with procollagen

As we reported previously [37], FP-proα1(I) and FP- proα2(I) were observed in the 

ER lumen marked by ssFP-KDEL (Fig. 2A,B) and in cis-Golgi marked by FP-GM130 

(Fig. 2C,D). FP- HSP47 perfectly co-localized with FP-proα1(I) and FP-proα2(I) within 

the ER lumen. It was not observed in the cis-Golgi, unless the cells were subjected to 

excessive stress or over-transfected with FP-HSP47. The strict ER localization of FP-HSP47 

under normal expression conditions suggested FP-HSP47 was either rapidly removed by 

retrograde transport back to the ER or never left the ER to enter the cis-Golgi. To distinguish 

between these two possibilities, we photobleached FP-HSP47 and FP-procollagen in the 

Golgi area to remove fluorescence in this area and then imaged transport vesicles moving 

into this region from distant ERESs.

Time lapse imaging of fluorescence recovery after photobleaching (FRAP) revealed rapidly 

moving FP-proα1(I)/α2(I) puncta entering into the cis-Golgi, but these puncta did not 

contain any FP-HSP47 (Fig. 3; Movies 1 and 2). We also observed numerous vesicle-like 

puncta of FP-proα1(I)/α2(I) co-localized with FP-HSP47, but their restricted, stochastic-like 

movements were inconsistent with those of ER-to-Golgi transport intermediates.

To better visualize procollagen and HSP47 dynamics in the cell and trace rapidly 

moving procollagen puncta, we performed time-lapse imaging without photobleaching 

at 2 s/frame (Fig. 4A; Movie 3), 1 s/frame (Fig. 4B; Movie 4), and 500 ms/frame 

(Supp. Fig. 3, Movie 5). Regardless of the imaging speed, we observed no directional 

movement of FP-HSP47-labeled structures. Rather, their limited movements appeared to 

reflect stochastic fluctuations caused by rearrangements of the ER network. We traced 

numerous procollagen transport intermediates distinguished by rapid directional movement, 

likely along microtubules, some moving toward the cis-Golgi and some toward the plasma 

membrane (Movies 3–5). We detected HSP47 in just one or two out of the hundreds of 

vesicles that appeared to be Golgi-bound (for more accurate quantification, see below).

Effects of the RDEL sequence on FP-HSP47 localization and trafficking

One possible explanation for the absence of FP- HSP47 in transport vesicles delivering 

procollagen to Golgi is that HSP47 is retained in the ER because of its ER localization 

sequence, RDEL. To test this hypothesis, we made FP constructs of HSP47 in which this 
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sequence was deleted (ΔRDEL) or mutated to RNGL. FP-HSP47ΔRDEL colocalized with 

FP-proα1(I)/α2(I) in the ER and cis-Golgi (Fig. 5A), but its expression caused cis-Golgi 

disruption and formation of large FP-GM130 spheres within the nucleus similar to droplets 

previously observed upon GM130 overexpression [41]. FP-HSP47RNGL also co-localized 

with FP-proα1(I)/α2(I) in the ER and cis-Golgi, causing less pronounced yet noticeable 

Golgi disruption and nuclear FP-GM130 spheres (Fig. 5B). Time lapse imaging revealed 

that FP-HSP47RNGL was present in many FP-proα1(I)/α2(I) transport vesicles (Fig. 5C; 

Movie 6 and 7). Apparently, HSP47 release from the ER and trafficking to cis-Golgi was 

responsible for the Golgi disruption and mislocalization of FP-GM130 in the nucleus. 

This effect might be important for understanding how HSP47 mutations cause osteogenesis 

imperfecta [42, 43], but its detailed analysis is beyond the scope of the present paper and 

will be reported elsewhere.

Identification of vesicle-like structures containing FP-HSP47 and FP-proα1(I)/α2(I)

The observation of FP-HSP47ΔRDEL and FP-HSP47RNGL but not FP-HSP47 in 

procollagen transport vesicles was consistent with HSP47 retention in the ER. If true, this 

interpretation would also mean that vesicle-like structures containing both procollagen and 

HSP47 were either regions of the ER or autophagic structures derived from the ER, as 

suggested by their stochastic, ER-like dynamics.

To validate this deduction, we co-transfected the cells with ER and autophagy markers 

(Fig. 6, Movie 8). Some vesicle-like puncta containing FP-proα1(I)/α2(I) and FP-HSP47 

were indeed colocalized with the ER lumen marker ssFP-KDEL (Fig. 6A, Movie 8) and 

surrounded by ER membrane (Supp. Fig. 1). Almost instantaneous recovery of ssFP-KDEL 

fluorescence after photobleaching in these puncta indicated that they were vesicle-like 

regions of ER lumen connected to the ER network rather than actual vesicles (Fig. 6A, 

Movie 8). Slower fluorescence recovery of FP-HSP47 and FP-procollagen was consistent 

with larger size and therefore slower diffusion of these molecules (Fig. 7C). Other 

procollagen/HSP47 puncta were autophagic structures colocalized with and/or surrounded 

by the lysosome and late endosome membrane marker FP-LAMP1 (Fig. 6B, Supp. Fig. 4), 

which could be formed by lysosomal engulfment of ER exit sites (ERES) [37], lysosomal 

engulfment of ER lumen [44], or ER-phagy [45]. Correlative light and electron microscopy 

supported the existence of ERESs engulfed by lysosomal membranes (Supp. Fig. 4 and Fig. 

7 in Ref. [37]) as well as vesicle-like ER lumen regions containing procollagen (Supp. Fig. 

4). These structures were not procollagen transport vesicles, yet static snapshots of such 

structures could be misinterpreted as transport vesicles.

We next revisited a frequently cited observation of accumulation of vesicle-like procollagen/

HSP47 structures after Golgi disruption by brefeldin A (BFA), which was interpreted as 

accumulation of transport vesicles that had nowhere to go [35]. We similarly observed 

accumulation of spherical, vesicle-like puncta containing FP-HSP47 and FP-proα1(I)/α2(I) 

after 1 h treatment with 5 μg/ml BFA (Fig. 7A, Supp. Fig. 5). However, these puncta were 

colocalized with ssFP-KDEL. Nearly instantaneous recovery of ssFP-KDEL fluorescence 

after their photobleaching revealed that they were vesicle-like ER regions rather than 

transport vesicles (Fig. 7C, Movie 9). Instead of accumulation, BFA caused disappearance of 
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transport vesicles (Fig. 7A). Consistently, in cells expressing FP-HSP47RNGL, BFA caused 

accumulation of vesicle-like ER regions containing ssFP-KDEL and disappearance of Golgi 

and transport vesicles containing just FP-proα1(I)/α2(I) and FP-HSP47RNGL (Fig. 7B).

In addition to HSP47 retention in the ER, these effects suggested dependence of procollagen 

export from the ER on activation of ARF1 GTPase by GDP→GTP exchange, since BFA is 

an inhibitor of this exchange [46, 47]. Given that GDP→GTP exchange activates membrane 

attachment of ARF1 and COPI coatomer recruitment, we examined ARF1 localization in 

cells co-transfected with FP-ARF1, FP-proα2(I), and FP-SEC23 (Supp. Fig. 6). Outside of 

the Golgi area, we found numerous punctate ARF1 structures, ~ 50±8% of which were 

colocalized with procollagen and most of which appeared to be associated with ERESs.

FP-HSP47 and FP-proα1(I)/α2(I) co-localization with ERGIC53

How could we reconcile the evidence pointing to HSP47 retention in the ER with the 

preferential HSP47 binding to natively folded procollagen in the ER? One hint is the 

putative role of HSP47 as an adapter for procollagen loading into the ERES by TANGO1 

[32], which suggests that HSP47 might be loaded into ERESs as well. Indeed, colocalization 

of FP-HSP47, FP-proα1(I)/α2(I), and COPII coat marker FP-SEC23 in punctate structures 

supported the entry of HSP47 into ERESs together with procollagen (Fig. 8A, Movie 10). 

Subsequent formation of transport intermediates at ERES could then be preceded by HSP47 

release and retrieval back to the ER (enabled by distinct ERES environment).

To test the latter hypothesis, we created, validated, and imaged the intracellular localization 

and dynamics of a fluorescently tagged membrane marker FP-ERGIC53 (Supp. Fig. 

2A). This membrane protein is known to cycle between the ER and Golgi in transport 

intermediates believed to have reduced pH [48]. Live cell imaging showed FP-ERGIC53 

was colocalized with procollagen in the area of cis-Golgi, at ERESs (including ones located 

far from the Golgi, Fig. 8B,C), and in procollagen transport intermediates destined for Golgi 

that exhibited rapid directional motion (Fig. 8D, Movie 11, Supp. Fig. 7A). FP-ERGIC53 

labeling identified ER-Golgi transport intermediates that could not be traced to their origin 

or destination, distinguishing them from secretory vesicles. FP-HSP47 was detected in 

fewer than 1±3% of these intermediates and only in cells with higher FP-HSP47 expression 

(Supp. Fig. 7C). In contrast, FP-HSP47RNGL was detected in over 90±12% of procollagen 

transport intermediates regardless of FP-HSP47RNGL expression level (Fig. 8E, Movie 12, 

Supp. Fig. 7B). Therefore, HSP47 appeared to be only leaking rather than co-transported 

with procollagen to Golgi.

Discussion

Because HSP47 was shown to be a collagen-specific ER chaperone and its mutations 

were found to cause severe osteogenesis imperfecta with pronounced bone fragility and 

deformities, its interactions with procollagen have been extensively studied. Multiple 

observations have suggested co-trafficking of procollagen with bound HSP47, release of 

HSP47 at reduced pH in cis-Golgi (or ERGIC), and return to the ER by retrograde transport 

[25, 26].
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We tested this hypothesis by imaging trafficking of fluorescently tagged type I procollagen 

and HSP47 in live MC3T3 osteoblasts with up to ~120 nm spatial and 500 ms/frame 

time resolution. Unlike previous snapshots of fixed cells, time lapse imaging of live cells 

unequivocally distinguished procollagen transport intermediates from other vesicle-like 

punctate structures based on their directional vs. stochastic motion. Co-transfection of 

the cells with fluorescently tagged protein markers of different subcellular compartments, 

FRAP experiments, and tracking the origin and destination of transport intermediates 

revealed the nature and composition of different vesicle-like structures. Many post-Golgi 

procollagen carriers appeared to be larger and slower than ER-Golgi transport intermediates. 

Nonetheless, to avoid misidentification, we examined the composition of only those 

procollagen transport intermediates that could be traced to their origin, destination, or 

both. To quantify HSP47 content, we identified ER-Golgi procollagen carriers based on 

the presence of FP-ERGIC53 (observed in most ER-Golgi transport intermediates; Fig. 8, 

Supp. Fig. 7, Movies 11, 12, S2, S3). Multiple control experiments revealed no artifacts or 

off-target effects of low-to-moderate expression of the FP-tagged constructs in MC3T3 cells 

within 24 h of transfection.

Our observations suggest that HSP47 is released from procollagen before rather than after 

procollagen transport intermediate fission from ERESs (Fig. 9) and that the RDEL sequence 

in HSP47 prevents the protein from being exported from the ER in such intermediates. 

The bona fide transport intermediates contained only procollagen and ERGIC53, emerged 

from ERESs, exhibited characteristic directional motion consistent with movement along 

microtubules, and merged into the cis-Golgi (Figs. 3 and 8A–C; Movies 1–5, 10, and 11). 

Their composition and dynamics were consistent with the previously described ERGIC-like 

carriers transporting proteins to the cis-Golgi [49, 50]. With very few exceptions (< 1±3%), 

we observed no detectable HSP47 in these or any other (Fig. 4, Supp. Fig. 3, Movies 1–5) 

procollagen transport intermediates in the secretory pathway, unless the ER localization 

sequence RDEL of HSP47 was either deleted or mutated to RNGL (Figs. 5, 8E; Supp. Fig. 

7B; Movies 6,7, and 12). We observed colocalization of procollagen, HSP47, and COPII 

proteins in a variety of vesicle-like structures, some of which had similar appearance to 

structures interpreted by other studies as procollagen transport vesicles in various human cell 

lines [6, 51]. In MC3T3 cells, all these structures exhibited slow, limited, stochastic motion 

and none of them merged into the cis-Golgi (Fig. 8A and Movie 10). These structures 

were either LAMP1-negative ER exit sites (Fig. 8A), larger dilated ER regions (some 

decorated with COPII-coated ERES), or LAMP1-positive autophagic structures (Fig. 6B), 

as illustrated in Fig. 9. We previously reported that all procollagen/COPII puncta that also 

contained ubiquitin, CUL3, or KLHL12 were positive for LC3, LAMP1, or both, indicating 

that they were degradative autophagic structures rather than secretory transport vesicles [37]. 

In this earlier study we found no evidence of directionally moving procollagen transport 

vesicles destined for Golgi that were marked by COPII, CUL3, or KLHL12.

We have also found the export of procollagen transport intermediates from the ER to be 

ARF1 GTPase dependent. In immunofluorescence studies, vesicle-like procollagen/HSP47 

[35, 36] or TANGO1/HSP47 [6] structures formed after SAR1 and ARF1 inhibition with 

GTPγS [36], ARF1 inhibition with brefeldin A (BFA) [35], COPI knockdown [6], or 

ARF1 Q71L transfection [6] were interpreted as transport intermediates containing HSP47. 
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We reproduced the accumulation of such structures after BFA treatment (Fig. 7), which 

prevents GDP→GTP exchange at ARF1 and thereby ARF1 localization at membranes and 

COPI coatomer recruitment [52–54]. However, analysis of their composition, dynamics, and 

FRAP suggested that BFA blocked the secretory export of procollagen and HSP47 from 

the ER and that these structures were not transport intermediates but mostly dilated ER 

regions plus some ERESs and lysosomes (Figs. 6 and 7, Movies 8 and 9). At the same 

time, we previously found that BFA did not impede procollagen delivery from the ER to 

lysosomes for degradation (Fig. S3 in Ref. [37]). In the absence of BFA, we observed ARF1 

colocalization with procollagen within elongated structures adjacent to COPII at ERES, 

which are consistent with transport intermediate precursors (Supp. Fig. 6). From quantitative 

analysis of N=9 cells in 3 such experiments with different FP combinations, we estimate that 

~ 50±8 % of punctate ARF1 structures outside Golgi contain procollagen.

Taken together, these observations suggest that HSP47 release is accompanied by ARF1 and 

COPI dependent formation of procollagen transport intermediates at distal ERES regions 

(Fig. 9). This hypothesis is consistent with recent reports of COPII and TANGO1 rings 

at the ER-ERES interface [55, 56], suggesting that only procollagen entry into the ERES 

but not its exit might be COPII and TANGO1 dependent [1]. It provides an alternative 

to ERGIC intermediates believed to form from COPII vesicles that bud from ERESs and 

lose their COPII coats [10, 57], consistent with a recent observation of long tubular ERES 

membranes interacting with COPI proteins [58]. Another possible interpretation of ARF1-

dependent procollagen transport intermediates that contain ERGIC53 but not HSP47 is that 

these intermediates form upon fusion of ERGIC membranes with ERES [7]. Our findings 

are consistent with the latter study, yet we propose a somewhat different point of view. 

We do see ARF1 structures that do not contain procollagen adjacent to SEC23 at ERES 

(Supp. Fig. 6). They might be arriving retrograde transport intermediates [59, 60] or ERGIC 

membranes fusing with ERES [7]. We cannot distinguish the two interpretations and we 

are not sure that there is a substantive difference between them. None of the transport 

intermediates we tracked in this study stopped over at a distinct ERGIC compartment 

between ERES and cis-Golgi and none appeared to change their size or intensity, consistent 

with previously reported VSVG trafficking [61, 62]. Therefore, we lean toward viewing 

transport intermediates as having all the attributes typically associated with ERGIC [61, 62]. 

However, our data can be interpreted in either way.

Some of the questions raised by our study will have to be answered by future work that 

might require additional development of live cell imaging and other technologies. Indeed, 

it is presently unclear whether HSP47 dissociation from procollagen at ERES is mediated 

by reduced pH or other features of the ERES environment. We also do not know whether 

the procollagen transport intermediates we observed are rapidly moving vesicles like the 

megacarriers proposed by Santos et al [7], short tubular connections between the cis-Golgi 

and proximal ER like the short-loop connections proposed by McCaughey et al [9], long 

tubular regions of ERES membranes proposed by Weigel et al. [58], or all of the above. The 

existing technology might not be able to clearly answer these questions. On one hand, the 

time resolution required for visualizing highly dynamic transport intermediates necessitates 

imaging a single z-slice, in which tubular intermediates could be easily confused with 

transport vesicles (given that procollagen flow could occur in discrete bursts). On the 
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other hand, the spatial resolution required for visualizing such structures in 3D necessitates 

imaging of fixed/frozen specimens, in which the dynamics can be only deduced but not 

shown. Nonetheless, we believe that a consistent picture of secretory procollagen trafficking 

is beginning to emerge.

Overall, our observations provide the following mechanistic insights into ER-Golgi 

procollagen trafficking and the role of HSP47 in this process. Type I procollagen and HSP47 

appear to be separated at ERESs followed by ARF1-dependent formation of Golgi-destined 

procollagen transport intermediates that contain ERGIC53 but no COPII coat and no HSP47. 

Perhaps the release of HSP47 enables entry of procollagen from ERES into transport 

intermediates, like the release of general ER chaperones enables entry of folded proteins 

from the ER lumen into ERES. This hypothesis is consistent with HSP47 retention at 

ERES by RDEL receptors and degradative targeting of procollagen together with HSP47 to 

lysosomes from ERESs. However, it has not been validated yet and its experimental testing 

is ongoing, e.g. the identity of the RDEL receptors for HSP47 and their relationship to cis-

Golgi KDEL/RDEL receptors are presently unknown. In MC3T3 cells, HSP47 is exported 

from ERESs into the degradative but not secretory pathway, although some molecules likely 

escape this ERES sorting process and travel to the cis-Golgi, particularly under conditions 

of increased HSP47 expression or cell stress. Like general ER chaperones escaping from the 

ER lumen, the latter HSP47 molecules would then be captured by cis-Golgi KDEL/RDEL 

receptors and returned to the ER by retrograde transport. In the absence of cell stress or 

RDEL mutations, HSP47 leakage to cis-Golgi was detectable only in <1±3% of procollagen 

transport intermediates in a few cells with higher levels of FP-HSP47 expression. We do not 

know whether cells other than MC3T3 have a different mechanism for HSP47 release and 

procollagen export from ERES and whether other collagen types are trafficked similar to 

type I procollagen. Osteoblasts could be utilizing Golgi for HSP47 retrieval only as a backup 

(to capture molecules missed by the ERES sorting), because they produce more procollagen 

than other cells. However, from an evolutionary perspective, the ERES procollagen/HSP47 

sorting and export mechanisms are unlikely to be collagen type or cell specific.

Experimental procedures

Cell lines and primary cell culture

MC3T3-E1 Subclone 4 osteoblastic cell lines, acquired from ATCC (ATCC CRL-2594), 

were cultured in αMEM + Glutamax (GIBCO 32571–036) and supplemented with 10% 

fetal bovine serum (FBS, Sigma Aldrich) and 1% Penn/Strep (Corning). To stimulate 

procollagen synthesis and secretion, 100 μM ascorbic acid 2-phospate (Sigma Aldrich) was 

supplemented during transfection, 12–24 h before imaging.

Constructs.—Constructs for fluorescently tagged proteins FP-proα2(I), FP-proα1(I), 

GM130-FP, Ii33-FP, LAMP1-FP, and FP-SEC23 and ssFP-KDEL have been previously 

described in [37]. Additional validation of LAMP1-FP and FP-SEC23 markers is illustrated 

in Supp. Fig. 2. ER lumen marker ssFP-KDEL constructs (FPs with N-terminal signal 

sequence (ss) for ER targeting and translocation plus C-terminal KDEL for ER retention) 

were modified from mEmerald-ER-3, a gift from Michael Davidson, Florida State 
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University, Tallahassee, FL (Addgene 54082). The FP-HSP47 constructs were generated 

by placing the FP cDNA after the ER signal sequence, before the first amino acid of HSP47. 

In FP-HSP47ΔRDEL and FP-HSP47RNGL, the C-terminal RDEL sequence was either 

deleted (ΔRDEL) or mutated to RNGL using Quickchange-XL site-directed mutagenesis 

kit (Agilent). The fluorescently tagged FP-ERGIC53 constructs were modified from pMXs-

IP spGFP-ERGIC53 (a gift from Noburu Mizushima, Addgene plasmid # 38270). For 

generation of these constructs, the following plasmids encoding fluorescent proteins (FPs) 

were utilized: eGFP-N1/C1 (GFP), mCherry-N1/C1 (Cherry), Halo-N1/C1 (Halo), mApple-

N1/C1 (Apple), mVenus-N1/C1 (Venus), mCerulean-N1/C1 (Cerulean), mTagBFP2-N1/C1 

(TagBFP2). Janelia Fluor Dye 646 was utilized for marking Halo-tagged molecules as 

described in [63, 64].

GFP or Venus-tagged FP-proα2(I) and FP-proα1(I) displayed a low transfection efficiency 

but were otherwise normally trafficked through the cell and secreted. Specifically, low-

to-moderate expression of FP-procollagen appeared to have minimal or no impact on 

procollagen synthesis, localization inside the cell, trafficking, or cell function within 24 

h of transfection. Over-transfected cells with high expression of FP-procollagen appeared to 

accumulate large procollagen pools within the ER lumen, causing severe ER dilation (Supp. 

Fig. 1). In cells with low-to-moderate expression of FP-procollagen, such procollagen 

pools usually did not accumulate during the first 24 h after transfection. Therefore, 

imaging experiments were performed within 12–24 h after transfection only with the latter 

cells. TagBFP2, Cerulean or Apple-procollagen constructs had similar features but lower 

transfection efficiencies. Cherry-procollagen was not used for this study, because it exhibited 

abnormal localization patterns inside the cell (likely caused by Cherry dimerization).

Transfection and treatments.—MC3T3 cells were transiently transfected with Fugene 

6 (Promega) using the manufacturer’s protocols. The DNA:Fugene ratio was optimized for 

MC3T3 cells, as was the total DNA:Fugene concentration in the cell culture media. Due to 

rapid MC3T3 proliferation, the cell density at the time of transfection was optimized as well, 

with 50–60% confluence being an ideal timepoint for 12–24 h transfection without cells 

becoming overconfluent. During transfection, cells were incubated with αMEM + Glutamax 

media supplemented with 100 μM ascorbic acid 2-phoshate (Sigma Aldrich) and 10% FBS 

from Valley Biomedical (Lot #2C0550 tested for supporting osteoblast differentiation). Cells 

were then imaged 12–24 h after the transfection. Brefeldin A (Cell Signaling) treatment was 

performed by adding an equal volume of 2x solution (in the same media with ascorbic acid 

2-phoshate) to chamber slides at the timepoints indicated in the text, resulting in 5 μg/ml 

final concentration.

Immunofluorescence

Cells were fixed for 10–15 min in freshly prepared methanol-free 2% formaldehyde 

(Thermo Fisher Scientific) solution in phosphate buffered saline, pH 7.4 (PBS), washed 

in PBS, permeabilized in 0.4% Triton X in PBS for 10min, and returned to PBS. After 30 

min blocking in 3% BSA in PBS, cells were incubated overnight at 4 °C with primary 

antibody diluted in the same blocking buffer, then washed, and incubated for 30–60 

min at room temperature with secondary Alexa-Fluor-labeled antibodies (Thermo Fisher 

Omari et al. Page 11

Matrix Biol. Author manuscript; available in PMC 2022 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scientific) diluted with 1.5% BSA in PBS. After the final PBS wash, cells were either 

imaged immediately or mounted with Prolong Diamond Antifade with DAPI (Thermo 

Fisher Scientific) for subsequent imaging. The following primary antibodies were utilized 

(1:100–1:200): anti-HSP47 - Enzo LifeSciences (M16.10A1); anti-LMAN1 (ERGIC53) – 

Abcam (ab125006); anti-SEC31 – BD BioSciences (612351).

Imaging and image processing.—Live or fixed cell imaging and correlative light 

and electron microscopy (CLEM) were performed as previously described in [37]. Live 

cell imaging was performed using temperature-controlled incubation stage set to maintain 

37°C and 5% CO2. Photobleaching experiments were performed with 10–30% laser power, 

with 405, 488, 514, or 561 nm lasers, as needed. Except for FRAP data, all time lapse 

sequences and videos were corrected for photobleaching using a Bleach Correction plugin 

with histogram matching within the FIJI image processing package [65]. Images were 

enhanced using linear brightness and contrast controls without any additional modification.

Immunoprecipitation

Immunoprecipitation of GFP-HSP47 was performed using anti-GFP bead system (μMACS, 

Miltenyi Biotec) according to manufacturer’s protocols with 25–30 μl magnetic beads per 

1ml lysate. Degassed lysis buffer containing 150 mM NaCl, 50 mM Tris, 1% NP-40, 

5 mM EDTA, protease inhibitors (5mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 5 

mM benzamidine, 10 mM N-ethylmaleimide), pH 7.5 was used instead of the manufacturer-

supplied lysis buffer. All steps were performed at room temperature rather than 4 °C, 

to prevent gelation of incompletely folded procollagen. Western Blots were performed 

as previously described in [34, 53] with the following antibodies: anti-HSP47, 1:2000, 

Enzo LifeSciences (M16.10A1); anti-proα1(I), 1:1000 (LF-42, a gift from L. Fisher, 

Kerafast ENH017-FP); anti-GFP, 1:1000 – 1:2000 (Alexa Fluor 647 Conjugate), Invitrogen 

(A-31852); anti-Vinculin, 1:1000, Sigma (V284).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ERGIC ER Golgi Intermediate Compartment

BFA Brefeldin A

FP fluorescent protein

FRAP Fluorescence Recovery After Photobleaching
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Highlights

• 120 nm, 500 ms/frame imaging of live osteoblasts identifies ER-Golgi 

procollagen carriers

• ER-Golgi procollagen carriers contain ERGIC protein ERGIC53 but not 

HSP47

• HSP47 is released from procollagen at ER exit sites rather than ERGIC or 

cis-Golgi

• Procollagen carrier formation requires GDP to GTP exchange at ARF1 

GTPase
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Fig. 1. Fluorescent protein-tagged HSP47 (FP-HSP47) interacts with procollagen and colocalizes 
with endogenous HSP47.
(A) Western blots of cell lysates before and after IP of GFP-HSP47 with Anti-GFP 

beads. Green arrow shows transfected GFP-HSP47; red arrow shows endogenous HSP47. 

Significant enrichment of procollagen relative to vinculin on the beads revealed that it 

co-immunoprecipitated with GFP-HSP47. Since the estimated procollagen concentration 

in cell lysates was lower than 1 μM and HSP47 binds procollagen with Kd ~ 1–10 μM 

[30], the co-immunoprecipitation indicated minimal or no disruption of HSP47-procollagen 

interaction by the fluorescent tag in GFP-HSP47. Because multiple endogenous HSP47 and 

GFP-HSP47 molecules would be bound to the same procollagen triple helix, a significant 

amount of endogenous HSP47 was found on the Anti-GFP beads. (B) Confocal imaging 

of colocalization between two FP-HSP47 constructs co-transfected into MC3T3 cells and 

HSP47 antibodies that label both transfected and endogenous HSP47. All spots labeled 

with anti-HSP47 were also positive for GFP-HSP47 and Cherry-HSP47, indicating complete 

colocalization of transfected and endogenous molecules in all subcellular compartments. 

Variations in relative fluorescence intensity of different tags are affected by antibody 

accessibility, uneven photobleaching during sample preparation and imaging, and other 

uncontrolled factors. Here and throughout the paper, different channels in multichannel 

images are merged using RGB pseudo color scheme and the corresponding color labels for 

individual channels. The scale bar is 10 μm; N=6 cells were examined.
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Fig. 2. FP-HSP47 colocalizes with procollagen in the ER but does not colocalize with the cis-
Golgi marker GM130.
(A,B) MC3T3 cells transfected with Cherry-HSP47, Venus-proα1(I) (A) or Venus-proα2(I) 

(B), and marker of ER lumen (ssCFP-KDEL). (C,D) MC3T3 cells transfected with Cherry-

HSP47 (C) or TagBFP2-HSP47 (D), Venus-proα1(I) (C) or GFP-proα2(I) (D) and marker 

of cis-Golgi CFP-GM130 (C) or Cherry-GM130 (D). Switching of the fluorescent tag colors 

in different images illustrates that each of these and subsequent experiments were performed 

with different combinations of fluorescent tag colors, to eliminate potential tag-specific 

effects. Arrows mark Golgi structures containing procollagen. All images are Airyscan 

(A,B) or confocal (C,D) single slices; scale bars = 10 μm (full cell) and 1 μm (zoomed 

areas); N≥20 (≥4 experiments with different FP combinations) for each panel.
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Fig. 3, Movies 1,2. FP-HSP47 is not found in FP-procollagen-positive transport vesicles entering 
cis-Golgi.
(A, Movie 1) Individual frames and time-lapse video of a cell transfected with Cherry-

HSP47, Venus-proα1(I) and CFP-GM130 before and after Cherry-HSP47 and Venus-

proα1(I) were photobleached from Golgi region. (B, Movie 2) Frames and time-lapse video 

of a cell transfected with TagBFP2-HSP47, GFP-proα2(I) and Cherry-GM130 before and 

after TagBFP2-HSP47 and GFP-proα2(I) were photobleached from Golgi region. Arrows 

in post-FRAP frames (A, B) mark Golgi-destined procollagen transport vesicles identified 

by time-lapse imagining (white circles in Movies 1,2). Arrowheads in pre-FRAP whole-cell 

images point to some of the vesicle-like procollagen/HSP47 structures (magenta circles) that 

exhibit limited stochastic motion. The images are confocal single slices; scale bars = 10 μm 

(whole cell) and = 1 μm (zoom); N≥15 (3 experiments with different FP combinations) for 

each panel. (Movie 2) White circle outlines the ER-to-Golgi movement of 3 procollagen 

transport vesicles, none of which contain HSP47.
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Fig. 4, Movies 3,4. Dynamics of vesicle-like FP-HSP47 structures resembles stochastic 
fluctuations of the reticular ER network but not rapid directional movement of FP-procollagen 
transport vesicles.
(A, Movie 3) Confocal single slice frame and 2s/frame time-lapse video of a cell transfected 

with GFP-proα1(I) and Apple-HSP47. (B, Movie 4) Airyscan single slice frame and 1 

s/frame video of a cell transfected with Venus-proα2(I) and Cherry-HSP47. Some of 

procollagen transport vesicles identified by rapid directional movement are outlined by 

white circles in the time-lapse videos and also marked by arrows in the still frames. These 

transport intermediates contain procollagen but not HSP47. Stochastically moving vesicle-
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like structures containing procollagen and HSP47 are outlined by magenta circles in the 

videos and also marked by arrowheads in the still frames. Scale bars = 10 μm (whole cell) 

and = 1 μm (zoom); N>70 (≥14 experiments with different FP combinations) for each panel.
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Fig. 5, Movies 6,7. Deletion of RDEL and RDEL→RNGL mutation release HSP47 from the ER 
to cis-Golgi, causing Golgi disruption.
(A) Airyscan colocalization of Cherry-HSP47ΔRDEL with Venus-proα1(I)/α2(I) and cis-

Golgi marker CFP-GM130 (white arrows); N=4 (proα1(I)) and N=4 (proα2(I)). Based 

on imaging of several z-slices, large CFP-GM130 spheres (arrowhead) are located inside 

the nuclei. At least some Golgi fragmentation was noticeable in all cells transfected with 

Cherry-HSP47ΔRDEL. (B) Airyscan colocalization of Cherry-HSP47RNGL with Venus-

proα1(I)/α2(I) and cis-Golgi marker CFP-GM130 (white arrows); N=19 (proα1(I)) and 

Omari et al. Page 23

Matrix Biol. Author manuscript; available in PMC 2022 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



N=7 (proα2(I)). In these cells, Golgi fragmentation was less pronounced. The nuclear CFP-

GM130 spheres (arrowhead) were smaller and absent from some of the cells. (C, Movie 

6) Confocal single slice frame and time-lapse video of Apple-HSP47RNGL colocalization 

with GFP-proα1(I)in transport vesicles marked by arrows in the still frame; N=63 (14 

experiments). (D, Movie 7) Airyscan single slice frame and video of similar colocalization 

of Cherry-HSP47RNGL with Venus-proα2(I); N=18 (3 experiments). Scale bars = 10 μm 

(whole cell) and = 1 μm (zoom).
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Fig. 6, Movie 8. Vesicle-like structures containing procollagen and HSP47 inside ER lumen and 
lysosomal membranes.
(A, Movie 8) Airyscan single slice frames and time-lapse video of colocalization of Venus-

proα1(I), Cherry-HSP47, and ssCFP-KDEL in vesicle-like structures inside ER lumen and 

fluorescence recovery of these markers after photobleaching (FRAP); N=18 (3 experiments). 

Zoomed still frames show the same area as the inset in Movie 8. In these zoomed frames, 

3 vesicle-like structures marked by Venus-proα1(I), Cherry-HSP47, and ssCFP-KDEL are 

traced by thin white lines. One of these structures is also highlighted by a white circle in 

the movie inset. The bright green structure in 45 s and 1 min frames is likely a procollagen 

transport vesicle containing no Cherry-HSP47 and no ssCFP-KDEL, which entered the 

field of view between 30 and 45 s post-bleaching (the 15s/frame imaging rate in this 

experiment was not fast enough for more definitive identification). Quantitative analysis of 

FRAP kinetics in shown in Fig. 7C with and without BFA treatment. (B, C) 3D Airyscan 

imaging of Venus-proα1(I) and Cherry-HSP47 colocalization in lysosomes/late endosomes 

marked by membrane protein LAMP1-CFP; N=7. (B) A slice from the 3D z-stack shows 

whole cell and zoomed images of vesicle-like structures 1–7, in which Venus-proα1(I) is 

colocalized with LAMP1-CFP. (C) Orthogonal cross-sections of structures 2, 4, 5, 6, and 

7. Structures 2, 4, and 5 were likely formed by direct lysosomal engulfment of ERES [37] 

or ER lumen [44], since they are surrounded by LAMP1-positive lysosomal membrane and 
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contain internalized procollagen, HSP47, and LAMP1. Lysosomes 6 and 7 contain little or 

no internalized HSP47 and thereby might have a different origin, e.g. endocytosis of secreted 

procollagen molecules. Scale bars = 10 μm (whole cell) and = 1 μm (zoom).
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Fig. 7, Movie 9. Golgi disruption by brefeldin A (BFA) causes accumulation of vesicle-like 
regions of ER lumen filled with procollagen and HSP47, which were previously misinterpreted as 
procollagen transport vesicles.
(A) Colocalization of Venus-proα1(I), Cherry-HSP47, and ssCFP-KDEL in vesicle-like 

structures inside ER lumen (white puncta in merged images marked by arrows) and 

accumulation of these structures after 60 min treatment of the same cell with 5 μg/ml 

BFA (bottom panels); N=9. Golgi cisternae (outlined by cyan lines) and likely transport 

vesicle (arrowhead) contain Venus-proα1(I) but not Cherry-HSP47 or ssCFP-KDEL. 

They disappear rather than accumulate after BFA treatment. (Movie 9) Time-lapse video 

of similar Venus-proα1(I)/Cherry-HSP47/ssCFP-KDEL puncta in a different cell after 

BFA treatment shows nearly instantaneous ssCFP-KDEL fluorescence recovery after 

photobleaching, demonstrating that these puncta are integrated within the ER lumen 

network. (B) Similar accumulation of Venus-proα1(I), Cherry-HSP47RNGL, and ssCFP-

KDEL in vesicle-like white puncta (arrows) inside ER lumen after 60 min treatment with 5 

μg/ml BFA; N=8. Golgi cisternae (outlined in cyan) and likely transport vesicle (arrowhead) 
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contain Venus-proα1(I) and Cherry-HSP47RNGL but not ssCFP-KDEL. They disappear 

after BFA treatment. (C) FRAP kinetics in vesicle-like structures containing colocalized 

ssCFP-KDEL, Venus-proα1(I)/proα2(I), and Cherry-HSP47; N=3. The images in (A,B) are 

Airyscan single slices; scale bars = 10 μm (whole cell) and = 1 μm (zoom).
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Fig. 8, Movies 10–12. HSP47 entry into ERES and release at ERES regions marked by 
ERGIC53.
(A, Movie 10) Airyscan single slice frame and time-lapse video of GFP-proα1(I), Cherry-

HSP47, and TagBFP2-SEC23 colocalization in punctate structures representing ERES 

(arrows) in the Golgi region (Movie inset and zoomed still frame in top panels) and away 

from the Golgi region (zoomed still frame in bottom panels). Based on larger size and 

slower motion, procollagen carrier appearing at 00:28 s frame in the movie inset is more 

likely a secretory vesicle than ER-Golgi transport intermediate. N=20 (3 experiments). 

(B) Airyscan slice of similar colocalization of Venus-HSP47, Halo-SEC23 and Cerulean-
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ERGIC53 at ERES (arrows); N=6. (C) Airyscan slice of similar colocalization of Venus-

proα2(I), Halo-SEC23, and Cerulean-ERGIC53 at ERES (arrows); N=22 (5 experiments). 

(D, Movie 11) Airyscan single slice frame and time-lapse video of Venus-proα2(I) and 

Cerulean-ERGIC53 colocalization without Cherry-HSP47 in procollagen transport vesicles 

(arrows) and Golgi (white outlines); N=4. (E, Movie 12) Airyscan single slice frame 

and time-lapse video of Venus-proα1(I), Cherry-HSP47RNGL, and Cerulean-ERGIC53 

colocalization in procollagen transport vesicles (arrows) and Golgi (white outlines); N=17 (3 

experiments). Scale bars = 10 μm (whole cell) and = 1 μm (zoom).

Omari et al. Page 30

Matrix Biol. Author manuscript; available in PMC 2022 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. Model of HSP47 and procollagen sorting at ER exit sites (ERES).
Grey structure at the bottom represents interconnected network of rough ER cisternae. 

Procollagen is loaded into ERES together with HSP47, as indicated by colocalization of 

procollagen, HSP47, and SEC23 (Fig. 8A, Movie 10). Maturation of procollagen transport 

intermediate precursors at distal ERES is accompanied by HSP47 release and accumulation 

of ERGIC53, since both ERGIC53 and HSP47 colocalize with procollagen at ERES and 

only ERGIC53 colocalizes with procollagen in Golgi-bound transport intermediates (Fig. 

8, Movies 10–12). Unless its RDEL sequence is deleted or mutated, HSP47 is found in 

< 1±3% ERGIC53/procollagen transport intermediates, indicating that HSP47 is primarily 

returned to the ER from ERES (Supp. Fig. 7C). Only few escaping HSP47 molecules 

are likely to be captured by cis-Golgi KDEL/RDEL receptors and returned to the ER by 

retrograde trafficking. As reported before, ERESs containing misfolded procollagen and 

HSP47 might be engulfed by lysosomes and degraded (ERES microautophagy pathway) 

[37]. Under a microscope, procollagen ERESs (left), dilated ER regions (middle), and ERES 

microautophagy intermediates (right) appear as either small puncta or larger vesicle-like 

structures containing procollagen and HSP47 (Figs. 6 and 7, see also Figs. 1–7 in Ref. [37]). 
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They accumulate upon inhibition of procollagen export from the ER by brefeldin A and are 

easy to confuse with transport vesicles, unless their motion and/or composition is imaged.
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