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Abstract 

Osteosarcoma (OS) is one of the most common primary bone malignant tumors. Osteoclasts have been shown to 
have a valuable role in OS. In the present study, we analyzed the differentiation states of osteoclasts in OS and their 
prognostic significance based on integrated scRNA-seq and bulk RNA-seq data. Osteoclasts in distinct differentiation 
states were characterized, and 661 osteoclasts differentiation-related genes (ODRGs) were obtained. ORDGs in distinct 
differentiation states were enriched in distinct functions and pathways. TPM1, S100A13, LOXL1, PSMD10, ST3GAL4, 
PEF1, SERPINE2, TUBB, FAM207A, TUBA1A, and DCN were identified as the significant survival-predicting ODRGs. We 
successfully developed a risk score model based on these survival-predicting ODRGs. In addition, we generated a 
nomogram applicable for clinical with both ODRGs signatures and clinicopathological parameters, and validated in 
OS cohorts to predict OS patient outcome. This study proposed and verified the important roles of osteoclasts differ-
entiation in the prognosis of patients with OS, suggesting promising therapeutic targets for OS.
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Introduction
As one of the most common primary bone malignant 
tumors [1], the incidence of osteosarcoma (OS) in the 
general population is 2–3 million/year. However, the inci-
dence of OS is higher among adolescents, with a maxi-
mum incidence of 8–11 million per year in adolescents 
aged 15–19  years [2]. The typical symptoms of OS are 
local pain, local swelling, and limited joint movement. 
Due to advances in the treatment of OS in the prelimi-
nary stage, the 5-year survival rate or long-term survival 
rate for patients with OS has been greatly improved 
[3–5]. Unsatisfactorily, this trend of improvement seems 
to have stalled and entered a bottleneck period in the 

past 20  years. Although there have been some reports 
on prognostic predictors for patients with OS, such as 
CBX3 [6], LSINCT5 [7], MCT4 [8], and serum LDH 
[9]. However, the current predictive models are far from 
satisfactory.

The osteoclasts have a unique role in bone resorption 
and play a key role in skeletal pathology with evident 
bone destruction [10]. Osteoclasts are coupled with new 
bone formation synthesized by osteoblasts [11]. Dur-
ing the development of OS, osteoblasts or bone-forming 
cells form or secrete osteoid [12]. Based on the above, 
conventional OS cells are defined as osteoblast cell lines, 
which play an inducible role in osteoclastogenesis by 
secreting osteoclast-inducing factors [10]. Several stud-
ies have shown that osteoclasts have a valuable role in OS 
[13–15]. Moreover, osteoclast-targeted therapy may be 
a better option for OS compared to other bone tumors. 
Bisphosphonates control osteoclasts differentiation, bone 
resorption activity and other functions, and have led to 
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advances in new therapies against bone tumors, such as 
OS [16]. However, it is unclear whether osteoclasts in 
different differentiated states and osteoclasts differenti-
ation-related genes play a role in predicting patient sur-
vival in OS.

Therefore, in this study, we identified two osteoclasts’ 
subsets with different differentiation states using trajec-
tory analysis of scRNA-seq data and identified significant 
osteoclasts differentiation-related genes (ODRGs). Next, 
we investigated these ODRGs and their biological func-
tions. Then, significant prognostic ODRGs were obtained 
and the prognostic risk model was established. Finally, 
a clinically applicable prognostic nomogram for OS 
patients was developed by combining prognostic ODRGs 
with other clinicopathological variables. Our findings 
suggested that ODRGs are significant in the prognos-
tic process and might serve as a promising target for OS 
treatment.

Materials and methods
Data collection
In this study, we analyzed the scRNA-seq and bulk 
RNA-seq data of human OS samples. We obtained 11 
OS samples (GSE152048, Table 1) with scRNA-seq data 
based on the 10X Genomics platform from GEO data-
base (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). We obtained 
the bulk RNA-seq and clinical data of OS samples from 
TARGET database (https://​ocg.​cancer.​gov/​progr​ams/​
target/​data-​matrix), containing 84 samples with survival 
data. Additionally, OS microarray expression data in 
GSE39055 from GEO database was obtained for prog-
nostic risk model validation.

Processing of the scRNA‑seq data
Five primary tumor samples of conventional pathologi-
cal type and 1 lung metastasis sample in the GSE152048 
dataset were used for analysis. The scRNA-seq data was 
analyzed statistically by seurat package [17]. First of all, 
cells with the following conditions were excluded: 1) 
cells with < 300 total detected genes; 2) cells with ≥ 10% 
of mitochondria-expressed genes; and 3) genes detected 

in < 5 cells. Next, the linear regression model was applied 
to normalize gene expression in the remaining cells. 
The batch effect of 5 primary tumor (BC2, BC3, BC5, 
BC6, and BC16) was eliminated using the IntegrateData 
of Seurat package, and the 5 samples were integrated. 
The identification of significantly available dimensions 
was conducted using PCA with the criteria of P < 0.05. 
Afterwards, 30 initial principal components (PCs) were 
dimensionality reduced using the t-distributed stochastic 
neighbor embedding (tSNE) algorithm, and all cells were 
conducted analysis of cluster classification. Cell clusters 
were annotated according to the marker genes obtained 
from the literatures and the CellMarker Database (Sup-
plementary Table 1).

Trajectory analysis and osteoclasts differential related 
genes (ODRGs) identification
Monocle 2 algorithm was used to conduct single-cell 
pseudotime trajectories of the osteoclasts. Single cells 
were arranged in a trajectory with branch points. Cells of 
different branches were thought to have different char-
acteristics of cell differentiation, likewise the cells of the 
same branch were in the same state of differentiation. 
Hereafter, differential expressed genes between branches 
were analyzed, and the differential expressed genes were 
defined as marker genes. ODRGs are osteoclasts cells 
marker genes located in different branches.

GO and KEGG enrichment analysis of branch‑dependent 
ODRGs
GO and KEGG (https://​www.​kegg.​jp/​kegg/​kegg1.​html) 
enrichment analysis of ODRGs on different branches 
was conducted using the Clusterprofiler v3.16.1 [18]. The 
results were presented as bubble plots.

Development and validation of ODRG‑based prognostic 
risk score model
First, in the TARGET OS cohort, the associations 
between ODRGs levels and patient survival were 
assessed using the univariate Cox regression analysis 
(P < 0.05). TARGET OS cohort was first split into training 
and testing datasets, with 58 samples in the training data 
(70%) and 26 samples (30%) in the testing data. Progno-
sis-related genes were first identified using criteria with 
P < 0.05, followed by further screening by Cox-LASSO 
regression analysis with R package glmnet. Finally, the 
prognostic signature of OS based on ODRGs expres-
sions and their relevant coefficients result from above 
analysis were constructed. The formula is as follows: 
Riskscore =

∑N
1
(coef i × expri) , in which “expr” refers to 

the corresponding gene expression, and “coef” refers to 
the regression coefficient calculated by the LASSO analy-
sis. The samples were split into high-risk and low-risk 

Table 1  Details of the osteosarcoma samples used in this study

Sample Type Location Size(cm)

BC2 Primary Femur 5.5*5*3

BC3 Primary Tibia 8*6*6

BC5 Primary Femur 8*7.5*6

BC6 Primary Ulna 7*7*4

BC10 Metastasis(Lung) Femur 3.5*3*2

BC16 Primary Tibia 6*4*2.5

http://www.ncbi.nlm.nih.gov/geo/
https://ocg.cancer.gov/programs/target/data-matrix
https://ocg.cancer.gov/programs/target/data-matrix
https://www.kegg.jp/kegg/kegg1.html
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groups based on the median of Risk score. The overall 
survival difference between the low-risk group and the 
high-risk group was assessed by Kaplan–Meier survival 
assay with log-rank test in the TARGET testing dataset 
and the entire TARGET cohort. Receiver operating char-
acteristic (ROC) curve analysis was applied for evaluating 
the sensitivity and specificity of ODRGs signature. More-
over, univariate and multivariate Cox regression analysis 
were performed to determine whether the prognostic 
value of ODRGs signature was influenced by other clini-
cal features.

GSEA analysis of high‑risk and Low‑risk groups in TARGET 
OS cohort
To explore the differences in gene function in different 
risk groups, the samples of different risk groups were 
analyzed by KEGG enrichment analysis using GSEA.

Verification of signatures based on ODRGs
The data of GSE39055 was used to verify the ODRGs 
signatures. According to the established prognostic risk 
score model, the risk score of each patient was calculated. 

Likewise, the patients were divided into a high-risk group 
and a low-risk group based on the median value. The 
overall survival difference of different groups was evalu-
ated by Kaplan–Meier survival assay with log-rank test. 
Moreover, the receiver operating characteristic (ROC) 
curve was plotted and the area under the curve (AUC) 
was calculated.

Construction and evaluation of nomograms
All the identified independent prognostic parameters 
were applied to construct a prognostic nomogram for the 
1-, 3-, and 5-year survival rates prediction of OS patients 
after univariate and multivariate Cox regression analy-
ses. The calibration plots at 3-, and 5- years graphically 
assessed the discriminative ability of the nomogram.

Statistical Analysis
Kaplan–Meier statistics and log-rank tests were used 
for survival analysis. R software version 3.5.2 and cor-
responding packages were applied for statistical analysis 
and graphical calculations. P < 0.05 was considered to be 
statistically significant.

Fig. 1  A The tSNE algorithm for dimensionality reduction with the 30 PCs, and separate clusters were classified in primary and metastasis tumor 
cells. B Separate clusters of cells in primary and metastasis tumor cells were annotated by literatures and CellMarker according to the composition 
of the marker genes. C Proportion of cell types in primary and metastatic tumor cells
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Fig. 2  A-B Trajectory analysis revealed osteoclasts from primary and metastatic tumor with distinct differentiation patterns. C The t-SNE algorithm 
was conducted based on available significant components. D, E GO and KEGG enrichment analysis of ODRGs in branch I and II were performed
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Results
Identification of clusters in human OS cells using 
scRNA‑seq data reveals high cell heterogeneity
After quality control and batch effect-correction, OS 
scRNA-seq data was normalized. 60,204 genes and 
21,676 cells from OS primary tumor, 19,219 genes and 
15,662 cells from OS metastasis tumor were included 
in the analysis. At the beginning, the determination of 
available dimensions and the screening of related genes 
were performed using the principal component analysis 
(PCA). Here, we selected 30 initial principal components 
(PCs, P < 0.05), followed by t-distributed stochastic neigh-
bor embedding (tSNE) algorithm, which was applied for 
dimensionality reduction of 30 initial PCs. Then, clus-
ter classification analysis was performed on all cells. 17 
separate clusters were found in primary tumor cells, and 
13 separate clusters were identified in metastasis tumor 
cells (Fig. 1A). Afterward, these clusters were annotated 
by cell types based on the expression of marker genes in 
clusters according to the CellMarker database and litera-
tures (Fig. 1B, C). The cells of primary tumor cells were 
annotated as fibroblasts, myeloid cells, osteoblastic cells, 

osteoclasts, endothelial cells, proliferating cells, peri-
cytes, and T cells. And the cells of metastasis tumor were 
annotated as osteoblastic cells, fibroblasts, myeloid cells, 
proliferating cells, mesenchymal stem cells, osteoclasts, 
endothelial cells, and B cells.

Osteoclasts can be divided into two subsets with distinct 
differentiation patterns
All osteoclasts cells from OS were projected onto one 
root and branches I and II by trajectory analysis (Fig. 2A, 
B). The results demonstrated that osteoclasts in the 
primary tumor were mainly located in the branches I, 
whereas osteoclasts in metastatic tumor were mostly 
located in the branches II. The root was distributed by 
osteoclasts from primary tumor. In conventional data 
interpretation, cells of the same branch were generally 
defined as being in the same differentiation state, while 
cells of different branches have different characteristics 
of cell differentiation. Therefore, these osteoclasts marker 
genes located in branches I or II were regarded as osteo-
clasts differentiation related genes (ODRGs). 104 marker 
genes in branches I and 557 marker genes in branches II 

Fig. 3  A Forest plots of 11 significantly survival-related ODRGs. B Ten-fold cross-validation for tuning parameter selection in the LASSO model. 
C LASSO coefficient profiles of the 11 significantly survival-related ODRGs. D The expression of the 11 significant survival-predicting ODRGs in 
osteoclasts
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were identified as ODRGs using differential expression 
analysis (Fig.  2C, Supplementary Fig.  1). The molecular 
functions and pathways of ODRGs in different branches 
were conducted by GO and KEGG enrichment analysis. 
Figure  2D, E confirmed that ODRGs in branch I were 
mainly enriched in neutrophil degranulation, neutro-
phil activation involved in immune response and other 
immune-related pathways, ODRGs in branch II were 
mainly enriched in the extracellular matrix organization, 
extracellular structure organization and other pathways.

Prediction of prognostic ODRGs biomarker
We next investigatedassociations between 661 ODRGs 
andoverall survival in the TARGET dataset by univariate 

analysis (SupplementaryTable  2). TARGET OS cohort 
wasfirst split into training and testing datasets, with 58 
samples in the trainingdata (70%) and 26 samples (30%) 
in the testing data. According to the selectioncriteria 
with a P value < 0.05,85 prognostic associated ODRGs 
were selected out (Supplementary Table 2).Cox-LASSO 
regression analysis was then performed in the TAR-
GET trainingdataset, and 11 significant survival-pre-
dicting ODRGs were identified (Fig.3A-C). The results 
of expression levels of the 11significant survival-pre-
dicting ODRGs in osteoclasts demonstrated that they-
were highly expressed mainly in metastatic tumor cells 
(Fig.3D).

Fig. 4  A Risk score analysis of the significantly survival-related ODRGs signatures in the TARGET OS cohorts were calculated. The upper figure 
showed that risk score curves of the significantly survival-related ODRGs signatures. The bottom figure showed that patient survival status and 
time distributed by the risk score. B Heatmap of 11 significantly survival-related ODRGs. C-D Kaplan–Meier analysis of different risk group in 
training data and testing data. E Prediction the 1-, 3- and 5-year OS rates the based on ODRGs signature in TARGET OS cohorts was performed by 
time-dependent ROC curve analysis
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Prognostic risk model construction
Based on 11 survival-related ODRGs, the prog-
nostic risk model was constructed in TARGET 
training dataset. Its calculation is as follows: risk 
score = -0.3072 × (TPM1 expression level) + 0.2282 × (SER-
PINE2 expression level) + -0.0369 × (TUBA1A 
expression level) + -0.0618 × (DCN expres-
sion level) + 0.2319 × (S100A13 expres-
sion level) + 0.1904 × (ST3GAL4 
expression level) + -0.113 × (LOXL1 expression 
level) + -0.0527 × (TUBB expression level) + -0.0465 × (PEF1 
expression level) + -0.0549 × (PSMD10 expression 
level) + 0.3118 × (FAM207A expression level). According the 
median cutoff value of the risk scores, OS patients were split 
into low risk group and high risk group (Fig. 4A, B). First, 
Kaplan–Meier analysis of high or low risk groups was con-
ducted on training data and testing data in TARGET dataset, 
respectively. It was found that the high-risk group in train-
ing data was obviously associated with shorter survival time 
(P < 0.0001, Fig.  4C). While there was no significant corre-
lation in testing data, which may be related to the lack of a 
sufficient number of samples (P = 0.16, Fig. 4D). To further 
verify whether the prognostic risk score model has a good 

sensitivity and specificity, we conducted receiver operating 
characteristic (ROC) curve analysis of TARGET OS cohorts. 
As shown in the results of Fig. 4E, ODRGs signature served 
as an excellent predictor of 1-, 3- and 5-year OS rates, with 
respective area under the curve (AUC) values of 0.834, 0.792 
and 0.796, respectively.

Moreover, the significant pathways in different risk 
groups in TARGET OS cohorts were investigated using 
the GSEA analysis. 2 KEGG terms and 4 KEGG terms 
were enriched in the high and low risk groups, respec-
tively (Fig. 5A, B).

Additionally, to evaluate the associations between 
risk score and clinical characteristics in TARGET OS 
cohorts, correlation analysis was performed. Correla-
tion analysis demonstrated that risk score was remark-
ably correlated to metastasis (Fig.  6A). There was no 
significant correlation with age, gender or primary site 
(Fig. 6B-D).

Validation of the ODRGs‑based prognostic risk score model
Next, GSE39055 cohort was used to validate the ODRGs-
based prognostic risk score model. First, OS samples in 
GSE39055 cohort were split into high-risk or low-risk 

Fig. 5  A, B GSEA analysis showed the pathways enriched in high and low risk groups
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groups according to the above method (Fig.  7A-B). The 
results of the survival analysis were consistent with the 
results in Fig.  4C, where the overall survival rate in the 
high-risk group was notably lower than in the low-risk 
group (P = 0.013, Fig.  7C). The ROC analysis also con-
firmed the sensitivity and specificity of this model in the 
GSE39055 validation data (Fig.  7D). The above findings 
uncovered that the prognostic risk score model based on 
these ODRGs could act as a prognostic predictor for OS 
patients.

Development and validation of the clinically 
applicable prognostic nomogram with the risk score 
and clinicopathological parameters
The event of whether the prognostic value of risk score 
was influenced by other clinical features was examined 
using univariate and multivariate Cox regression analy-
sis (Table 2). The risk score was displayed to be indepen-
dently associated with OS in the TARGET cohorts. Based 
on these findings, a clinical prognostic nomogram for 
quantitative prediction of individual overall survival was 

Fig. 6  A-D Correlation analysis of the risk score and metastasis, age, gender or primary site in the TARGET OS cohorts
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developed. Age, gender, metastasis, primary site, and the 
risk score were included in the final OS prediction model 
(Fig. 8A). The calibration plots in Fig. 8B-C demonstrated 
that predicted 3-, 5-year OS rates were consistent with 
the actual observations in the TARGET cohorts to a large 
extent. Combining the above results, the prognostic nomo-
gram for overall survival prediction is reliable and could be 
applied in OS patients.

Discussion
Intratumoral heterogeneity refers to the different char-
acteristic of cells with different molecular signatures or 
differentiation states in a single tumor [19]. At present, 
intratumoral heterogeneity plays an increasingly impor-
tant role in tumor treatment, and there is an urgent 
need to explore cell heterogeneity in osteosarcoma (OS) 
and related molecular markers using new techniques 

Fig. 7  A Risk score analysis of the significantly survival-related ODRGs signatures in the TARGET OS cohorts were calculated. The upper figure 
showed that risk score curves of the significantly survival-related ODRGs signatures. The bottom figure showed that patient survival status and 
time distributed by the risk score. B Heatmap of 11 significantly survival-related ODRGs. C Kaplan–Meier analysis of different risk group in GSE39055 
cohort. D The 1- and 3-year OS rates based on ODRGs signature in GSE39055 cohort were predicted by time-dependent ROC curve analysis
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[20]. Currently, a few studies have explored the osteo-
clast differentiation in OS, osteoporosis, rheumatoid 
arthritis, and other diseases by experiments [21–23]. 
However, cell or animal experiments still have some 
shortcomings. For example, animal models are not able 
to recapitulate the human physiological or pathologi-
cal processes and specificity, 80% of new drug candi-
dates fail to proof their efficacy when tested in human 
[24, 25]. And bone tumors and cancer metastasis mouse 
models with injection of human cancer cells also can-
not mimic the species-specific mechanisms occuring in 
human diseases [26]. Therefore, new technologies are 
needed to conduct research with higher specificity and 
accuracy.

In present study, we determined 17 separate clusters in 
primary tumor cells, and 13 separate clusters in metas-
tasis tumor cells by scRNA-seq. Primary and metastasis 
tumor cells were annotated as different cells. Accord-
ing to the results of cluster annotation of cells, we found 
that fibroblasts, myeloid cells, osteoblasts, osteoclasts, 
endothelial cells and proliferating cells were present in 
both primary and metastatic tumors. The difference is 
that mesenchymal stem cells and B cells were annotated 
in metastatic tumors but not in primary tumors, peri-
cytes and T cells were annotated in primary tumors but 
not in metastatic tumors. For instance, mesenchymal 
stem cells is the major component of the tumor microen-
vironmen (TME) [27], Bone marrow mesenchymal stem 

cells (BMSCs) are mesenchymal stem cells isolated from 
bone marrow. BMSCs are one of the major components 
in the TME of OS and are corroborated to mediate pro-
liferation and metastasis of tumor cells [28–30]. B cell 
responses appear to play an important role in the anti-
tumor immune response in several human tumor types 
[31]. While their evaluation in sarcomas, including OS, 
however, has been limited. In this study, we identified sig-
nificantly elevated B cell infiltrates in metastatic lesions 
compared to primary canine OS [32]. These results sug-
gest that cell types in the TME change during metastasis 
of OS. Then, trajectory analysis was applied to split oste-
oclasts from primary and metastasis tumors into two dis-
tinct differentiation state subsets. The subset-dependent 
ODRGs were identified and GO and KEGG analysis were 
performed. We found that the functions and pathways of 
enrichment were different among different differentiation 
modes.

We used the univariate and Cox-LASSO regression 
analysis with a process of selection to identify 11 sig-
nificant survival-predicting ODRGs. Next, the ODRGs-
based prognostic risk score model was developed, and its 
predictive value of prognosis was validated. Combined 
with the results of Kaplan–Meier analysis, we found that 
high-risk groups were obviously correlated with shorter 
survival times. These results indicated that the prognos-
tic risk score model based on ORDGs could be used for 
patient survival prediction.

Table 2  Univariate and multivariate Cox proportional hazards analyses of clinicopathological variables and risk score in the TARGET 
cohorts

n (%) Univariate analysis
HR (95% CI)

P Multivariate analysis
HR (95% CI)

P

age

   < 18 66(78.57%) 1 (Reference)

    >  = 18 18(21.43%) 0.94 (0.36–2.5) 0.91

Gender

   female 37(44.05%) 1 (Reference)

   male 47(55.95%) 0.72 (0.34–1.5) 0.39

Primary.Site

   Pelvis 2(2.38%)

   Arm/hand 6(7.14%)

   Leg/Foot 76(90.48%) 1.579(0.15–2.70) 0.54

Metastasis

   Non metastasis 63(75%) 1 (Reference)

   Metastasis 21&25%) 4.7 (2.2–10) 7.10E-05 6.8(3.0–15.1) 3.42E-06

RiskScore

   Low 42(50%) 1 (Reference)

   High 42(50%) 14 (4.3–48) 1.40E-05 18.7(5.5–63.5) 2.85E-06
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Some genes in the 11 ODRGs have been found 
to function as prognostic biomarkers in other can-
cers. For instance, increased expression of S100A13 
was strongly associated with worse survival in gas-
tric cancer (GC) patients [33]. In addition, compared 
to para-cancer tissues, S100A13 was expressed at 
higher levels in hepatocellular carcinoma (HCC) tis-
sues, and higher mRNA expressions of S100A13 was 
shown to have shorter overall survival. S100A13 may 
be regarded as a novel prognostic marker in HCC [34]. 
Tropomyosin alpha-1 chain (TPM1), and proteasome 

26S subunit non-ATPase 10 (PSMD10) were the novel 
predictive biomarkers of GC prognosis [35]. Serine 
protease inhibitor E2 (SerpinE2), a poor prognostic 
biomarker of endometrial cancer (EC), promotes the 
proliferation and mobility of EC cells [36]. Decorin 
(DCN) was proved to be a promising predictive bio-
marker for the occurrence and prognosis of lung 
adenocarcinoma by bioinformatics analyses and experi-
ments [37]. Therefore, combined with the past research 
literature, the 11 ODRGs are reasonably believed to be 
a clinical prognostic biomarker.

Fig. 8  A Nomogram model for prognostic prediction of OS patients in the TARGET cohorts. Age, gender, metastasis, primary site, and the risk score 
were included in the prediction model. B, C Calibration plots for prediction of 3- and 5-year survival of OS patients
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As a multivariable regression model, the nomogram is 
applied for predicting clinical outcomes through intui-
tive visual presentations, and has been widely used in 
various studies [38]. In our study, we developed a nom-
ogram for predicting OS patient outcomes through 
ODRGs signature and clinicopathological parameters. 
Followed, this nomogram has high reliability with TAR-
GET cohort. To date, this nomogram in our study is the 
first nomogram that predicts OS patient survival with 
cell differentiation-related signature. Moreover, this 
study provides a basis for clinicians to predict survival 
based on clinicopathological and cell differentiation 
information. However, there are some shortcomings 
in this study. For instance, the clinical parameters of 
the patients (medical records, history and tumor imag-
ing results) were incomplete and therefore were not 
included into the nomogram. In subsequent experi-
ments, it needs to be validated in a large-scale cohort. 
In addition, this study focused on the use of multiple 
analytical methods to identify prognostic markers of OS, 
however, further studies on prognostic markers in ani-
mal or cell experiments are needed in the future.
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