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G E N E T I C S

Reconstructing codependent cellular cross-talk in lung 
adenocarcinoma using REMI
Alice Yu1, Yuanyuan Li1,2, Irene Li3, Michael G. Ozawa4, Christine Yeh1, Aaron E. Chiou1,2, 
Winston L. Trope5, Jonathan Taylor6, Joseph Shrager5†, Sylvia K. Plevritis1,2*

Cellular cross-talk in tissue microenvironments is fundamental to normal and pathological biological processes. 
Global assessment of cell-cell interactions (CCIs) is not yet technically feasible, but computational efforts to recon-
struct these interactions have been proposed. Current computational approaches that identify CCI often make 
the simplifying assumption that pairwise interactions are independent of one another, which can lead to reduced 
accuracy. We present REMI (REgularized Microenvironment Interactome), a graph-based algorithm that predicts 
ligand-receptor (LR) interactions by accounting for LR dependencies on high-dimensional, small–sample size 
datasets. We apply REMI to reconstruct the human lung adenocarcinoma (LUAD) interactome from a bulk 
flow-sorted RNA sequencing dataset, then leverage single-cell transcriptomics data to increase the cell type reso-
lution and identify LR prognostic signatures among tumor-stroma-immune subpopulations. We experimentally 
confirmed colocalization of CTGF:LRP6 among malignant cell subtypes as an interaction predicted to be associated 
with LUAD progression. Our work presents a computational approach to reconstruct interactomes and identify 
clinically relevant CCIs.

INTRODUCTION
Cell-cell interactions between and within the various cell types 
comprising the tissue microenvironment play a fundamental role in 
regulating local and systemic biological and physiological functions 
under normal and pathological conditions. These interactions facilitate 
cooperation or competition between cell types and are typically me-
diated between ligands and receptors. Ligands are often manifested 
as soluble or extracellular proteins that are expressed by the “sending” 
cells and bind onto a cognate receptor on the “receiving” cells (1, 2). 
In tumor microenvironments (TMEs), cellular cross-talk between tu-
mor, stroma, and immune cells orchestrates the establishment of 
preinvasive and invasive niches that enable cancer progression prop-
erties, such as tumor growth, immune evasion, and metastasis. 
Large-scale cellular interactions are difficult to measure using cur-
rent experimental techniques, but several computational approaches 
have been proposed to predict these interactions using -omics data.

A majority of the current computational approaches that use 
high-throughput transcriptomics data to infer cell-cell interactions 
either calculate interaction scores on the basis of gene expression 
permutation tests or implement graph-based approaches (2). In ex-
pression permutation-based approaches, such as CellphoneDB v2.0 
and NATMI, potential ligand and receptor (LR) interactions are 
identified by thresholding the genes on the basis of their expression 
level with the assumption that this predicts higher LR protein abun-
dance (3, 4). Other methods, such as CCCExplorer and NicheNet, 
calculate correlation metrics between the expression levels of the 
ligand, receptor, or downstream signaling pathway genes for each 

LR pair (5, 6). However, a correlation between the expression of li-
gand, receptor, or downstream genes may be capturing an indirect 
association caused by another LR interaction involving the ligand 
or receptor of interest.

While current cross-talk inference approaches provide a valu-
able baseline for synthesizing hypotheses of LR interactions, they do 
not capture the conditional dependencies of LR pairs among multi-
ple cell types. Current approaches make the assumption that pair-
wise interactions are independent, but a pairwise interaction can be 
influenced by other interactions via autocrine and paracrine loops 
(7, 8). Calculating the conditional dependency of LR pairs is often 
an ill-defined problem for high-dimensional datasets generated 
across a small sample size. This challenge is common in -omics data 
analysis because of the large number of parameters (p) and relative-
ly small number of samples (n). To address this challenge, we pres-
ent the algorithm, called REMI (REgularized Microenvironment 
Interactome), to identify communities of dependent LR pairs in 
high-dimensional datasets of small sample size using graph-based 
approaches. We demonstrate the performance of REMI by simulat-
ing datasets with varying sample sizes to show how REMI outper-
forms existing approaches.

To compare REMI to existing interactomes, we focused on re-
constructing the lung adenocarcinoma (LUAD) interactome. Various 
renditions of the LUAD microenvironment have been assembled 
using different computational approaches that have led to novel in-
sights. Kumar et al. (9) built an interactome for LUAD using mouse 
single-cell RNA sequencing (RNA-seq) (scRNA-seq) data, where 
they used a scoring mechanism that captured highly expressed LR 
genes. Gentles et al. (10) created the Lung Tumor Microenviron-
ment Interactome (LTMI) from bulk flow-sorted RNA-seq data by 
thresholding gene expression levels in the dataset and computing 
pairwise correlations between LR genes. We applied REMI to the 
LTMI dataset to reconstruct a rendition of LUAD interactome 
(REMI-LUAD) with higher specificity. We then projected an inde-
pendent LUAD scRNA-seq dataset onto REMI-LUAD to increase 
the cell type resolution of the interactome and referred to this 
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interactome as the single-cell rendition of REMI-LUAD (scREMI-
LUAD). Using scREMI-LUAD, we identified paracrine interactions 
between cell subtypes that were previously annotated as autocrine 
signaling interactions. To derive a signature of LUAD progression 
from scREMI-LUAD, we assigned a prognostic score to each cell 
subtype and identified prognostically associated cross-talk signatures 
that may lead to clinically relevant biomarkers and therapeutic targets. 
In summary, REMI offers a new approach to infer cell-cell interac-
tions between many cell types by accounting for conditional depen-
dencies in cell-cell interactions. REMI is implemented in R and is 
freely available on GitHub (https://github.com/plevritis-lab/REMI).

RESULTS
Impact of correlation versus partial correlation analysis 
on LR pair inference
Many of the current computational approaches use correlation to 
identify likely LR interactions. Here, we show that correlation-based 
analyses can provide high false-positive predictions that are re-
moved when computing the partial correlation. Partial correlation 
removes potential confounding effects from correlation values that 
are caused by another ligand or receptor indirectly affecting the ex-
pression levels of the LR pair of interest. To demonstrate this point, 
we analyzed a publicly available primary LUAD bulk flow-sorted 
RNA-seq dataset, which contains transcriptomic data for four main 
cell types: malignant, fibroblast, endothelial, and pan-immune cells 
(GSE111907) (n = 17 patients) (10). As expected, hierarchical clus-
tering performed on only the genes that expressed ligands and 
receptors grouped the samples by cell type (Fig. 1A). We then con-
structed an LR correlation network, denoted as GLTMI − LUAD, where 
the nodes represent ligand or receptor genes, and an edge between 
an LR pair exists on the basis of the threshold criteria set by Gentles 
et al. (Fig. 1B). The edge weight is set as the Pearson correlation be-
tween the gene expression of the LR.

Because many receptors have multiple potential ligand pairings 
and vice versa, the correlation network is composed of a large dense 
network with small disjoint network components, as indicated in 
Fig. 1B. To infer the conditional dependency of LR pairs within the 
network, we calculated the partial correlation of genes on a small 
disjoint graph, which contains one ligand node (TNFSF10) and two 
receptor nodes (TNFRSF10B and TNFRSF10D) across multiple cell 
types (Fig. 1B). Although simultaneous TNFSF10:TNFRSF10B and 
TNFSF10:TNFRSF10D interactions could occur, one interaction 
plays an agonistic role, while the other plays an antagonistic role (11). 
The binding of TNFSF10 to TNFRSF10B induces cell apoptosis via 
the TRAIL [tumor necrosis factor (TNF)–related apoptosis-inducing 
ligand] pathway, whereas the binding of TNFSF10 to TNFRSF10D 
inhibits the TRAIL pathway (12). If we infer LR interactions on the 
basis of correlation, then the ligand TNFSF10 secreted from the ma-
lignant cell interacts with the receptor TNFRSF10B on malignant 
and fibroblast cells (circled in green), indicating likely apoptosis of 
malignant cells and cancer-associated fibroblasts (Fig. 1C, left). 
This contradicts studies that show protumoral effects of fibroblasts 
and how they can express the decoy receptor to avoid apoptosis 
(13). Instead, by calculating the partial correlation of the LR pairs 
within the circled component, we find more biologically reasonable 
results. On the basis of the partial correlation values, TNFSF10 
expressed by the malignant cells is more likely to interact with 
TNFRSF10B expressed on the immune cells, inducing protumoral 

effects as described in literature (12,  14). This simple analysis 
demonstrates how partial correlation removes confounding effects 
in correlation analysis that may be misleading by reducing positive 
edges when building the interactome (Fig. 1C, right). However, cal-
culating the partial correlation is ill-posed on larger subnetworks 
because of the high dimensionality of many -omics datasets. REMI 
extends this concept onto larger components of the network.

REMI algorithm
We introduce our novel algorithm, REMI, which identifies commu-
nities of conditionally dependent cell-cell interactions to reduce the 
number of false-positive edges in LR correlation–based networks. 
The algorithm is applicable to high-dimensional transcriptomic 
datasets with small sample sizes. REMI is composed of four steps: 
(i) build a weighted undirected LR correlation network leveraging 
known LR pairings, (ii) detect communities of LR groups, (iii) iden-
tify conditionally dependent LR pairs in communities, and (iv) re-
construct the global interactome from the communities (Fig. 2A) 
(Materials and Methods). An additional step in REMI allows for the 
user to measure the significance of an LR pair prediction with re-
spect to the LR pair’s REMI community.

In its first step, REMI generates a weighted bipartite LR network, 
denoted by G, where the nodes represent either a ligand or a recep-
tor gene expressed in a specified cell type within the dataset. Edges 
of G are drawn between literature-supported LR pairings curated 
from the FANTOM5 database (15). Edge weights of G are computed 
as the Pearson correlation between the gene expression of the LR 
nodes (Fig. 2, A and I). Ideally, the conditional dependency of each 
LR pair would be computed with respect to all other nodes in the 
network. However, current high-dimensional transcriptomic data-
sets contain a large number of genes compared to the number of 
samples, which makes the conditional dependency hard to estimate 
with high accuracy.

To reduce the dimensionality of the problem, REMI hierarchi-
cally divides G into groups of densely connected nodes, called com-
munities, using the Louvain community detection method (16). 
Next, REMI identifies conditionally dependent LR pairs in each 
community independently. A covariance matrix between all pairs 
of ligands and receptors is computed for each community, setting 
edges between ligands and edges between receptors as zero (Fig. 2A, 
ii). To identify these conditionally dependent LR edges within a 
community, we use graphical lasso (GLasso), which estimates the 
inverse covariance of the community using a lasso penalty that in-
creases the graph’s sparsity (Fig.  2A, iii) (17). The resulting edge 
weights represent the l1-regularized partial correlation metrics of 
each LR pair within a community, which captures its relationship 
with respect to other LR pairs in the community. For further down-
stream analyses, we analyzed a binarized version of the network, 
denoted as ​​  ​​, reconstructed by aggregating the communities after 
filtering for edges with a positive edge weight.

REMI’s iterative community detection algorithm component al-
lows for community sizes to change for downstream prediction. We 
ran several simulations to test the sensitivity and specificity of vary-
ing community sizes. REMI’s best performance occurs when the 
number of nodes in each community is equal to the sample size (fig. 
S2B). Therefore, REMI hierarchically breaks down large communi-
ties until the size of the communities is approximately equivalent to 
sample size. Communities identified by Louvain are referred to as 
“within communities” (WC). This step prioritizes assigning a node 

https://github.com/plevritis-lab/REMI
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Fig. 1. Network representation of LTMI shows dense components of cognate LR pairs. (A) All LR genes in the LUAD flow-sorted RNA-seq dataset hierarchically clus-
tered. Genes labeled are the most highly expressed genes in the top five percentile. (B) Correlation network of expressed LR pairs from the Gentles et al. dataset. Color of 
nodes represent cell type of gene. Shape of node represents type of gene. Black circle indicates network component used for correlation analysis in panel below. 
(C) Correlation and partial correlation values of the nodes that are found within the black circled component in (B). Correlation matrix values are on the left, and partial 
correlation matrix values are on the right. The text labels of the correlation matrices correspond to the gene’s cell type added in front of the gene name (celltype_name). 
In addition, a colored (cell type) shape (gene function) is placed in front of the text label. Colors correspond to the legend in (B). Bottom dark green circle corresponds to 
M_TNFSF10 labeled at the top of the column. Green circles highlight examples of correlation values that are changed after accounting for confounding variables.
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to a unique community but leaves edges that represent potential LR 
pairs unassigned. REMI creates additional communities to account 
for the newly unassigned edges by aggregating unassigned edges 
that exist between two communities to create “between communi-
ties” (BCs) (fig. S1A). The conditionally dependent WC and BC 
edges are aggregated to reconstruct the interactome (Fig. 2A, iv).

To reconstruct the global interactome from the independent com-
munity calculations, we developed a method to measure the signif-
icance of each computed edge with respect to its community. The 
P value is calculated by randomly permuting the edge weight of the 
LR pair with randomly sampled correlation values. Because multi-
ple correlation values can predict a binary edge in REMI, we build a 
decision tree to sort out which correlation values predict the edge of 
interest. We then sample from our null Wishart distribution, which 
represents a previous covariance matrix distribution, and predict edges 
using the decision tree. Edges predicted using values sampled from 
the null represent our REMI null distribution. We then calculate a 
one-sided P value by measuring the number of null edges that had a 
greater correlation value than the original edge weight. The one-sided 
P value is then converted to a two-sided P value (fig. S1B). Although 
the statistical test is computationally intensive, it can be used for 

determining the presence or absence of the edges when aggregating 
the communities to reconstruct the global interactome.

Testing robustness of REMI parameters via simulations
To assess REMI’s performance with respect to implementing GLasso 
alone, we generated a population-level regularized interactome by 
leveraging the large publicly available Cancer Genome Atlas [The 
Cancer Genome Atlas (TCGA)] LUAD bulk RNA-seq dataset. We 
made the assumption that the 1013 patients in this dataset represent an 
entire population and regularized a network of LR pairs within the 
dataset using GLasso. Because of the large sample size, confounding 
effects for all possible interactions within the microenvironment are 
captured, and the resulting network, denoted as ​​​  ​​ TCGA​​​ (Supplemen-
tary Dataset), contains these conditionally dependent LR pairs.

From the TCGA LUAD cohort, we created randomly subsampled 
cohorts of different sample sizes (n = 15, 25, 50, 100, and 200), gen-
erating 50 cohorts at each sample size. We ran REMI and GLasso on 
each downsampled cohort and compared their performance in terms 
of sensitivity and specificity (Fig. 2, B and C). We found that in larger 
sample sizes (n = 200), REMI and GLasso performed with comparable 
sensitivity (0.93 and 0.90, respectively) and specificity (0.65 and 

REMI algorithm
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Fig. 2. Schematic overview of REMI and simulation studies. (A) Diagram of REMI: (i) A network of potential LR interactions between cell types of interest is built given 
a reference LR database. Nodes represent either ligand or receptor genes. Edges represent known LR pairs. (ii) Network represented as density-based communities. (iii) 
Conditionally independent LR pairs removed: Each community is converted into a graphical Gaussian model, and conditionally independent LR pairs are removed. (iv) 
Conditionally dependent LR pairs across communities are reassembled into global interactome. (B) Simulation studies: Performance of REMI versus GLasso for sample 
sizes n = 15 to 200 when compared to a GLasso interactome derived from the entire LUAD TCGA RNA-seq dataset (n = 1031). Cohorts of various sample sizes were gener-
ated by downsampling TCGA data and then used to compare REMI’s and GLasso’s performance. At each sample size, 50 cohorts were generated. Mean AUC and SD (in 
parentheses) values are generated across the 50 cohorts per sample size. (C) Test performance of REMI compared with other computational cross-talk prediction algo-
rithms. At each sample size, 50 cohorts were generated by randomly sampling TCGA data. Mean AUC and SD (in parentheses) are provided. (D) Average Jaccard indices 
of 50 cohorts per sample size calculated for each method compared to REMI.
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0.74, respectively) (Fig. 2B). As the sample size decreased (n = 15), 
GLasso retained high sensitivity values compared with REMI. GLasso’s 
sensitivity dropped from 0.90 to 0.83, whereas REMI’s sensitivity 
dropped from 0.93 to 0.69. However, REMI retained higher specificity 
than GLasso as the sample size decreased: GLasso’s specificity dropped 
from 0.74 to 0.29 (45% decrease), whereas REMI’s specificity dropped 
from 0.65 to 0.52 (13% decrease). In summary, REMI has higher 
specificity compared with GLasso for datasets with smaller sample 
sizes, which we regard as a preferred property when selecting candidate-
relevant interactions for experimental validation.

To further evaluate the performance of REMI, we ran the same 
simulations and measured the sensitivity and specificity of WC and 
BC REMI predictions as a function of sample size. WCs have a higher 
density compared with BCs and yielded relatively higher sensitivity 
and lower specificity as sample size decreased from n = 200 to n = 15. 
In WCs, sensitivity dropped from 0.93 to 0.75 (18% decrease), and 
specificity dropped from 0.63 to 0.45 (18% decrease). On the other 
hand, BCs performed with relatively lower sensitivity and higher 
specificity as sample size decreased from n = 200 to n = 15. In BCs, 
sensitivity dropped from 0.88 to 0.45 (43%), and specificity stayed 
relatively the same from 0.74 to 0.76 (2% increase) (fig. S2A). Next, 
we considered the effect of the community size on REMI’s perform
ance. REMI’s community sizes are set to be equal to the sample 
size of the dataset. When the number of nodes within a community 
was increased from 2n to 50n times, the density of the communities 
increased and specificity decreased from 0.52 to 0.33 (19%), where-
as sensitivity increased from 0.66 to 0.78 (12%) (fig. S2B). Commu-
nity sizes closer to the sample size of the dataset have increased 

specificity as opposed to larger community sizes, thereby reinforc-
ing REMI’s optimization for specificity.

Next, we compared REMI to current cell-cell interaction compu-
tational inference approaches designed for bulk and scRNA-seq. We 
selected methods that represent the expression permutation-based 
approaches (CellphoneDB v2.0) and network-based approaches 
(NicheNet) and ran the methods on the same simulation (Fig. 2C). 
REMI’s performance ranged from an area under the curve (AUC) of 
0.61 to 0.69 as sample size increased. CellphoneDB v2.0 performed 
with an AUC of 0.53, and NicheNet performed with an AUC of 0.5 
across all cohort sizes. Both methods’ performance did not vary as size 
increased, suggesting that these approaches are more biased toward 
the reference LR network and do not readily adapt to the variations 
seen in the data. We also calculated the Jaccard index of NicheNet and 
CellphoneDB v2.0’s results compared to REMI and found both to be 
low because of the high number of predicted interactions in NicheNet 
and CellphoneDB v2.0. NicheNet’s regression-based approach had 
higher Jaccard indices (0.20 to 0.33) as opposed to CellphoneDB v2.0 
(0.05 to 0.09), showing more similarity between NicheNet and REMI 
rather than CellphoneDB v2.0 and REMI.

Reconstructing LUAD interactome using REMI
We applied REMI to the bulk flow-sorted LUAD RNA-seq cohort to 
reconstruct the REMI-LUAD interactome, with the graph denoted as 
GREMI − LUAD. Compared with GLTMI − LUAD, GREMI − LUAD had 16% fewer 
nodes (V = 868 in LTMI and V = 727 in REMI) and 45% fewer edges 
(E = 2652 in LTMI and E = 1435 in REMI), highlighting the regular-
ization underlying REMI’s approach (Fig. 3A and Supplementary 
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Fig. 3. Reconstructed LUAD TME interactome reveals tumor-stroma–specific communities. (A) Force-directed layout of the REMI-LUAD interactome network. Shape 
of the nodes represent gene function. Color of the node represents cell type as denoted by the legend. (B) Alluvial plot showing the ratio of paracrine and autocrine sig-
naling interactions occurring between cell types. Thickness of lines represent the number of LR pairs. Full table is available in the Supplementary Materials. (C) Distribution 
of number of communities with certain cell type compositions. (D) Top 10 most significant enrichments for genes within the tumor-immune-stroma–specific communi-
ties and tumor-stroma–specific communities. GeneRatio is the ratio of the number of community-specific genes that overlapped with the gene set to the number of 
community-specific genes that overlapped with all the gene sets in the collection. Count represents the number of genes.
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Dataset). REMI-LUAD removed LR edges that were densely con-
nected (average node degree of edges removed = 12) and also iden-
tified a few new LR pairs (fig. S1C). In REMI-LUAD, known lung 
cancer–specific LR pairs were identified, including GREM1:KDR, which 
was experimentally validated between fibroblast and malignant cells 
(10). We observed fewer immune interactions within REMI-LUAD 
than within LTMI-LUAD. We suspect that this is a consequence of 
the greater heterogeneity among the pan-immune cells relative to the 
other three tumor-stroma cell types in the bulk-sorted samples, as 
demonstrated in published scRNA-seq studies (18). Grouping the 
diverse immune-suppressive and immune-reactive TME immune cells 
into a pan-immune group reduced their overall effect in REMI. We 
are reassured by this finding because it would have been challenging 
to interpret interactions of pan-immune cells and other cell types that 
included both tumor-promoting and tumor-suppressing features.

To understand which cell types are interacting in REMI-LUAD, 
we analyzed the cell type composition within each community. 
Majority of the communities were either represented by all cell types 
(E, F, I, and M) (36%) or tumor-stroma cell types (E, F, and M) (25%) 
(Fig. 3C). To assess the phenotypic properties enriched in these 
immune-stroma and stroma communities, we performed Gene Set 
Enrichment Analysis (GSEA) on the LR genes in each community 
separately. Communities with tumor-immune-stroma interactions 
were enriched for cytokines, angiogenesis, extracellular matrix (ECM) 
organization, and leukocyte extravasation. Angiogenesis and ECM 
remodeling are crucial for building a niche architecture for tumor 
growth. Communities with tumor-stroma–specific interactions were 
uniquely enriched for ECM degradation (Fig. 3D). ECM stiffness is 
associated with increased immunosuppression and found to stimulate 
epithelial-to-mesenchymal transformation in the tumor, whereas 
ECM degradation aids in creating paths for cancer cell migration 
(19). Integrins found within REMI-LUAD, in particular, can detect 
ECM mechanical stiffness and assist with cell migration through 
degraded areas (20). Together, our results suggest that REMI-LUAD 
captures cell-cell interactions associated with processes ranging from 
tumor growth to invasion.

Increasing cell type resolution of REMI-LUAD using a 
scRNA-seq LUAD dataset
To increase the cell type resolution of the REMI-LUAD, we ana-
lyzed REMI-LUAD using a publicly available independent scRNA-
seq LUAD dataset from Lambrecht et al. (n = 2 patients; 22,681 total 
cells) (E-MTAB-6149) (21). We reclustered them individually using 
Louvain clustering and applied the annotated cell type labels from the 
manuscript (Fig. 4A). We labeled the immune clusters with broad 
immune cell subtypes as denoted from the manuscript (myeloid, T cells, 
and B cells). For the remaining cell types, we identified five malig-
nant [denoted as M(1), M(2), M(3), M(4), and M(5)], three endo-
thelial [denoted as E(1), E(2), and E(3)], and four fibroblast subtypes 
[denoted as F(1), F(2), F(3), and F(4)] (Fig. 4, B to D, and fig. S3) (22).

To adapt REMI for scRNA-seq data, we averaged each gene’s 
expression across each cell subtype per patient. The Lambrecht et al. 
dataset consists of only two patients with LUAD, which does not 
provide enough power for REMI’s inverse covariance–based calcu-
lations. For this reason, we projected the scRNA-seq cell types onto 
GREMI−LUAD and relabeled the nodes’ cell types on the basis of the 
expression levels in the single-cell dataset. This network is referred 
to as single-cell REMI-LUAD (scREMI-LUAD). For each subpopu-
lation, we filtered for differentially expressed (DE) LR genes that 

had an averaged expression level greater than 0.4 (Fig. 4, A to C). 
Sixty-five percent of the interactions in REMI-LUAD were present in 
scREMI-LUAD, confirming the high expression of these LRs in two 
independent patients. Because many LR genes appear in multiple 
cell subtypes, the number of interactions in scREMI-LUAD is great-
er than in REMI-LUAD, providing potential insight into the extent 
of heterogeneity of the interactome. For example, REMI-LUAD in-
ferred that fibroblasts secrete CYR61, which interacts with ITGB5 on 
fibroblasts, suggestive of autocrine signaling. In scREMI-LUAD, 
CYR61 is expressed in F(2) and ITGB5 in F(4). Hence, the REMI-LUAD 
CYR61:ITGB5 autocrine fibroblast interaction is now redefined as 
a paracrine signaling between different fibroblast cell subtypes in 
scREMI-LUAD (Fig. 4E). Notably, 86% autocrine signaling interac-
tions were converted into paracrine interactions between cell sub-
types (Fig. 4F). This increased number of paracrine interactions 
highlights the extent of the complex cross-talk in the TME.

Inferring disease progression in scREMI-LUAD based 
on subpopulation prognostic significance
To determine which cell-cell interactions may be involved with dis-
ease progression, we computed a prognostic score for each cell sub-
type and a cross-talk score between pairs of cell subtypes within 
scREMI-LUAD. The prognostic score represents each cell subtype’s 
inferred prognosis based on which ligands are expressed. First, we 
downloaded LUAD-specific prognostic gene scores calculated from 
bulk survival meta-analysis from the PRECOG (PREdiction of 
Clinical Outcomes from Genomic profiles) database (23). Positive 
and negative PRECOG z scores are associated with poor and good 
prognosis, respectively. Then, we multiplied each DE ligand’s aver-
age cell type expression by its PRECOG score within each subpopu-
lation. The weighted ligand scores were normalized by the sum of all 
the ligand’s expression levels per subpopulation (Fig. 4G). Poor-
prognostic ligand scoring subpopulations included granulocytes, F(4), 
M(3), M(4), and M(5), and good-prognostic ligand scoring subpop-
ulations included F(1) and F(2). The malignant subpopulations have 
increasingly poor-prognostic scores, suggesting that different ma-
lignant cell subpopulations may be associated with different phases 
of tumor progression (Fig. 4H). From this perspective, we filtered 
scREMI-LUAD by selecting the ligand from the cell subtype that 
had the closest weighted PRECOG score to its receptor to focus 
on interactions potentially associated with disease progression 
(Supplementary Dataset).

Between every cell subtype, the cross-talk score was calculated 
using the number of interactions occurring between each subpopu-
lation, standardized with respect to the number of interactions in-
volving the sending cell. This measures the variability of the number 
of interacting ligands for each sending cell subpopulation. Cross-
talk scores were clustered using k-means consensus clustering, and 
three groups of sending (S1, S2, and S3) subpopulations and four 
groups of receiving (R1, R2, R3, and R4) subpopulations were iden-
tified (Fig 4I). S2 and R2 are enriched for subpopulations associated 
with relatively good prognosis, such as F(1), F(2), E(1), E(2), natural 
killer cells, and M(2). S3 and R3 are enriched for subpopulations 
associated with poor prognosis, including the remaining malignant 
subpopulations, E(3) and F(4). We highlight three clusters of scores: 
(i) good-prognostic interactions between S2 and R2, (ii) mixed-prognostic 
interactions between S2 and R3, and (iii) poor-prognostic interac-
tions between S3 and R3. To understand what types of interactions are 
occurring within each group, we performed GSEA on the good-, 
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Fig. 4. Projecting scRNA-seq information onto LUAD interactome reveals prognostic progression in malignant subpopulations. (A) Uniform manifold approxima-
tion and projection (UMAP) of Lambrecht et al. lung carcinoma scRNA-seq dataset (n = 22,681 cells, two patients). (B) PHATE (potential of heat diffusion for affinity-based 
transition embedding) representation of malignant cell population and its five subpopulations (n = 4055 cells). (C) PHATE representation of fibroblast population and its 
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mixed-, and poor-prognostic interactions (fig. S4). The good-
prognostic interactions are enriched for coagulation and elastic fiber 
formation. One of the interactions occurs between SLIT2:ROBO1 
as an autocrine interaction among F(2). SLIT-ROBO signaling has 
been shown to inhibit lung cancer migration in murine and in vitro 
models (24, 25), and we suspect that it may play a similar role in 
primary lung cancer. The mixed-prognostic interactions are en-
riched for angiogenesis, ECM degradation, and platelet adhesion to 
collagen. One such interaction that occurs between M(2) and M(3), 
MMP7:CD151, has been confirmed to interact at the edge of LUAD 
nests. This suggests that mixed-prognostic interactions may occur 
on the invasive front (26). The poor-prognostic interactions were 
enriched for ECM degradation, angiogenesis, and Notch signaling 
activation. These interactions involve the ligands TNC (Tenascin-C) 
and VCAN (Versican), which are associated with metastatic pheno-
types, such as the mesenchymal-to-epithelial transition (27, 28). On 
the basis of the enrichments of interactions within each group, good-
prognostic interactions may be associated with less invasive TMEs, 
poor-prognostic interactions may be associated with more invasive 
TMEs, and mixed-prognostic interactions may capture the transi-
tion from less to more invasive TMEs.

In situ experimental validation of CTGF and LRP6 
colocalization among malignant subpopulations in LUAD
We focused on the mixed-prognostic interactions because these in-
teractions may be involved with priming the TME for invasion. 
Proportionally, many mixed-prognostic interactions occur between 
the malignant subpopulations M(2) and M(3), suggesting potential 
subclonal cooperation between these subpopulations (Fig. 5a). Among 
the M(2)-to-M(3) interactions, we highlight the LR interaction, 
CTGF:LRP6, because of the increasing interest in anti-CTGF therapy 
(Fig. 5B) (29, 30). CTGF expressed by F(2) is also inferred to interact 
with LRP6 expressed on M(3) within the same community (P < 0.1) 
(Fig. 5C and fig. S5, A to D, H, and I). LRP6 is a coreceptor for the 
WNT signaling pathway and regulates tissue homeostasis (31). CTGF 
is a complex gene involved in many different processes, such as 
wound healing, angiogenesis, cell adhesion, migration, fibrosis, and 
ECM deposition (32). It activates both transforming growth factor– 
and WNT/-catenin downstream signaling pathways and has been 
found to mediate signaling during proliferative invasion, but its in-
volvement in LUAD remains unclear (28).

To determine the potential phenotypic role of CTGF:LRP6, we 
built a downstream signaling network for malignant cells using sig-
naling pathway genes from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and protein-protein interactions from the pub-
licly available database BioGRID (33, 34). We set the edge weight as 
the correlation between two signaling genes calculated using the bulk 
flow-sorted RNA-seq dataset and measured the log-transformed 
eigenvector centrality score (ranging from 0 to 1) of each receptor. 
A low versus high score indicates that the receptor has low or high 
correlation, respectively, with its downstream pathway genes. This 
centrality score represents how influential a node is in the network 
in terms of how correlated it is with each of its nodes to the down-
stream network (fig. S5E). LRP6’s downstream nodes were GSK3B 
and CTNNB1 (-catenin) with a centrality score of 0.27 and 0.31, 
respectively, which is high with respect to the mean centrality score 
of 0.05 in the network (fig. S5, G and F). High centrality scores indi-
cate that the genes were correlated with their signaling neighbors 
within the downstream network. Within the scRNA-seq dataset, 

M(3) cells expressed GSK3B and CTNNB1, and M(2) cells expressed 
CTNNB1 (fig. S5I). The expression patterns suggest that the paracrine 
interaction CTGF:LRP6 may activate WNT signaling downstream 
within M(3) to induce an invasive phenotype. The Lrp6–Gsk3b–-
catenin–Tcf–Ctgf autocrine axis was implicated in a study of lung 
cancer progression in an in vivo preclinical model (35).

To confirm whether the colocalization of CTGF:LRP6 occurs 
in primary LUAD, we performed immunofluorescence (IF) and 
paired hematoxylin and eosin (H&E) imaging of CTGF and LRP6 in 
whole-tissue specimens from four patients, composed of two patients 
with low-grade LUAD and two with high-grade LUAD (fig. S6). 
Low-grade versus high-grade samples were selected because they are 
typically indicative of better or worse prognosis, respectively. In both 
low-grade samples, we see CTGF+ and LRP6+ cell subtypes, but we 
generally do not observe CTGF+LRP6+ colocalization [Fig. 5D (i) and 
fig. S6, A and B]. In both high-grade samples, we observe CTGF+LRP6+ 
colocalization in malignant cells (fig. S6, C and D). The colocaliza-
tion was observed in well-to-moderately differentiated regions of these 
high-grade tumors. These observations are consistent with our in-
ference that CTGF:LRP6 interactions occur in regions of the tumor 
that may be becoming primed for more aggressive tumor growth. 
We observed in one of the high-grade samples distinctive CTGF+LRP6− 
malignant cells (arrow 4 in Fig. 5D, ii) suggestive of M(2) subtype 
from the scRNA-seq analysis.

DISCUSSION
REMI is a novel algorithm that uses graph-based approaches to 
generate a global cell-cell cross-talk network by estimating the con-
ditional dependency of LR pairs on high-dimensional data of small 
sample size. As opposed to current methods, REMI captures the 
complexity of multicellular interactions by accounting for the po-
tential confounding effects that LR pairs may have upon one another. 
REMI offers the main advantage of identifying codependent inter-
actions on a global scale with small sample size by leveraging previous 
knowledge, network analysis, and sparsity principles. We demon-
strated REMI’s performance on a large transcriptomic dataset from 
TCGA, showing that estimating the inverse covariance matrix using 
REMI is robust. We measured REMI’s performance across varying 
sample sizes and found that REMI’s specificity decreased less than 
its sensitivity relative to GLasso. REMI also outperformed existing 
cell-cell interaction inference approaches. The difference in perform
ance metrics can be explained by the difference in the assumptions 
underlying each algorithm. CellphoneDB v2.0 predicts LR pairs on the 
basis of the mean expression values, as higher LR genes are more likely 
to be expressed and interacting. NicheNet relies on both literature-
derived models and user-defined inputs to specify downstream-
activated genes. Instead, REMI focuses on capturing the linear 
transcriptional relationship between a ligand and a receptor, which 
is not as well captured in the other methods. Overall, REMI’s higher 
specificity is favorable when choosing interactions for experimental 
validation to reduce the risk of false positives.

REMI is a modularized algorithm that allows investigators to 
adapt each module to best fit their biological question. In step 1, 
we used the FANTOM5 database as our reference for literature-
supported LR pairs, but the database can be substituted or comple-
mented with any other LR databases. In step 2, we used the Louvain 
community detection algorithm, but this can be substituted for the 
investigator’s clustering algorithm of choice. REMI’s community 
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detection step is hierarchical, which allows it to accommodate high-
dimensional datasets while retaining high specificity. Thus, it can be 
applied to the many recent single-cell studies that have revealed 
substantial intratumoral heterogeneity. Last, REMI was applied to 
transcriptomics data, but it can be generalized when applied to 
other -omics data as well.

We applied REMI to an LUAD bulk flow-sorted RNA-seq dataset 
composed of four broad cell types (malignant, immune, fibroblast, 
and endothelial) to assemble the REMI-LUAD microenvironment 
interactome. We showed that REMI-LUAD captured tumor-stroma– 
and tumor-stroma-immune–specific communities that were enriched 
for ECM remodeling interactions and highlighted the prevalence of 
tumor-stroma–specific interactions. To increase the cell type reso-
lution of REMI-reconstructed networks, we projected a publicly 
available scRNA-seq data onto REMI-LUAD to construct scREMI-
LUAD and uncovered potential interactions associated with LUAD 
progression. Because of the increased granularity of the interactions, 
we observed that previously labeled autocrine signaling interactions 
within REMI-LUAD became paracrine signaling interactions be-
tween cell subtypes in scREMI-LUAD. This observation suggests 
that the currently documented autocrine signaling interactions may be 
involved in paracrine signaling between different cell states for a given 
cell type.

To infer a cancer progression signature within scREMI-LUAD, 
we calculated the prognosis of each cell subtype according to its ligand 
expression. We then applied unsupervised analysis of prognostic-
specific cellular cross-talk signatures and ordered interactions on 
the basis of prognosis as a proxy to tumor progression. Interactions 
among good-prognostic cell subtypes consisted of antitumoral or 
preinvasive activities, whereas interactions among poor-prognostic 
cell subtypes were involved in more invasive properties. We reasoned 
that mixed-prognostic interactions may be associated with progres-
sion from a less to more invasive TME.

We noted one mixed-prognostic interaction, namely, between CTGF 
and LRP6 among malignant subpopulations, and experimentally 
verified the presence versus the absence of colocalization of CTGF 
and LRP6 in high- versus low-grade primary LUAD samples. More 
specifically, we observed CTGF and LRP6 colocalization in well-to-
moderately differentiated malignant regions of high-grade primary 
LUAD samples and did not observe their colocalization in low-grade 
tumors. These findings, while preliminary, are consistent with our 
inferences that CTGF and LRP6 interactions may be priming the 
tumor toward a more aggressive phenotype. This work suggests that 
anti-CTGF (29, 30) therapy to inhibit progression in LUAD war-
rants consideration. We did not observe evidence of CTGF expres-
sion by fibroblasts interacting with LRP6 on malignant cells, which 
was another predicted interaction in scREMI-LUAD. This may be 
attributed to the low amounts of fibroblasts seen in our tissue spec-
imens. We also did not have access to tissue blocks that captured 
more poorly differentiated malignant regions of the high-grade cases 
for further depiction of the CTGF+ and LRP6+ colocalization. There-
fore, both scenarios warrant further experimental investigation. 
More generally, this work suggests that cell subtypes with prognos-
tically relevant cross-talk warrant further investigation as they may 
be associated with disease progression.

While REMI can identify LR pairs with high specificity, it has 
limitations. First, the utility of REMI may be limited by the assumption 
that interacting ligands and receptors are correlated. By leveraging 
these correlations between LR genes representative of LR pairs, 

interactions that involve secretory molecules, such as chemokines 
that are typically secreted by immune cells, may not be captured 
well by REMI because chemokines can affect distant tissue sites. Sec-
ond, REMI does not yet account for large protein complexes. One 
way to potentially address this issue is to regularize edges in the re-
sulting interactome between receptors in the same protein complex 
along with the LR pairs in the community. Third, REMI does not 
account for potential external influences on LR pairs, such as spatial 
or temporal considerations. This may be remedied by implementing 
a weighted graphical Gaussian model instead. A weighted approach 
may also allow users to capture LR affinity or downstream signaling 
effects. Last, the significance test is designed for each community be-
cause the edge permutations change the communities identified 
by REMI. This stochasticity is difficult to capture in REMI’s cur-
rent statistical test. Calculating P values for all edges within the 
network is also time intensive. Further work needs to be done to im-
plement a fast interactome-wide hypothesis test.

In summary, we developed REMI and demonstrated the benefit 
of using its networks as a discovery tool. REMI provides a novel way 
to infer global cellular cross-talk for subsequent functional valida-
tion. We anticipate that REMI can be applied to many more tissue 
microenvironments to better understand normal and diseased pro-
cesses and identify more precise therapeutics.

MATERIALS AND METHODS
Bulk flow-sorted RNA-seq data
We used publicly available bulk flow-sorted RNA-seq data (GSE111907) 
that had 17 primary LUAD tumor samples that, using flow cytome-
try, were sorted into the four cell types of interest: immune, endo-
thelial, fibroblast, and malignant cancerous cells using the markers 
CD45+/EpCAM−, CD31+/CD45−/EpCAM−, CD10+/EpCAM−/CD45−/
CD31−, and epithelial cellular adhesion molecule (EpCAM)/CD45−, 
respectively. Patients without data from all four cell types were re-
moved. The data included bulk RNA-seq measurements for each cell 
type defined as X = {Xc1, Xc2, Xc3, Xcn}. The TPM (transcripts per 
million) values were log transformed [log2(TPM + 1)] and stan-
dardized to 0 mean and 1 SD.

Publicly available databases
FANTOM5 database
We obtained a total of 1904 validated LR pairs (650 ligands and 594 
receptors) from the FANTOM5 database (15). The database extract-
ed known LR pairs from the Database of Ligand-Receptor Partners 
(DLRP), IUPHAR (International Union of Basic and Clinical 
Pharmacology), and the Human Plasma Membrane Receptome. 
We filtered for LR pairs that had literature-supported evidence and 
were experimentally validated. We included 12 more literature-
supported experimentally validated LR pairs not found in the data-
base: PDL1/PD-1, PD-2/PDL1, CD80/CTLA4, CD80/CD28, CD86/
CD28, GREM1/KDR, PDL2/PD-1, NECTIN2/CD226, NECTIN2/
TIGHT, PVR/TIGHT, SIGLEC1/SPN, and CTGF/TNFRSF1A.
KEGG database
From the KEGG database, we downloaded all the pathway genes 
from the Environmental Information Processing category. This in-
cludes signaling pathways associated with membrane transport, 
signal transduction, and signaling molecules and interactions. Genes 
from the phosphotransferase system and bacterial secretion system 
were excluded.
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BioGRID database
We downloaded the Homo sapiens proteins from BioGRID and 
their interaction network. Only protein-protein interactions that 
were experimentally validated were used. We removed proteins that were 
found in the publicly available database CRAPome (36). The remain-
ing BioGRID network has 18,074 proteins and 176,120 interactions.

LTMI reconstruction
For the LTMI reconstruction, the log-transformed bulk flow-sorted 
RNA-seq data from Gentles et al. were split into patients with LUAD 
and those with lung squamous cell carcinoma. Using only the pa-
tients with LUAD (n = 17), LR genes were filtered by TPM > 10. A 
graph was constructed by creating a node for every LR gene that 
passed the filtering criteria, and an edge was drawn if it was a known 
pair according to the FANTOM5 database. This was cross-referenced 
with the LTMI built on all samples. The igraph R package was used 
to construct and illustrate the graph. We also used igraph to identify 
components in the network. To calculate partial correlation for the 
LTMI subgraph, we used the following equation

	​​ r​ ABC​​  = ​   ​r​ AB​​ − ​r​ AC​​ ​r​ BC​​  ────────────  
​√ 

_______________
  (1 − ​r​AC​ 2 ​  ) (1 − ​r​BC​ 2 ​ ) ​
 ​​	

This equation was extended to capture all combinations of gene 
interactions within the subgraph. Correlation was measured using 
the gene expression dataset.

REMI algorithm
(i) Build weighted bipartite LR network. On the basis of a user-defined 
LR list, an LR network is created. The default LR list is obtained from 
the FANTOM5 database. Cell types from the input dataset are de-
noted as c1, c2, …, cn ∈ X. xc represents all ligands found in cell type 
c (x1, x2, …, xa ∈ Xc). yc represents all receptors found in cell type c 
(y1, y2, …, yb ∈ Xc). Given dataset X, we represent all potential LR 
pairs interacting between all cell types in the undirected network 
GLR = (V1 = Vx ∩ Vy, E1), where Vx = {x : xc1, xc2, …, xcn} and Vy = {y : 
yc1, yc2, …, ycn}. An edge represents a relationship between ligand 
and its cognate receptor denoted as E1 = {(x, y) : x ∈ Vx, y ∈ Vy, (x, y) 
∈ NFANTOM5}. Edge weight wij in GLR is the Pearson correlation be-
tween xi and yj calculated using the gene expression data.

(ii) Detect cognate LR communities. Communities (Ck) are iden-
tified in GLR using Louvain community detection algorithm. The 
algorithm identifies clusters of nodes, called communities, that are 
optimized for maximum modularity (Q) within the network

	​​ Q  = ​   1 ─ 2m ​ ​∑ 
vw

​ ​​​[​​ ​A​ vw​​ − ​ ​k​ v​​ ​k​ w​​ ─ 2m  ​​]​​(​c​ v​​, ​c​ w​​)​​	

Avw is the Spearman correlation between nodes v and w. m is the 
number of edges. k is the degree of node.  is the Kronecker delta 
piecewise function indicating whether node v or w is in the same 
community. c is an indicator function for whether a node is in a com-
munity. The measurement ensures that the communities detected are 
data driven and not based on chance. GLR can contain disjoint compo-
nents because some nodes were removed because of their low expres-
sion within the dataset. Disconnected small components are referred 
to as a community. If the number of nodes within Ck is greater than the 
sample size, then we perform hierarchical community detection using 
Louvain to further reduce the density of the communities until the 

number of nodes in every community is less than or equal to the sam-
ple size. We then iterate between every pairwise combination of com-
munities and create a pseudocommunity or BC. The BCs contain 
nodes that have an edge between two communities.

(iii) Remove conditionally independent LR pairs. According to 
the Hammersley-Clifford theorem, an inverse covariance matrix, or 
partial correlation, can be used to indicate relationships between 
nodes. A zero in an inverse covariance matrix indicates conditional 
independence between the two variables in the model given all 
others. The algorithm GLasso uses this concept and estimates the 
inverse covariance matrix that best fits the observations in a multi-
variate Gaussian distributed dataset (17). A l1 penalty is added to 
the log-likelihood of a Gaussian Markov field to add data-driven 
sparsity to the model. Here is the optimization function

	​ log(det − tr(S ) −  ​∣∣w * ∣∣​ 1​​)​	

In this equation,  = −1 and S are the empirical covariance ma-
trix. w represents the weighted adjacency matrix. tr is the trace of 
the matrix or the sum of the diagonal. ∣∣∣∣1 is the l1 penalization 
of the inverse covariance matrix. When  increases, the network 
becomes sparser. When  is zero, the resulting network is equiva-
lent to a partial correlation network (17). We use GLasso from the 
glasso R package to measure the conditional dependence between two 
connected nodes while controlling for the effect of all other nodes 
for each community detected. Because the communities identified 
within the largest network component are not disjoint clusters, we 
also created graphical models using the nodes and edges BCs. These 
BCs only include nodes that have edges BCs and excludes nodes 
that do not. Communities with one node were not included.

The GLasso similarity matrix can be represented as a fully con-
nected LR community graph. This includes all potential edges be-
tween LRs, ligand and ligand (LL), and receptor and receptor (RR). 
We simplify the LR prediction problem by focusing on only LR inter-
actions and make the assumption that the underlying network that 
represents the data only contains edges between LRs. LL and RR edges 
within the GLR communities are penalized and set to zero in the 
weighted adjacency matrix, indicating conditional independence. 
The penalized weighted matrix is defined as

	​​ ​w​ ij​​  = ​ {​​​ 
   ,  if (i, j ) ∈ ​C​ k​​ 

​  
0,  if(i ) ∈ ​C​ k​​, (j ) ∈ ​C​ k′​​, k != k′ 

​​​	

The  tuning parameter in the penalized log-likelihood equation 
is chosen by iterating through 20 values logarithmically spaced 
between lambda values 0.01 to 0.9. The optimal  is the one that best 
minimizes the Bayesian information criterion. The accuracy of the 
GLasso method is dependent on the number of features in the network.

(iv) Reconstruct communities into predicted interactome. The 
final reconstructed LR network includes edges between nodes that 
have a weight larger than zero.

(v) Significance test for P value. We provide an optional addi-
tional tool to calculate P values for an edge in a community. P values 
are calculated by measuring the occurrence of a test statistic com-
pared with its null. In the REMI algorithm, an LR pair is a subset of 
a test statistic, the regularized covariance matrix. Therefore, our 
significance test measures the conditional probability that an LR 
pair is conditionally dependent within its REMI community given 
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added randomization. First, we sample from a uniform distribution 
of correlation values and replace the correlation value of the LR pair of 
interest. Then, REMI is rerun 1000 times to generate a distribution of 
predicted scores for the LR pair. A regression tree is fit on the sampled 
correlation values to predict binary REMI scores. A null distribution is last-
ly generated by simulating a null training dataset by creating a Gaussian 
distribution (G) and training it on the regression tree to predict a null 
set of outcomes (w). w is multiplied by the Wishart distribution to create 
a null distribution that represents the conditional test statistic (37). 
The P value is then calculated by using the LR pair’s data-derived cor-
relation value (R[i, j]). The first equation represents the one-sided P value, 
and the second equation represents the two-sided P value

	​ p  = ​  
​∑ n​ ​​ w * (G  >  R [ i, j ] )

  ──────────── 
​∑ n​​ w​

  ​​	

	​ p  =  2 * min(p, 1 − p)​	

Validation dataset
We tested the method on a bulk RNA-seq dataset downloaded from 
the publicly available database, TCGA. The non–small cell lung car-
cinoma (NSCLC) RNA-seq dataset contains bulk RNA-seq data for 
1013 patients with NSCLC. This includes 584 patients with LUAD 
and 429 patients with lung squamous cell carcinoma. The data were 
log transformed and scaled to a mean of 0 and a variance of 1.

Simulations
The TCGA-LUAD GLasso interactome was generated by running 
GLasso interactome (GLasso on GLR) using LR genes found in the 
TCGA NSCLC bulk RNA-seq dataset. In the resulting network (V = 893 
and E = 1331), a true-positive edge is an edge with weight greater 
than zero. All other edges are true-negative edges. Five cohort sizes 
(n = 10, 25, 50, 100, and 2000) were sampled 50 times each from the 
whole TCGA NSCLC cohort to simulate various cohort sizes. REMI 
was run on each sampled cohort dataset using default parameters and 
unfiltered list of LR genes. GLasso was also performed on each sam-
pled cohort dataset with restrictions on the LL and RR edges. Per-
formance metrics were calculated by setting the reference “gold standard” 
interactome as the TCGA-LUAD GLasso interactome. Correlation 
values of the LR pairs were used as the cutoff for REMI’s AUC cal-
culations. The same analysis was performed by separating WCs’ 
and BCs’ predictions and calculating their performance metrics.

Comparison against other methods
NicheNet
We ran NicheNet on TCGA NSCLC bulk RNA-seq dataset using 
the same filtered genelist as the ones used in TCGA simulations de-
scribed above. The background gene set used included the genes found 
in the ligand target matrix of the receiving cell. The LR list was re-
placed with the FANTOM5 list we generated. For TCGA data, we 
treated the bulk dataset as an autocrine signaling. We ran NicheNet 
on every autocrine and paracrine combination of cell types. We used 
the best ligand filter of Pearson >0.
NATMI
We used both log-transformed and scaled log-transformed TCGA 
RNA-seq dataset as input and set all samples as one cell type. De-
fault parameters were used, and edges were filtered on the basis of 
specificity score.

CellphoneDB
We used the log-transformed TCGA RNA-seq dataset as input for 
the method. We used the database provided and filtered for signifi-
cant LR pairs based on the significant means score.
CCCExplorer
We ran the CCCExplorer on TCGA NSCLC bulk RNA-seq dataset 
and bulk flow-sorted RNA-seq dataset. To identify differentially ex-
pressed gene (DEG) ligands for the input, we used samr to identify 
DEGs (38). For TCGA, we identified DEG between healthy patients 
and patients with lung cancer. For the bulk flow-sorted cohort, we 
identified DEG between the sending cell and receiving cell. The 
DEG cutoffs used were logFC >1.2 and q < 0.05. The same DEG 
input from NicheNet was used. We calculated cell-cell interactions 
for every pairwise paracrine and autocrine combination.

REMI analysis in the LUAD dataset
For the REMI interactome construction, the log-normalized gene 
expression measurements were binned into three evenly split dis-
cretized groups for each cell type. Genes with expression levels fall-
ing within the first group, representing low expressed genes, were 
removed. The dispersion ratio (variance/mean) was calculated for 
each gene and normalized within each bin. Genes in the first bin, 
which includes genes with negative and fairly low expression levels, 
were removed. The data were scaled after filtering, and the filtered 
dataset was used to identify LR genes. The scaled unfiltered gene 
expression dataset was used for all other analyses. All other param-
eters in REMI were set to default.

Gene enrichment analysis
The clusterProfiler R package was used to perform gene enrichment 
analysis. The gene lists were filtered for the databases: Hallmark, 
BIOCARTA, and REACTOME. Enrichments with adjusted P < 0.05 
were used for analysis.

scRNA-seq analysis
Data
We used publicly available scRNA-seq datasets E-MTAB-6149 and 
E-MTAB-6653 generated by Lambrecht et al. (21). The droplet-
based scRNA-seq (10X genomics) datasets had two patients with 
squamous cell carcinoma, two patients with adenocarcinoma, and 
one patient with NSCLC. We used the Seurat V3 R package to pro-
cess the patients with LUAD and used predefined cell type labels 
defined by the authors (39).
Preprocessing
In cells with more than 10% mitochondria content, over 6000 and 
under 100 features were filtered out. We used the top 30 principal 
components and the IntegrateData function in Seurat to correct for 
batch effect between the patients. Malignant, fibroblast, and endo-
thelial cells were reclustered using Louvain clustering on a Shared 
Nearest Neighbor graph with 10 principal components using 0.2, 
0.2, and 0.1 resolutions, respectively. DEGs across all cell types and 
within clusters were calculated using model-based analysis of single 
cell transcriptomics (MAST) with default parameters and normalized 
counts (averaged log2FC > 0.25; Bonferroni-corrected P < 0.05) (40). 
Visualizations are shown using uniform manifold approximation 
and projection (UMAP) (30 principal components). PHATE (po-
tential of heat diffusion for affinity-based transition embedding) was 
used to infer the underlying hierarchical manifold in each cell type 
using default parameters (41). Each cell type population was imputed 
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using adaptively-thresholded low rank approximation (ALRA) after 
identifying subpopulations (42).

Deconvolving interactome
LR genes in the REMI-LUAD interactome were filtered on the basis 
of whether they were expressed in their respective cell type (average 
expression, >0.4). The cell type metadata associated with each node 
in the interactome was relabeled using the subpopulation in which the 
ligand or receptor was found in. The cell type must be the same be-
tween bulk and single-cell data. Nodes with genes that were found 
across multiple subpopulations within the same cell type were du-
plicated, and an edge drawn to its respective predicted cognate pair.

Measuring prognosis of subpopulations
Bulk LUAD-specific prognosis scores were downloaded from the 
PRECOG metaZ database. Then, the normalized log-transformed 
average expression level for the ligands within each subpopulation 
was calculated using the ALRA imputed gene expression data. Each 
subpopulation was imputed independently. For each subpopulation, 
ligands that were not DE, as calculated by MAST in a prior step, were 
removed. DE ligand cognate receptors with an average scaled ex-
pression less than 0 were removed. Subpopulations with less than three 
DE ligands predicted to be secreted were also removed from the 
calculations to increase the power of the calculation. In the remaining 
list of LR pairs, we then multiplied the DE ligand’s averaged expres-
sion level by its PRECOG score [​a  = ​ ∑ n​ ​​ ​e​i​ 

L​ * PRECOG(L)​]. The total 
gene expression values of ligands (​b  = ​ ∑ n​ ​​ ​e​i​ 

L​​) were aggregated, and 
the prognosis of the subpopulation by a/b was calculated. n is the 
total number of cells in a subtype. i is the gene index. L is the ligand 
of interest. Additional filtering of the LR pairs was then applied to 
duplicate LR pairs that have the same genes but different sending and 
receiving cells. The pair with the closest PRECOG score between 
sending and receiving cells was selected.

IF and H&E staining
Clinical aspects of this study were approved by the Stanford Institu-
tional Review Board (IRB) in accordance with the Declaration of 
Helsinki guidelines for the ethical conduct of research. All patients 
involved provided a written informed consent. Collection and use 
of human tissues were approved and in compliance with data pro-
tection regulations regarding patient confidentiality (IRB protocol 
no. 15166). Following surgical resection of primary tumors from 
patients at Stanford Hospital, LUAD specimens were immediately 
embedded in optimal cutting temperature (OCT) compound. Fresh-
frozen human LUAD tissues were serially sectioned at a thickness of 
8 m and mounted on poly-l-lysine–coated coverslips. One section 
was successively fixed in 95% ethanol and 10% formalin for 10 min 
each and subjected to progressive H&E staining following the 
standard protocol described (43) and reviewed by a board-certified 
pathologist (M.E.O.). For IF analysis, sections were fixed in acetone 
for 10 min at room temperature (RT) and then washed twice with 
phosphate-buffered saline (PBS). Fluorophore bleaching was per-
formed at RT for 90 min to reduce autofluorescence by immersing 
the fixed coverslip in freshly prepared bleaching solution [4.5% (w/v) 
H2O2 and 20 mM NaOH in PBS] and illuminating the container 
between two light-emitting diode (LED) light panels, followed by 
four washes with PBS to remove bleaching solution (44). The pre-
treated coverslips were blocked with 1% horse serum in PBS for 
30 min and incubated with primary antibodies in incubation solution 

(1% bovine serum albumin, 1% normal donkey serum, 0.3% Triton 
X-100, and 0.01% sodium azide in PBS) in a humidified chamber 
overnight at 4°C. After three washes in PBS for 15 min per wash, the 
coverslips were incubated with secondary antibodies in incubation 
solution for 1 hour at RT in dark. The coverslips were intensively 
washed with PBS and then stained with DRAQ5 (Thermo Fisher 
Scientific) at 1:1000 in PBS for 10 min. The sections were observed 
under the BZ-X800 fluorescence microscope (Keyence, IL, USA). 
Antibodies used in the study include anti-CTGF (ab6992, Abcam), 
anti-LRP6 (MAB1505, R&D System), anti-EpCAM (no. 2929, Cell 
Signaling Technology), anti-pan Cytokeratin (ab86734, Invitrogen), 
Cy3-conjugated goat anti-rabbit immunoglobulin G (IgG) (ab6939, 
Abcam), goat anti-mIgG1 Alexa Fluor 488 (A-21121, Invitrogen), and 
donkey anti-mouse IgG H&L Alexa Fluor 488 (ab150105, Abcam) 
antibodies.

Downstream influence score
An undirected downstream signaling pathway network Gds = (Vds, 
Eds) is created for each cell type in the dataset. Each Gds consists of 
approximately 1000 nodes representing signal transduction path-
way genes (NKEGG) downloaded from the publicly available data-
base, KEGG (Vds = {x : x ∈ NKEGG}) (34). An edge between two nodes 
represents a physical protein-protein interaction between the nodes, 
as indicated in the database BioGRID (Eds = {(xi, xj) ∈ NBioGRID}) (33). 
The edge weight in the network is set as the Pearson correlation be-
tween the two gene nodes calculated from the gene expression data 
from the cell type of interest. For each Gds per cell type, we calculate 
the eigenvector centrality for each node. Eigenvector centrality is a 
centrality measurement of a node xi that is relational to the sum of 
importance of its neighbor nodes: ​​x​ i​​  = ​  1 _ ​ ​∑ j∈G​ ​​ ​w​ i,j​​ ​x​ j​​​, where wi, j is 
the edge weight between nodes xi and xj. The centrality measure-
ment for each receptor within Gds is the receptor’s influence score.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi4757

View/request a protocol for this paper from Bio-protocol.
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