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Brain inflammation, a pathological feature of neurodegenerative disorders, exhibits elevated microglial activity and increased
levels of inflammatory factors. The present study was aimed at assessing the anti-inflammatory response of
tetrahydrocurcumin (THC), the primary hydrogenated metabolite of curcumin, which was applied to treat Pseudomonas
aeruginosa (P.a.) lipopolysaccharide- (LPS-) stimulated BV2 microglial cells. THC reduced P.a. LPS-induced mortality and the
production of inflammatory mediators IL-6, TNF-a, MIP-2, IP-10, and nitrite. A further investigation revealed that THC
decreased these inflammatory cytokines synergistically with JAK/STAT signaling inhibitors. THC also increased Nrf2/HO-1
signaling transduction which inhibits iNOS/COX-2/pNFxB cascades. Additionally, the presence of the HO-1 inhibitor Snpp
increased the levels of IP-10, IL-6, and nitrite while THC treatment reduced those inflammatory factors in P.a. LPS-stimulated
BV2 cells. In summary, we demonstrated that THC exhibits anti-inflammatory activities in P.a. LPS-induced inflammation in
brain microglial cells by inhibiting STAT1/3-dependent NF-«B activation and inducing Nrf2-mediated HO-1 expression.

1. Introduction

Neurodegenerative disorders such as Alzheimer’s disease
(AD), Parkinson’s disease, amyotrophic lateral sclerosis,
and frontotemporal dementia exhibit brain inflammation
[1, 2]. Many factors can induce central nervous system
(CNS) inflammation, including immune system dysregula-
tion, bacterial infection, viral infection, and parasite invasion
[3]. Lipopolysaccharide (LPS), the major component of the

outer membrane of Gram-negative bacteria, is the most
potent microbial inducer of inflammation and sepsis. LPS
is reported to be an immunostimulatory ligand for toll-like
receptor 4 (TLR-4), which is primarily expressed in brain
resident macrophages and microglia in the CNS [4]. Upon
inflammation, microglial cells are activated and release pro-
inflammatory factors, such as tumor-necrosis factor-a
(TNF-a), interleukin- (IL-) 6, and IL-1f. Moreover, acti-
vated microglia trigger the production of reactive oxygen
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FiGure 1: THC treatment exerts no significant effect on cell viability of BV2 microglial cells with or without P. a. LPS stimulation. (a) BV2
microglial cells were untreated (the mock group) or pretreated with THC (6.25, 12.5, 25, or 50 uM) for 24 h. (b) BV2 microglial cells were
untreated (the mock group) or pretreated with THC (10, 20, or 40 uM) for 1.5 h following stimulation with P. a. LPS (0.1 yg/ml) for 24 h.
CCK analysis indicated cell viability. The experimental quantitative data are presented in terms of the mean + SD (# = 3). The treatment and
mock group significantly differed. Bars with the same letter indicate no significant difference between the groups.

species (ROS) and nitric oxide (NO) which cause damage in
axons and neurons [5, 6]. Studies have reported that stimu-
lation of LPS (from Escherichia coli) increases the expression
of TLR-4, TNF-a, IL-6, cyclooxygenase-2 (COX-2), NO, and
phosphonuclear factor kappa B (pNF«B) in microglial BV2
cells [7, 8]. Furthermore, the anti-inflammation property of
different inflammation signal pathways has yet to be demon-
strated. In this study, we used microglial BV2 cells as an
in vitro model of Pseudomonas aeruginosa (P.a.) LPS-
induced inflammation.

Tetrahydrocurcumin (1,7-bis  (4-hydroxy-3-methoxy-
phenyl) heptane-3,5-dione, C,,H,,O, abbreviated as THC)
is the primary hydrogenated metabolite of curcumin (Cur-
cuma longa Linn); it also functions as an antihypertensive,
antidiabetic, antioxidant, anti-inflammatory, and anticancer
agent [9, 10]. In a rat model of AD, THC reduces ROS levels
and protects cells from amyloid - (Af-) induced cytotoxic-
ity [11]. THC has also been reported to reduce the severity of
pathological defects of AD by inhibiting cell-cycle arrest and
apoptosis of amyloid 3-treated BV2 cells through the regula-
tion of Ras-extracellular signal-regulated kinase signaling
[12]. Additionally, in a paw edema mouse model, THC
inhibits the COX-2-NFxB pathway by inactivating trans-
forming growth factor, which eventually reduces inflamma-
tion [13]. In LPS-stimulated RAW264.7 cells, THC exerts
potent anti-inflammatory and antioxidant activities through
the inhibition of the generation of ROS, NO, and monocyte
chemotactic protein-1 [14]. Many previous studies have
indicated that inhibition of the anus kinase- (JAK-) signal
transducer and activator of transcription protein (STAT)
signaling pathway can reduce LPS-induced inflammation
[15-17]. A recent study reported that in LPS-stimulated
macrophages, inducing the expression of HO-1 can inhibit
the expression of inflammatory cytokines and thereby
inhibit the M1 polarization of macrophages [15]. Moreover,
over the years, an increasing number of therapeutic agents
have been developed that exert their antioxidant and anti-
inflammatory effects by inducing HO-1 expression. As far

as we know, there is no evidence regarding the effects of
THC in P.a. LPS-induced brain inflammation. Furthermore,
there is no published report about THC inhibiting P.a. LPS-
induced inflammation response through JAK/STAT and
Nrf2/HO-1 signaling pathways in BV2 microglial cells. This
study demonstrates the possible mechanisms by which THC
acts against the proinflammatory mediators produced by
P.a. LPS-induced BV2 microglial cells.

2. Materials and Methods

2.1. Cells. The murine BV2 microglial cell line was obtained
from Dr. Dah-Yuu Lu (China Medical University, Taichung,
Taiwan). Cells were maintained in Dulbecco’s modified
Eagle’s medium containing 10% heat-inactivated fetal
bovine serum (Cat#10437, Gibco), and 100 ng/ml penicil-
lin/streptomycin (Cat#15140, Gibco) at 37°C in a humidified
incubator containing 5% CO,.

2.2. Agents and Antibodies. Tetrahydrocurcumin (THC,
C,,H,,0() was dissolved in DMSO and stored (Cat#sc-
391609, Santa Cruz, CA, USA). P. a. LPS was prepared with
PBS and stored (Cat#1.9143, Sigma-Aldrich). STAT3 inhibi-
tor AG490 was purchased from Cayman Chemical. JAK
inhibitor WP1066 was purchased from Calbiochem. Cell
Counting Kit-8 (CCK-8) was purchased from Dojindo
Molecular Technologies, Inc. (Rockville, MD, USA). Anti-
bodies against p-JAK2, p-STATI1, p-NF«B p50, and HO-1
inhibitor tin protoporphyrin IX (Snpp) were purchased from
Santa Cruz Biotechnology Inc. Antibodies against p-STAT3,
iNOS, COX2, and HO-1 were purchased from Abcam. Anti-
body against p-Nrf2 was purchased from Invitrogen. Anti-
body against glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was purchased from Taiclone.

2.3. Western Blotting. Western blotting was performed
according to our previous study [16]. Briefly, cells were har-
vested at indicated time points then extracted using a lysis
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Ficure 2: THC reduces the production of IL-6, TNF-a, MIP-2, IP-10, and nitrite in P. a. LPS-stimulated BV2 microglial cells. BV2
microglial cells were untreated (the mock group) or pretreated with THC (10, 20, or 40 uM) for 1.5h before being stimulated by P. a.
LPS (0.1 ug/ml) for 24 h. The production of (a) IL-6, (b) TNF-a, (c) MIP-2, (d) IP-10, and (e) nitrite was detected using ELISA. The
experimental quantitative data are presented in terms of the mean + SD (n = 3). The mock group was considered as a control group. Bars
with the same letter represent no significant difference between the groups. Bars with different letters indicate a statistically significant

(p <0.05) difference between the groups.

buffer containing protease inhibitors (Sigma-Aldrich) on ice
for 15 min. Subsequently, the samples were added with pro-
tein dye and were heated to 100°C for 15 min. After samples
were cooled down on ice, sodium dodecyl sulfate polyacryl-
amide (SDS) gel electrophoresis was applied to separate the
proteins. Then, proteins were transferred to a polyvinylidene
difluoride (PVDF) membrane (Millipore). Next, the mem-
brane was blocked with 5% nonfat milk in phosphate-
buffered saline containing 0.05% Tween-20 (PBS-T) at room
temperature for 1h. Membrane was washed 3 times with
PBS-T, and the primary antibodies were used to immunohy-
bridize the indicated proteins at 4°C overnight. Protein-
antibody complexes were then incubated with the indicated

horseradish peroxidase- (HRP-) conjugated secondary anti-
bodies at room temperature for 1h. Afterward, by using an
enhanced chemiluminescence western blot detection Kkit,
the protein-antibody complexes with HRP on the PVDF
membrane were detected and the signals were captured with
an image system.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA). At indi-
cated time points, the cell culture supernatants were col-
lected and stored at -80°C. The concentrations of mouse
IL-6 (Cat#431316, BioLegend), TNF-« (Cat#430916, BioLe-
gend), MIP-2 (Cat#ab211762, Abcam), and IP-10
(Cat#ab275364, Abcam) in the samples were determined
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Ficure 3: THC attenuates p-JAK-2, p-STAT3, and p-STAT1 protein expressions in P. a. LPS-stimulated BV2 microglial cells. BV2
microglial cells were untreated (the mock group) or pretreated with THC (10, 20, or 40 uM) for 1.5h before being stimulated by P. a.
LPS (0.1 pug/ml) for 24 h. (a) Western blotting was used to obtain the expressions of p-JAK2, p-STAT3, p-STAT1, and GAPDH proteins.
Statistical results of (b) p-JAK2, (c) p-STAT3, and (d) p-STAT1 were shown. The mock group was considered as the control group. The
experimental quantitative data are presented in terms of the mean +SD (n=3). Bars with the same letter represent no significant
difference between the groups. Bars with different letters indicate a statistically significant (p < 0.05) difference between the groups.

by using ELISA kits following the manufacturer’s instruc-
tions. The absorbance of the immunocomplex was deter-
mined at 450/595nm using ELISA reader (Multiskan
Spectrum, Thermo Co., Vantaa, Finland).

2.5. Nitrite Detection Assay. The concentration of nitrite in
the medium was determined as the indicator of NO produc-
tion according to previously described methods [16]. Briefly,
150 4l of sampled supernatant was mixed with 100yl of
Griess reagent (Cat#G4410, Sigma-Aldrich) and incubated
for 10 min at room temperature. The absorbance of the mix-
ture was determined at 595 nm using ELISA reader (Multis-
kan Spectrum, Thermo Co., Vantaa, Finland).

2.6. Statistical Analysis. One-way ANOVA (Tukey’s multi-
ple comparison test) was used to analyzed the data and
compare the investigated groups. The statistical findings
were expressed as mean + standard deviation (SD). All p
values were obtained by performing two-tailed significance
tests. Bars with the same letter represent no significant dif-
ference between the groups. Bars with different letters
indicate a statistically significant (p <0.05) difference
between the groups.

3. Results

3.1. THC Reduces P. aeruginosa LPS-Induced Inflammation.
CNS inflammation, a key event in the pathogenesis and pro-
gression of neurodegenerative diseases, is mediated by acti-
vated microglial cells [4]. To investigate the potential anti-
inflammatory activity of THC in the brain, we treated murine
BV2 microglial cells with THC. Cell Counting Kit-8 (CCK-8)
assays verified that various doses (6.25, 12.5, 25, and 50 yM) of
THC had no significant effect on the cell viability of BV2
microglial cells (Figure 1(a)). Under P.a. LPS (0.1 yg/ml) stim-
ulation, the cell viability of cells pretreated with various doses
(10, 20, and 40 uM) of THC was comparable (Figure 1(b)).
Subsequently, the BV2 microglial cells were pretreated
with THC (10, 20, or 40 uM) for 1.5h and then stimulated
with P.a. LPS (0.1 pug/ml) for 24h. Results of ELISA indi-
cated that the production of inflammatory cytokines and
chemokines—including IL-6  (Figure 2(a)), TNF-«
(Figure 2(b)), MIP-2 (Figure 2(c)), IP-10 (Figure 2(d)), and
nitrite (Figure 2(e))—was significantly increased by P.a.
LPS stimulation relative to the mock (control) samples.
However, THC pretreatment notably reduced these inflam-
matory factors in a dose-dependent manner. Thus, THC
exhibits anti-inflammatory capacity without cytotoxicity.
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FiGUre 4: STAT3/JAK blocker combined with THC reduces IL-6, TNF-a, MIP-2, IP-10, and nitrite production in P. a. LPS-stimulated BV2
microglial cells. BV2 microglial cells were pretreated with STAT3 inhibitor AG490 (15uM), JAK inhibitor WP1066 (10 uM), or THC
(40 uM) for 1.5h before being stimulated by P. a. LPS (0.1 ug/ml) for 24h. ELISA was used to detect the production of (a) IL-6, (b)
TNF-a, (c) MIP-2, (d) IP-10, and (e) nitrite from BV2 microglial cells under P. a. LPS stimulation. The experimental quantitative data
are presented in terms of the mean + SD (n = 3). Bars with the same letter represent no significant difference between the groups. Bars
with different letters indicate a statistically significant (p < 0.05) difference between the groups.

3.2. THC Decreases Inflammation through Inhibiting JAK-
STAT. JAK-STAT signaling transduction has been reported
to be a crucial inflammatory pathway [17, 18]. We pre-
treated BV2 microglial cells with THC (10, 20, or 40 uM)
for 1.5h and then stimulated them with P.a. LPS (0.1 ug/
ml) for 24 h. Western blotting was used to identify the pro-
tein expression (Figure 3(a)), and the statistical results of
p-JAK2 (Figure 3(b)), p-STAT3 (Figure 3(c)), and p-
STATI (Figure 3(d)) were shown. The expressions of these
proteins were significantly increased by P.a. LPS stimulation
and were also reduced by THC pretreatment. Furthermore,
these inhibitory effects were greater at larger dose concentra-
tions of THC.

To further examine the role of JAK-STAT signaling, we
pretreated BV2 microglial cells with STAT3 inhibitor
AG490 (15uM), JAK inhibitor WP1066 (10 uM), or THC

(40uM) for 1.5h following stimulation with P.a. LPS
(0.1 yg/ml) for 24h. ELISA analysis results indicated that
the production of IL-6 (Figure 4(a)), TNF-a (Figure 4(b)),
MIP-2 (Figure 4(c)), IP-10 (Figure 4(d)), and nitrite
(Figure 4(e)) was increased in cells stimulated with P.a.
LPS but decreased in cells pretreated with STAT3 inhibitor
AG490 or JAK inhibitor WP1066. Moreover, THC pretreat-
ment and the combination of THC with JAK-STAT inhibi-
tors indicated the strong inhibition activity of P.a. LPS-
exposed cells. Thus, THC reduces inflammation by targeting
JAK-STAT signaling.

3.3. THC Reduces Oxidative iNOS-COX-2-p-NFxB Signaling.
It is reported that LPS stimulation increases the expressions
of TLR-4, TNF-a, IL-6, COX-2, iNOS, and p-NF«B in
microglial BV2 cells [19]. In the present study, BV2
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Ficure 5: THC inhibits iNOS, COX-2, and p-NF«B expressions in P. a. LPS-stimulated BV2 microglial cells. (a) BV2 microglial cells were
pretreated without (mock) or with THC (10, 20, or 40 uM) for 1.5h following stimulation with P. a. LPS (0.1 ug/ml) for 24h. Western
blotting showed the protein expression of iNOS, COX-2, p-NF«B, and GAPDH. Statistical results of (b) iNOS, (c) COX-2, and (d) p-
NF«B p50 were shown. The experimental quantitative data are presented as means + SD (#n = 3). Bars with the same letter represent no
significant difference between the groups. Bars with different letters indicate a statistically significant (p < 0.05) difference between the

groups.

microglial cells were pretreated with THC (10, 20, or 40 4M)
for 1.5h and then stimulated with P.a. LPS (0.1 ug/ml) for
24 h. Western blotting was used to determine protein expres-
sion (Figure 5(a)), and the statistical analysis of iNOS
(Figure 5(b)), COX-2 (Figure 5(c)), and p-NF«B
(Figure 5(d)) was shown. P.a. LPS stimulation significantly
induced the expression of these proteins; however, THC
reduced the expression of iNOS, COX-2, and p-NF«xB pro-
teins in a dose-dependent manner. Therefore, THC inhibits
oxidative iNOS-COX-2-p-NF«B signaling transduction.

3.4. THC Defenses against Inflammation through Activation
of Nrf2-HO-1 Signaling. HO-1 functions not only to reduce
oxidative injury but also to regulate inflammatory responses
[20]. Additionally, HO-1 interacted with Nrf2 to defend
against oxidative stress damage [21, 22]. We pretreated
BV2 microglial cells with THC (10, 20, or 40 uM) for 1.5h
prior to stimulation with P.a. LPS (0.1 yg/ml) for 24 h. West-
ern blotting indicated that the expression of the HO-1 pro-
tein was induced by THC administration in a dose-
dependent manner (Figure 6(a)). Notably, the expressions
of p-Nrf2 (Figures 6(b) and 6(c)) and HO-1 (Figures 6(b)
and 6(d)) were reduced by the HO-1 inhibitor Snpp
(20 uM) but increased by THC (40 uM) treatment.

Subsequently, we detected the presence of inflammatory
factors using ELISA. The production of IP-10 (Figure 7(a)),
IL-6 (Figure 7(b)), and nitrite (Figure 7(c)) was increased in
cells stimulated with P.a. LPS (0.1 yg/ml). The application of
HO-1 inhibitor Snpp (20uM) further exacerbated the
inflammatory response. However, THC treatment reduced
the production of these inflammatory factors, indicating that
THC played a crucial role in the anti-inflammatory
response. Therefore, these results indicate that THC drives
Nrf2-HO-1 signaling to reduce inflammation.

4. Discussion

The activation of microglial cells and the immune response
are essential for defending against the invasion of pathogens
and many other stimuli, such as the Gram-negative bacterial
wall component LPS. However, an excessive microglia-
mediated inflammatory response may also result in brain
damage. In this study, by applying THC, the primary hydro-
genated metabolite of curcumin, to P.g. LPS-stimulated
microglia BV2 cells, we observed that THC suppressed the
levels of inflammatory mediators, including IL-6, TNF-q,
MIP-2, IP-10, and nitrite. Additionally, THC downregulated
the JAK/STAT inflammatory pathway. In addition to
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F1Gure 6: THC reverses the inhibition of HO-1 inhibitor Snpp in P. a. LPS-stimulated BV2 microglial cells. (a) BV2 microglial cells were
untreated (the mock group) or pretreated with THC (10, 20, or 40 M) for 1.5 h before being stimulated with P. a. LPS (0.1 pg/ml) for 24 h.
Western blotting was used to obtain the expressions of p-Nrf2, HO-1, and GAPDH proteins. (b) BV2 microglial cells were pretreated with
THC (40 uM) or HO-1 inhibitor Snpp (20 uM) for 1.5 h before being stimulated with P. a. LPS (0.1 ug/ml) for 24 h. Western blotting was
used to obtain the expressions of p-Nrf2, HO-1, and GAPDH proteins. Statistical results of (c) p-Nrf2 and (d) HO-1 were shown. The
experimental quantitative data are presented in terms of the mean +SD (n=3). Bars with the same letter represent no significant
difference between the groups. Bars with different letters indicate statistical significance (p < 0.05) between the groups.

exhibiting anti-inflammatory activity, THC also exhibited
antioxidative effects due to its ability to inhibit the iNOS/
COX2/NF«B signaling cascade. By contrast, the expressions
of HO-1 and p-Nrf2 were enhanced. These factors jointly
indicate that THC is a neuroprotective agent for encephalitis
induced by LPS treatment (Figure 8).

Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione) is a common natural flavouring sub-
stance that is extensively used in various foods. Furthermore,
accumulating evidence has indicated that curcumin offers
multiple health benefits, such as reducing the incidence of
metabolic syndrome, pain, and degenerative eye diseases
by targeting multiple inflammatory and oxidative signaling
molecules [23-25]. However, the low absorption and rapid
metabolism of curcumin result in its poor systemic bioavail-
ability. The major metabolite of curcumin, THC, is reported
to exhibit stable activity and absorption efficiency and to
possess a more favourable bioavailability than that of curcu-
min [10, 26, 27]. Xie et al. have demonstrated that THC
exerts more notable anti-inflammatory and antioxidant
activities in LPS-stimulated RAW264.7 macrophages than
curcumin does [14]. Moreover, compared with curcumin,

THC more effectively suppresses pathways for COX-2 and
transforming growth factor 3, activated kinase-1, and NF-
kB in vivo [13]. We therefore applied THC in our study
and demonstrated that THC is a strong anti-inflammatory
agent that substantially inhibits inflammatory signaling cas-
cades, cytokines, and chemokines and inhibits oxidative
stress.

Neurodegenerative disorders are commonly associated
with oxidative stress-induced inflammation [28, 29]. Under
LPS stimulation, the TLR4-mediated NF-xB and mitogen-
activated protein kinases are activated and iNOS-mediated
proinflammatory NO is produced in activated macrophages
[14]. LPS is also known to induce COX-2 production in vitro
and in vivo [30-32]. Therefore, targeting oxidative stress is
crucial for reducing brain inflammation. Nrf2 is a key factor
in protecting cells from oxidative stress and inflammation-
induced damage, which modulates the levels of antioxidants
and detoxification enzymes, such as HO-1, superoxide dis-
mutase 1, NAD(P)H dehydrogenase 1, and glutathione per-
oxidase 1 [33]. A recent study has shown that a dried ripe
seed of Trichosanthes kirilowii Maximowicz, Trichosanthis
semen, could inhibit LPS-induced inflammation in BV2
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Ficure 8: Conclusion of this study. THC blocks P. a. LPS-induced oxidative responses by increasing Nrf2-HO-1 expression which
attenuates the iNOS, COX-2, and p-NF«B expression. THC also inhibits the level of P. a. LPS-prompted JAK-STAT signaling and the
inflammatory mediators IL-6, TNF-a, MIP-2, and IP-10 productions. Collectively, THC is a potent anti-inflammatory agent in brain

encephalitis.

microglial cells through activating HO-1 and inhibiting NF-
kB signaling [34]. Our findings reveal that THC treatment
reduces nitrite production (Figure 2(e)). Furthermore,
THC not only inhibited iNOS/COX-2/p-NF«B signaling

(Figure 5) but also upregulated Nrf2/HO-1 pathways
(Figure 6). These results demonstrate the beneficial effects
of THC on reducing LPS-induced oxidative injury by
increasing the expression of antioxidative factors HO-1
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and p-Nrf2. We thus propose that THC can considerably
reduce CNS inflammation due to its anti-inflammatory
and antioxidative properties.

5. Conclusions

To our knowledge, this is the first report implicating the
inhibition of P. a. LPS-induced inflammatory molecule gene
expression by THC in BV2 microglial cells. Our findings
demonstrate that THC has excellent anti-inflammatory
activities by suppressing the STAT1/3-dependent NF-xB
pathway and inducing Nrf2-mediated HO-1 expression.
Thus, THC is proposed as a powerful therapeutic agent to
treat encephalitis.
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