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Abstract
Poly-L-lactic acid (PLLA) is considered to be a promising candidate material for biodegradable vascular scaffolds (BVS) in
percutaneous coronary intervention (PCI). But, PLLA-BVS also faces the challenge of thrombosis (ST) and in-stent
restenosis (ISR) caused by in-stent neo-atherosclerosis (ISNA) associated with inflammatory reactions in macrophage-
derived foam cells. Our previous studies have confirmed that curcumin alleviates PLLA-induced injury and inflammation in
vascular endothelial cells, but it remains unclear whether curcumin can alleviate the effect of inflammatory reactions in
macrophage-derived foam cells while treated with degraded product of PLLA. In this study, PLLA-BVS was implanted in
the porcine coronary artery to examine increased macrophages and inflammatory cytokines such as NF-κb and TNF-α by
histology and immunohistochemistry. In vitro, macrophage-derived foam cells were induced by Ox-LDL and observed by
Oil Red Staining. Foam cells were treated with pre-degraded PLLA powder, curcumin and PPARγ inhibitor GW9662, and
the expression of IL-6, IL-10, TNF-α, NF-κb, PLA2 and PPARγ were investigated by ELISA or RT-qPCR. This study
demonstrated that the macrophages and inflammatory factors increased after PLLA-BVS implantation in vivo, and foam
cells derived from macrophages promoted inflammation by products of PLLA degradation in vitro. This present study was
found that the inflammation of foam cells at the microenvironment of PLLA degraded products were significantly increased,
and curcumin can attenuate the inflammation caused by the PLLA degradation via PPARγ signal pathway. In addition,
curcumin should be further studied experimentally in vivo experiments on animal models as a potential therapeutic to reduce
ISNA of PLLA-BVS.
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1 Introduction

Coronary heart disease (CHD) still remains as a major
contributor of death and disability globally [1]. Managing
patients with coronary artery stenosis has substantially
improved since percutaneous coronary intervention (PCI)
[2]. Poly-L-lactic Acid (PLLA) as the most common use
biodegradable materials has great application potential in
PCI [3]. However, with the accumulation of clinical evi-
dence, the problems of BVS such as thrombosis (ST) and
in-stent restenosis (ISR) have been raised [4, 5]. In-stent
neo-atherosclerosis (ISNA) has been identified as a major
contributing factor to late stent failure resulting from ST and
ISR [6–10]. ISNA is histologically characterized by an
accumulation of lipid-laden foamy macrophages. The
infiltration of foamy macrophages within the neointima
results in the thinning of the fibrous cap to form thin-cap
fibroatheroma, which may lead to ST and ISR [11]. Current
research on ISNA is mostly derived from metallic scaffolds,
and little is known about the progression of macrophage
involvement in ISNA by PLLA scaffolds. A follow-up of
20 patients implanted with BVS by Moriyama et al. found
that ISNA with luminal stenosis was observed 5 years after
BVS implantation [12]. High Mw PLLA scaffold degraded
completely in 2–3 years [13]. In fact, the residual struts in
the pig coronary arteries were still found in our previous
4-year follow-up thought most of the struts were absorbed
into the vascular walls [14]. For orthopedic patients, the
degradation time may be longer [15]. In vivo, PLLA and its
copolymers release low molecular weight polymers undergo
hydrolysis and biodegradation, making a complicated and
dynamic microenvironment [16, 17]. In our previous stu-
dies, pre-degraded low molecular PLLA powder was used
to simulate the degradation products of PLLA. However,
we have not studied the relationship between inflammation
caused by macrophages and ISNA in the microenvironment

of late degradation products. Macrophage is associated with
foam cells formation and atherosclerotic instability by lipid
accumulation and inflammatory cytokines. Therefore, tar-
geting macrophage inflammation is a potential therapeutic
strategy for atherosclerosis [18, 19]. As part of the tradi-
tional Chinese medicine, Berberine alleviates ox-LDL-
induced macrophage activation by downregulating
galectin-3 via the NF-κB and AMPK signaling pathways in
ISNA after PCI [20]. Curcumin (Cur), an active pharma-
ceutical monomer extracted from ginger, has various phar-
macological uses such as lipid lowering and anti-
inflammation, and is widely implicated in the regulation of
various signaling pathways such as fat transport and
inflammation [21]. Accumulating evidences suggests that
curcumin exert anti-atherosclerotic effect by decreasing the
inflammatory responses of macrophage via NF-κb pathway
as a PPARγ activator [22]. The effects of lipid-lowering and
anti-inflammation of curcumin have been pointed out in
reports, in which curcumin showed the benefits against
hyperlipidemia and the development of atherosclerosis [23].
And curcumin inhibited the neointimal formation and
reduced inflammatory responses in the animal model of
carotid artery restenosis via Raf/MEK/ERK pathway [24].
However, the microenvironment of degraded polymers was
not concerned enough. Some reports noted the encapsula-
tion of curcumin in polymeric nanoparticles for anti-
inflammatory therapy [25], but curcumin-mediated effects
on the biocompatibility of polymers doesn’t cause enough
concern. Some studies demonstrated that curcumin can
reduced the inflammatory responses to bioresorbable PLLA
fibers and may benefit PLLA-base implants [26]. And our
previous study found that curcumin exerts anti-
inflammatory effects during the PLLA degradation pro-
gress, related to the NF-κb signaling pathway, suggesting
that curcumin has the potential to improve PLLA bio-
compatibility [17]. Here, we focused on the inflammatory
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responses and macrophages or foamy macrophages in the
setting of PLLA in vivo and in vitro, further exploring the
anti-inflammatory effect of curcumin via peroxisome
proliferator-activated receptor gamma (PPARγ) signaling
pathway.

2 Materials and methods

2.1 Materials

The following materials were used in this study: PLLA-
BVS crimped on 3.0 × 15 mm balloon catheters (VasoTech,
Inc. Lowell, MA, USA), Tibetan miniature pigs purchased
from Pearl River Laboratory (Dongguan, China), Anti-NF-
kB p65 antibody (Cell signaling, #6956, USA.) and Anti-
TNF alpha antibody for IHC (Abcom, #ab6671, UK.), (Poly
(L-lactide) OH (Mw 15,000–30,000 Da, Daigang Bioma-
terial Company, #DG-LOH050, China), human acute
monocytic leukemia cell line, THP-1 (ZhongqiaoXinzhou,
China #ZQ0086), RPMI 1640 (Gibco, #11875085), FBS
(Sciencell, #0500, USA), penicillin-streptomycin (Gibco,
#15140122, USA), phorbol-12-myristae-13-acetate (PMA,
MCE, Shanghai, China, #HY-1879), Oxidized LDL (Ox-
LDL, Shanghai Yuanye Bio-Technology, #S24879-2mg,
China), Oil Red O solution (Sigma,#SLBW7964, USA.),
Cell Counting Kit-8 (CCK-8, Dojindo, Kumamoto, Japan).
curcumin (MCE, Shanghai, China, #HY-N0005), GW9662
(Abcam, #ab141261, UK.)ELISA kit for IL-6, TNF-α, IL-
10 and Lp-PL-A2 (Meimian Company, China), Trizol RNA
extraction kit (Shanghai Shenggong Institute of Biological
Engineering, China, #A019-2), PrimeScript™ RT kit with
GDNA-Eraser reverse transcription Kit (TAKARA,
#RR047A), SYBR qPCR Mix Kit (Guangzhou Sihe, China,
#SH3005).

2.2 Methods

2.2.1 Animal preparation and scaffold implantation

Animal protocols approved by the Institutional Animal Care
Committee at the Dongguan Affiliated Hospital of Jinan
University, School of Medicine, and conformed with the
“Guide for the Care and Use of Laboratory Animals”
published by the US National Institutes of Health (NIH
Publication number 85-23, revised 1996). PLLA-BVS
crimped on 3.0 × 15 mm balloon catheters were sterilized
with gamma radiation prior to implantation. 28 Tibetan
miniature pigs, weighing 20–25 Kg, were implanted with
PLLA stent in the coronary artery according to previously
described procedures [27]. 28 Tibetan miniature pigs were
divided into 4 groups according to the different follow-up
time after implantation of the PLLA-BVS (10 pigs at 14th

day, 10 pigs at 28th day, and 8 pigs at 90th day). Left
anterior descending arteries with devices were carefully
acquired in animals after excessive anesthesia. Left anterior
descending artery segments from 3 healthy Tibetan minia-
ture pigs were used as controls (0 day, before implantation).

2.2.2 Histological analysis and immunohistochemistry

All coronary arteries with implanted scaffold were paraffin-
embedded and serial cross-sections were obtained at 4 μm
thick for histological staining. The sections were then
stained with hematoxylin eosin (HE) and NF-κb, TNF-α
were detected by immunohistochemistry as described pre-
viously [27].

2.2.3 Preparation of pre-degraded PLLA powder

High Mw PLLA (>600,000 Da) is used clinically for the
fabrication of vascular stents, which are completely degraded
in 2 or 3 years. For in vitro assays, low Mw PLLA powder is
commonly to mimic the later products in a short time in vitro
in experiments. PLLA with Mw 15,000Da predegraded for
16 weeks was chosen because of high lactic acid content
during degradation in our previous studies [17]. In brief, after
sterilization by UV irradiation, the Mw 15,000 PLLA powder
was weighted accurately with an electronic balance (Sartor-
ius, BSA223S, Beijing, China) and dissolved in sterile saline
at the suggested concentration of 0.2 g/ml, based on ISO
10993-12. The degradation products were collected after
incubation in a shaking incubator (THZ-100, Yiheng, China)
at 37 °C and 100 rpm for 16 weeks. After centrifugation
(Eppendorf, #5804 R; 5000 rpm for 5 min), drying and
grinding, the remaining degradation products were collected.

2.2.4 Cell culture

THP-1 cells were cultured in the medium (RPMI
1640 supplemented with 10% FBS and 1% Penicillin-
streptomycin), at 37 °C, 5% CO2. They were passaged
every 48 h. Macrophages were then induced from 20 × 104/
ml THP-1 cells in media containing PMA at 100 ng/ml.
The PMA-containing media was then replaced with several
kinds of basic medium containing 25, 50, 100, 150 ug/ml
Ox-LDL respectively, and cells cultured for 48 h to estab-
lish the THP-1 macrophage-derived foam cells. Foam cell
formation was examined using oil red O staining as
described before [28]. Briefly, foam cells derived by cul-
turing macrophages for 48 h in ox-LDL were fixed with 4%
PFA at 25 °C overnight and washed with 0.01 M PBS. Cell
morphology was then evaluated under the micrograph after
staining with oil red O at 37 °C for 30 min. As long as lipid
droplets can be clearly observed under the microscope, the
foam cells induced by the lowest concentration of Ox-LDL
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should be selected for subsequent experiments to avoid too
strong inflammatory response. Macrophage-derived foam
cells were divided into 6 groups, Blank control group (Con
group), PLLA group (foam cells treated with pre-degraded
PLLA), PLLA+ Cur group (foam cells treated with PLLA
and curcumin) and PLLA+ Cur+GW9662 group (foam
cells treated with PLLA, curcumin and GW9662), Cur
group (foam cells treated with curcumin alone), Cur
+GW9662 group (foam cells treated with curcumin and
GW9662). PLLA powder was in 1640 medium after ster-
ilization by UV irradiation. 100 mg curcumin dissolved in
2.715 mL DMSO was dissolved to obtain a concentration
of 100 mmol/L in accordance with the instructions, then
diluted to 1 mmol/L concentration of curcumin with the cell
medium, and packed separately and stored at −80 °C. After
the cytotoxicity test, 10 mg/mL PLLA and 20 μmol/L cur-
cumin were used in subsequent experiments. GW9662 was
used in this study after cytotoxicity assessment with CCK8
according to the instructions. Foam cells were cultured with
degraded products of PLLA, curcumin and GW9662 for
downstream experiments.

2.2.5 ELISA for IL-6, TNF-α, IL-10 and LP-PLA2 detection

To assess the effects of curcumin on inflammation in foam
cells, the release levels of IL-6, TNF-α, IL-10, and Lp-
PLA2 in supernatants of foam cells cultured in product of
PLLA degradation for 24 h were measured by ELISA fol-
lowing kit manufacturer instructions.

2.2.6 RT-qPCR analysis of IL-6, TNF-α, IL-10, PPARγ

RNA extraction, reverse transcription and RT-qPCR were
done according to kit instructions. The following primers
were designed using Premier 5 and synthesized by
Guangzhou Jierui Biological Company (China):

IL-6: F: atgaactccttctccacaagcgc, R: gaagagccctcaggctgg
actgg,

TNF-α: F: cagcctcttctccttcctga, R: ggaagacccctcccag
ataga,

IL-10: F - ggttgtcgtctcattctgaaaga, R: ggtagaggacccaagttc
gttaaga,

PPARγ: F: agcaacagtcatccataaaag, R: acatccccacagcaa
ggcatt.

GAPDH: F: accaccatggagaaggctgc, R: ctcagtgtagcccag
gatgc.

2.2.7 Statistical analysis

Data are expressed as mean ± SD. GraphPad prism 6.0 and
SPSS 17.0 were used for statistical analyses. One-way
ANOVA was used for multiple comparisons. P= < 0.05
indicates statistically significant differences.

3 Results

3.1 Histology and immunohistochemistry of porcine
coronary arteries implanted with PLLA stents
follow-up to 90d

Macrophage infiltration could be observed around the
scaffolds after PLLA-BVS implanted for 90 days. Immu-
nohistochemistry showed that the expression of NF-κb and
TNF-α increased in coronary artery implanted with PLLA-
BVS indicating inflammation in the endothelium and sur-
rounding the PLLA stent after implantation for 14, 28 and
90 days. (Fig. 1)

The images were shown by HE staining (from left to
right, first and second columns) and immunohistochemistry
staining (third and fourth columns) of the coronary arteries
after implantation for 0 d (a–d), 14 d (e–h), 28 d (i–l), 90 d
(m–p), respectively. White squares in all pictures indicate
components of PLLA stent, macrophages were indicated by
black arrows at 28 and 90th day (j & n) in HE stain image,
and positive immunohistochemistry staining of NF-κb/
TNF-α were indicated by black arrows at 14 d, 28 d and
90 d (g, h, k, l and p).

3.2 Formation of foam cells derived from THP-1
macrophages and Oil Red O staining

As shown in Fig. 2, the lipid drops in foam cells induced
with different concentration of Ox-LDL were noted brown
positive staining after Oil Red O staining, indicating suc-
cessful foam cell formation, and foam cells induced by
25 ug/ml Ox-LDL were applied for the next experiment.

3.3 Effect of GW9662 on cell viability in
macrophages

To assess the effects on cell viability of GW9662 in mac-
rophages, CCK-8 was used (Fig. 3). Compared with other
groups, ODs of macrophages in 20 uM GW9662 was higher
at 24 h.

3.4 Curcumin attenuates foam cells Inflammation
associated with Poly-L-lactic acid degradation

After cultured for 24 h, we analyzed the release level in
supernatant and mRNA expression level of cells of
inflammatory factors like IL-6, TNF-α and IL-10 in each
group using ELISA and RT-qPCR, respectively. As an
inflammatory factor closely related to the inflammatory
activity of atherosclerotic plaques, Lp-PLA2 in the super-
natant of cultured cells was also detected by ELISA. As is
show to Fig. 4a, the secretion of TNF-α in the PLLA group
was significantly higher than Con group. There is no
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significant difference in the secretion level of the anti-
inflammatory cytokine, IL-10 in each group. RT-qPCR
analysis revealed that compared to Con group, IL-6 and
TNF-α mRNA level was significantly elevated, while IL-10
mRNA level was significantly reduced in the PLLA group
(Fig. 4b). Meanwhile, the IL-6 and TNF-α mRNA level was
significantly reduced, while IL-10 mRNA level was sig-
nificantly elevated in the PLLA+Cur group. After the
addition of GW9662, the levels of pro-inflammatory cyto-
kines such as IL-6 in PLLA+ Cur group had a downward
trend (Fig. 4a), while the anti-inflammatory cytokine IL-10
was in the fall both in ELISA and RT-qPCR results.
However, there were no significant difference in the two
groups. IL-6 and TNF-α decreased and IL-10 increased
significantly in Cur group while comparing with blank

control group. And IL-6 increased significantly in Cur+
GW9662 group while comparing with Cur group. Addi-
tionally, TNF-α increased significantly in Cur+PLLA
group while comparing with Cur group. Interesting, the
levels of Lp-PLA2 were decreased in PLLA group and
increased in PLLA+ Cur group and PLLA+Cur+
GW9662 group.

3.5 PPARγ signaling participates in curcumin-
induced anti-inflammation in foam cells
associated with Poly-L-lactic acid degradation

To investigate the effect of PPARγ signaling pathway on
curcumin in the inflammatory reactions of macrophage-
derived foam cells, we evaluated the mRNA level of

Fig. 1 Histology and immunohistochemistry of porcine coronary arteries implanted with PLLA-BVS follow-up to 90 d. The images were shown
by HE staining (from left to right, first and second columns) and immunohistochemistry staining (third and fourth columns) of the coronary arteries
after implantation for 0 d (a–d), 14 d (e–h), 28 d (i–l), 90 d (m–p), respectively. White squares in all pictures indicate components of PLLA stent,
macrophages were indicated by black arrows at 28 and 90th day (j, n) in HE stain image, and positive immunohistochemistry staining of NF-κb/
TNF-α were indicated by black arrows at 14 d, 28 d and 90 d (g, h, k, l, p).

Fig. 2 Results of the positive staining of Oil Red O in foam cells treated with 25, 50, 100, 150 ug/ml Ox-LDL. Compared with blank control, the
lipid drops in foam cells co-incubated with 25 ug/ml Ox-LDL were clear enough
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PPARγ in 4 groups (PLLA group, PLLA+Cur group,
PLLA+ Cur+GW9662 group). PPARγ expression levels
significantly increased in Cur group and reduced in
GW9662 group (Fig. 4b).

4 Discussion

Among the available biodegradable biomaterials, PLLA is
considered to be a promising candidate for biodegradable
scaffolds due to its excellent chemical and mechanical
properties which have great application potential in PCI.
Whereas the increasing target lesion failure and device
thrombosis with the PLLA-BVS in clinical trials hinder its
application. The published data showed that the complete
degradation time in vivo exceeded expectations, and In-
stent Neoatherosclerosis (ISNA) with luminal stenosis was
observed 5 years after PLLA-BVS implantation [12]. The
accumulation of PLLA degradation products and inflam-
matory reactions were important contributing factors for
this result [29, 30]. Macrophages play an important role in
the PLLA degradation process by phagocytosing the
polymer microparticles. In our previous reports, the
inflammatory responses in artery endothelial cells [17]
treated with the low molecular weight PLLA degradation
extract or solid product were increased and reversed after
the addition of curcumin. In the present study, macro-
phages and inflammatory cytokines surrounding PLLA
scaffold strut in animal in vivo were observed, and the
release and expression level of inflammatory cytokines in
macrophage-derived foam cells treated with pre-degraded
low molecular weight PLLA products were studied iv
vitro. As an anti-inflammatory medicine and a regulator of
macrophage polarization, curcumin was then implied to
macrophage to reveal the molecular mechanisms such as
PPARγ pathway.

The expression of NF-κb/TNF-α increased and macro-
phages surrounding PLLA were found after PLLA stents
were implanted in the artery in this study, suggesting
inflammatory response caused by PLLA should be mon-
itored during the acceleration of degradation. In-stent
neoatherosclerosis (ISNA) is considered to be one of the

Fig. 4 Measurement results of inflammatory cytokines and PPARγ
pathway signal by ELISA and RT-qPCR. a The release level of IL-6,
TNF-α, IL-10 and LP-PLA2 detected by ELISA. The level of IL-6 and
TNF-α in PLLA group significantly increased while comparing to the
Con group, and decreased while comparing to the PLLA+ Cur group.
Compared with the PLLA+ Con group, the levels of Lp-PLA2 were
decreased in PLLA group. Compared with PLLA group, Lp-PLA2
increased in PLLA+Cur group. And compared with PLLA+Cur
group, Lp-PLA2 increased in PLLA+Cur+GW9662 group. There
were no significantly differences among each group of release levels of
IL-10. b The mRNA level of IL-6, TNF-α, IL-10 and PPARγ detected
by RT-qPCR. Compare to Con group, the levels of IL-6 and TNF-α
mRNA significantly increased in PLLA group and decreased in PLLA
+ Cur group; the level of IL-10 and PPAR-γ mRNA significantly
decreased in PLLA group and increased in PLLA+Cur group. In
contrast, the level of PPAR-γ mRNA decreased in PLLA+Cur
+GW9662 group while compare to PLLA+ Cur group. (Compared
with Con group, **p < 0.01, *p= < 0.05, respectively. Compared with
PLLA group, ##p < 0.01, #p= < 0.05, respectively. Compared with
PLLA+ Cur group, &&p < 0.01, &p= < 0.05, respectively. Com-
pared with Cur group, $$p < 0.01, $p= < 0.05, respectively)

Fig. 3 ODs of macrophages in different concentration of GW9662.
Note ODs of 20 μm GW9662 was highest in all the groups
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major factors in the late failure of biodegradable scaffolds
implant [7–10]. Macrophages play an important role at all
stages of atherosclerotic lesion development [31]. A crucial
step in atherosclerosis progression is inflammatory response
by foam cells in the lipid core and foam cells in
macrophage-derived plaques exhibit similar polarization by
secreting pro-inflammatory cytokines [23]. The main cause
of foam cells generation is the excessive influx of modified
low-density lipoproteins (LDL) and accumulation of cho-
lesterol esters in intimal macrophages [32]. Numerous fac-
tors are involved in the development of plaque [19].
Cytokines like IL-6, TNF-α and IL-10 promote the devel-
opment of neoatherosclerosis [33]. Lipoprotein-associated
phospholipase A2 (Lp-PLA2), a vascular specific bio-
marker, plays a role in the development of atherosclerotic
lesions and formation of a necrotic core, leading to more
vulnerable plaques [34].

In our study, foam cell dominated inflammatory response
was promoted by PLLA. Macrophages play an important
role at all stages of atherosclerotic lesion development.
They have different roles in proinflammatory M1 macro-
phages (releasing IL-6 and TNF-α) and anti-inflammatory
M2 macrophages (releasing IL-10). In general, the M1
contributes to onset of inflammation, whereas the M2
orchestrates resolution and repair [31]. Interestingly, the
level of special vascular inflammatory factor Lp-PLA2 in
the PLLA group has not increased. We speculate that there
also have a significant number of macrophages engulf
PLLA particles when macrophages uptake ox-LDL. These
macrophages were absence of expression of factors and
markers of foam cells, and it need to further studies in the
future. In this study, we didn’t detect ISNA in coronary
after implant PLLA-BVS follow-up to 90 days. This may be
related to the animals we chose were healthy pigs and high
fat diet feeding was not performed in this study. Further-
more, the follow-up time is still too short for ISNA for-
mation [12, 35].

Curcumin has been extensively studied as a potential
anti-atherosclerosis agent. Mounting evidence indicates that
curcumin has anti-inflammation effects and can inhibit lipid
accumulation. However, its effect on inflammatory reac-
tions in macrophage-derived foam cells associated with the
product of pre-degraded PLLA is unclear. IL-6 has been
reported as a biomarker for plaque initiation and destabili-
zation [36]. IL-10 deficiency is reported to increase ather-
osclerotic plaque size and promote atherosclerosis
development. Human IL-10 gene transfer decreased ather-
osclerosis and atherosclerotic plaque instability [37]. Here,
we made similar observations. The level of IL-6 and TNF-α
were significantly decreased in the PLLA+Cur group,
suggesting that curcumin may inhibit plaque development.
On the contrary, curcumin stabilized the plaque by
enhanced IL-10 expression by foam cells.

To determine if the effect of curcumin on inflammatory
reactions is related to PPARγ pathway, we measured its
mRNA levels. Mounting evidence suggests curcumin acti-
vates PPARγ during macrophage polarization and that NF-
κb plays a key role in the PPARγ pathway in anti-
inflammatory reactions [38, 39]. Synthetic antagonists of
the nuclear receptor PPARγ such as GW9662 are widely
used to elucidate receptor-mediated ligand effects. Here, we
found increased PPARγ expression in curcumin-treated
foam cells (PLLA+Cur group). On the contrary, sup-
pressed PPARγ expression was founded in GW9662 group
indicating that curcumin may modulate inflammatory
reactions in lipid forming cells via PPARγ signaling.

At the same time, the inflammatory responses sig-
nificantly decreased in Cur group and Cur+ PLLA group
demonstrated the anti-inflammatory effect of the Cur in
foam cells treated with PLLA. Furthermore, the anti-
inflammatory effect of Cur reversed by the PPARγ blocker-
GW9662, as was show in the PLLA+ Cur+GW9662 and
Cur+GW9662 group, which indicated that Cur attenuates
the inflammation of foam cells via PPARγ signal pathway.
Those results were trying to show the conclusion that cur-
cumin can attenuate the inflammation caused by the PLLA
degradation via PPARγ signal pathway.

5 Conclusions

This study demonstrated that the inflammatory factors
release and macrophages surrounding PLLA scaffold were
obvious in vivo, and the inflammatory responses in
macrophages-derived foam cells promoted by PLLA pre-
degradation product in vitro. Curcumin represents a pro-
mising agent to reduce ISNA of PLLA-BVS by alleviating
foam cell inflammation caused by PLLA degradation via
PPARγ pathway activation. In addition, inflammation was
also observed in vivo, but more details are needed to study
for exploring the complex reasons.

6 Limitation

A number of limitations need to be noted regarding this
study. Firstly, some cytokines, like Lp-PLA2 and PPARγ
were not measured in all groups in vitro experiment ade-
quately, and more in-depth studies are needed to validate
thethe molecular mechanisms of curcumin’s effects. Sec-
ondly, curcumin was not used in the in vivo experiments in
this study, which should be considered as a supplementary
part for future research.
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