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A numerical algorithm for modeling cellular
rearrangements in tissue morphogenesis
Rhudaina Z. Mohammad 1,2, Hideki Murakawa 3, Karel Svadlenka 1,4✉ & Hideru Togashi 5,6

Among morphological phenomena, cellular patterns in developing sensory epithelia have

gained attention in recent years. Although physical models for cellular rearrangements are

well-established thanks to a large bulk of experimental work, their computational imple-

mentation lacks solid mathematical background and involves experimentally unreachable

parameters. Here we introduce a level set-based computational framework as a tool to

rigorously investigate evolving cellular patterns, and study its mathematical and computa-

tional properties. We illustrate that a compelling feature of the method is its ability to

correctly handle complex topology changes, including frequent cell intercalations. Combining

this accurate numerical scheme with an established mathematical model, we show that the

proposed framework features minimum possible number of parameters and is capable of

reproducing a wide range of tissue morphological phenomena, such as cell sorting, engulf-

ment or internalization. In particular, thanks to precise mathematical treatment of cellular

intercalations, this method succeeds in simulating experimentally observed development of

cellular mosaic patterns in sensory epithelia.
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Understanding the mechanisms of tissue morphogenesis—
how interacting processes generate the shape and struc-
ture of an organism—is at the forefront of researches in

developmental biology. Mathematical modeling is a powerful tool
to investigate how local cell-cell interactions affect tissue-level
morphology. In general, a successful model requires two main
ingredients: a mathematical model represented by a set of gov-
erning equations based on physical principles, and a computa-
tional method to solve them. Building each of these two
components is a different process—a simple physical model may
not necessarily be easy to compute. In this paper, we focus on the
computational aspect of modeling the morphology of epithelial
tissues, where the gap between a model and its numerical reali-
zation is prominent. Indeed, the physical model usually measures
adhesion or tension forces along cellular interfaces and thus is
straightforward, while its computation presents challenging tasks
due to topology changes in cellular rearrangement—a highly
nontrivial problem from the viewpoint of mathematics.

Formation of cellular patterns in tissues often involves frequent
neighbor swaps (topology changes). Cell intercalation, a typical
process of this type, requires a distinctive combination of
mechanisms, including adhesive changes that allow cells to
rearrange, or cytoskeletal events through which cells exert the
forces needed for cell neighbor exchange. Brodland1 in his Dif-
ferential Interfacial Tension Hypothesis (DITH) proposed that
relative intensities of interfacial tensions, which are defined as a
combination of cell-cell adhesion, contraction of cell membranes
and other forces, lead to self-driven rearrangement of embryonic
cells. To analyze the effect of such factors in tissue self-organi-
zation, a number of mathematical models have been proposed
with the assumption that tissue evolves via a succession of quasi-
equilibrium states, that is, cell shapes are described by their
instantaneous state of lowest energy2. In this article, we follow
this line and focus on a class of models which neglect inertial
effects and treat the evolution of a cellular aggregate from the
viewpoint of free energy minimization principle; see Methods for
more details.

Existing computational approaches realizing the above-
mentioned free energy minimization include, among others,
vertex dynamics model, cellular Potts model, front-tracking and
finite element methods (see Supplementary Note 1 for a brief
overview of their differences). In this paper, we present another
class of numerical methods based on the implicit level set
representation of the shape of cell-cell junctions. Here an evolving
junction is a contour of a time-dependent function on a fixed
spatial grid. Recent mathematical results on the evolution of level
sets of interfacial networks via energy gradient descent3 allow for
a precise computation of this evolution including topology
changes. We draw attention to this computational method for its
advantages and to show that in certain problems it may perform
better than well-established schemes. Namely, we claim that
besides its ability to accurately handle topology changes, the level
set approach eliminates nonphysical parameters.

Although each specific morphogenetic phenomenon involves a
large number of biological and physical factors, it is a well-
accepted understanding in the modeling community that it is not
reasonable to construct models having a large number of factors
as model parameters. The reason is simply that correlation ana-
lysis becomes prohibitively complicated with increasing number
of parameters, especially in living systems: if a model has a suf-
ficiently large number of parameters, their suitable tuning can
produce essentially arbitrary results and the analysis becomes
pointless. This leads researchers to pin down biologically
important components in a given phenomenon, and build a
model with only those components as parameters. However, the
aforementioned models incorporate a number of parameters

which cannot be omitted and have only vague physical inter-
pretations. For example, to deal with topological changes due to
cellular intercalations one performs junctional rearrangements in
the vertex dynamics model through simple operations, such as
T1, T2, T3 transitions4; and in the finite element-based method
through a boundary “flip” algorithm5, which all require additional
parameters.

A typical example of a phenomenon where the above concerns
become relevant is formation of cellular patterns in morpho-
genesis of sensory epithelia. These epithelia show regular mosaic
or checkerboard patterns that crystallize through continuous
intercalations of sensory and supporting cells (SCs). In the work
of Katsunuma et al.6, it was hypothesized that varying adhesion
strengths between participating cells is the decisive factor deter-
mining the mosaic pattern.

However, it was found that frequent occurrence of cell inter-
calations precludes the application of vertex dynamics method to
support the hypothesis through simulations. Our proposed level
set scheme addresses all the main causes of failure of vertex
dynamics in this case, namely, inaccurate handling of topology
changes, presence of nonphysical parameters, and inability of
expressing complex curved shapes of cell junctions with largely
different cell sizes, leading to successful reproduction of experi-
mentally observed cellular patterns. Our results give a strong
indication of the correctness of the hypothesis that differential
interfacial tension plays the main role in formation of epithelial
tissues.

Results
Mathematical model and level set-based approach. We present
an outline of the mathematical model and numerical algorithm
(see Methods for a systematic explanation). In choosing a model,
we adhere to the context of DITH1. Cells in an aggregate are
expressed as closed regions C1; ¼ ; CN , and cell-cell junctions are
defined by γij :¼ Ci \ Cj. In cases where there is an extracellular
space, we denote this medium by the same symbol Ck and its cell-
medium interface by γik. Surface tension between ith and jth cell,
that is equivalent to interfacial free energy density, is denoted by
σij (see Supplementary Note 2 for a discussion on its physical
meaning). We consider cellular rearrangement as the L2-gradient
flow of the free energy

EðC1; ¼ ; CNÞ ¼ ∑
i≠j
σ ij Area ðγijÞ ð1Þ

constrained by each cell’s prescribed volume V0
‘ (ℓ= 1, 2,…,N).

We assume that each cell exactly preserves its volume and that
apoptosis does not occur but this simplification can be made
more realistic by allowing varying volumes of cells, see Supple-
mentary Note 2. Thus, our mathematical model is standard and
conceptually simple but its numerical implementation is not
obvious.

We propose a level set-based scheme for numerical realization
of this model, based on the Esedo�glu-Otto algorithm3. The main
idea is to solve heat equations and to extract level sets of their
solutions, which can be easily and efficiently implemented.
Moreover, the convergence of this algorithm is supported by Laux
and Otto7 from mathematical point of view even for the problem
containing multiple junctions. In order to apply Esedo�glu-Otto
algorithm to simulations of evolving cell aggregates, two issues
need to be addressed: volumes of cells have to be preserved or
controlled, and cells have to be prevented from splitting. We have
implemented volume control by combining the Esedo�glu-Otto
algorithm with auction dynamics8, which in essence finds suitable
contour heights by simulating an auction (see Fig. 1 and the
intuitive explanation of the auction algorithm in Methods). The
second issue relates to the absence of any device in the original
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algorithm that would keep cells as connected sets. It may then
happen that a cell splits into two parts and one part suddenly
appears in a distant part of the aggregate, see Supplementary
Note 3 for more. To avoid such behavior, we implement a
localization on the bidding process in auction dynamics. Figure 1
depicts the main steps of the resulting algorithm.

In Methods, we provide further details of the algorithm,
summarize its known mathematical properties such as stability
and convergence, and give a detailed account of parameters used.
The important conclusion is that outputs of the proposed
algorithm depend only on the physical parameters σij, apart from
the unavoidable space-time discretization steps δx, δt. Since
theoretical results on convergence and stability for the full
volume-controlled problem including localization are not avail-
able, we also present a computational analysis of the proposed
method showing that it has the desired properties, in particular
convergence even across topology changes. Moreover, we
perform a series of numerical tests to contrast the properties of
our level set-based algorithm with those of the vertex dynamics
algorithm, a commonly-used method for cell intercalations in
developmental biology, showing that the level set-based method
yields better results at the price of higher computational cost. We

defer the details on the setup and results of these experiments to
Supplementary Notes 4, 5 and 6.

In Supplementary Note 7, we report that our level set-based
method generates expected results for standard morphogenetic
benchmarks, namely cell sorting, mixing and formation of
checkerboard or football patterns. Finally, in Supplementary
Note 8, performing a simulation of an encapsulation phenom-
enon in embryo morphogenesis, we show that our method can
handle simulations in higher dimensions without major technical
or theoretical complications.

Simulation of tissue engulfment. With the purpose of further
validating the proposed method from the biological viewpoint, we
present an application to a morphogenetic phenomenon in a
medium, where one cell mass, say orange, totally engulfs another
cell mass, say blue. Following the viewpoint of DITH, Brodland
and Chen9 proposed that for the blue cell mass to be enveloped
by the orange cell mass, a sufficient condition is σBO < σBG− σOG
(here σBO means the interfacial tension between blue and orange
cells; analogously for σBG, σOG, where G means the gray medium).
Moreover, for such engulfment to continue, it is necessary to have

Fig. 1 Basic notation and outline of the algorithm. a A cellular aggregate is represented as a bounded domain Ω partitioned into N cells C1; ¼ ; CN. The
boundary between cells Ci and Cj denotes the cell-cell junction γij. b–d Three main steps of the algorithm generating an approximation of the cellular
rearrangement at the next time step δt: Initial condition (b). Given an initial cell aggregate, it is represented by characteristic functions χCi , i= 1,…,N, of
respective cell regions on a discrete grid (functions corresponding to the gray region are not shown). Convolution (c). Characteristic functions are diffused
via solving heat equation, that is, convolutions with Gaussian kernel Gδt � χCi are computed for every i, followed by linear combination of diffused functions
with weights corresponding to interfacial tensions σij, i.e., φi ¼ ∑N

j¼1 σ ijðGδt � χCj Þ. The values ψi(x)= 1− φi(x) then determine the preference of each (grid)
node x for belonging to cell region Ci. Localized auction dynamics (d). Grid points are assigned to cell regions in several sweeps of auction-like process
where grid points bid to neighboring cells based on the preferences ψi. Level sets of the final bid b(x) determine the cell configuration at the next time step
δt, which optimizes preferences while preserving cell volumes (see also Supplementary Movie 5).
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σBO < σBG1. With this in mind, consider an initial configuration of
10 blue cells, 40 orange cells, and a gray medium on a compu-
tational domain Ω= [0, 1] × [0, 1] discretized uniformly into
M= 500 × 500 points with periodic boundary conditions. We
take interfacial tensions σBB= σOO= 1.0, σBG= 7.5, σOG= 3.5,
σBO= 7.5, then linearly change σBO from 7.5 to 2.5 over 100 time
steps, keeping σBO= 2.5 for the remaining time of the simulation,
cf., Brodland1. We then generate the corresponding aggregate
evolution using our level set-based scheme with time step δt=
0.001. Observe that the final configuration results in total
engulfment of the blue cell mass by the orange cell mass (Fig. 2
and Supplementary Movie 110). This is not easily achieved by
finite element-based simulations, cf., Fig. 8 of Brodland1, which
yield unnaturally distorted shapes of cells, particularly, in the
region where the blue cell mass is engulfed by orange cells. The
artifacts in the FEM-based approach emerge from explicit treat-
ment of cellular intercalations using an ad hoc boundary “flip”
algorithm. This demonstrates the superiority of our method over
the finite element-based scheme in handling such topology
changes.

Simulation of cellular rearrangement in olfactory epithelia. In
the following two sections, we introduce simulation results
showing the potential of the level set method in computationally
reproducing observed cellular patterns in developing sensory
systems, in particular, olfactory and auditory epithelia. Such
morphologies involve curved cell junctions, largely different sizes
of participating cells and frequent topology changes. The level set
approach is successful in dealing with this complexity not only
because it allows for a wide range of geometrical patterns but also
because it implicitly satisfies the precise contact angles at tricel-
lular junctions, which is indispensable for theoretically correct
realization of cellular intercalation processes.

Vertebrates possess highly developed sense organs, responsible
for detecting information about different environments and
converting extracellular stimuli into electrical signals which are
mediated by specialized sensory epithelia11. Mosaic cellular
patterns have been observed in various sensory epithelia, such
as football pattern in the olfactory epithelium (OE) and
checkerboard pattern in the auditory epithelium. These regular
mosaic patterns are evolutionary conserved among a wide range
of species and thought to be important in sensory functions.

The OE, which is located inside the nasal cavity, is a specialized
sensory epithelium that is involved in odor perception. When the
luminal surface of the OE is observed from the apical side, ciliated
olfactory cells (OCs) and several types of SCs are arranged in a
unique mosaic pattern (Fig. 3a). In a developing OE, this pattern
formation is accompanied by cellular rearrangements from

embryonic day 14 (E14) to postnatal day 1 (P1) (Fig. 3a), which
is thought to be driven by the different adhesion between OCs
and SCs6. To estimate cell-cell adhesion strength, we use the
distributional patterns of β-catenin intensities since in this case,
cadherin-dependent affinity is the major component of cell-cell
adhesion. During the rearrangement, adhesion strengths between
OCs and SCs (OS), SCs and SCs (SS), and OCs and OCs (OO)
continuously change (Fig. 3b).

Using distributional patterns of experimentally measured β-
catenin intensities, cf. Katsunuma et al.6, we apply our level set-
based approach to simulate cellular rearrangements in the OE
from E14 to P1 stage (Fig. 3c). We consider an initial aggregate of
26 OCs (orange) and 24 SCs (blue) on a square domain
Ω= [0, 1] × [0, 1] with periodic boundary conditions. As
observed in biological experiments, OCs are approximately 10
times smaller in size than SCs and tend to cluster around
tricellular SC-SC junctions at E14 (see Fig. 3a). We discretize the
domain uniformly into M= 500 × 500 points, take time step
δt= 0.0008, and set interfacial tension σij as the reciprocal of cell-
cell adhesion strength αij, measured in terms of β-catenin
intensity.

Figure 3c and Supplementary Movie 210 show the simulation of
cellular rearrangement of a developing OE. Comparing this to
biological experiments, we see that the level set-based model was
able to capture overall cellular rearrangements in the embryonic
stage. In particular, at E14 stage, OCs cluster at the tricellular SC-
SC junctions; then from E16 to E18, OCs separate and move
along SC-SC junctions. The only noticeable difference is that OCs
at tricellular junctions are not as round as in the experimental
results. Lastly, postnatal simulation indicates that β-catenin and,
thus, cadherin-dependent cell-cell adhesion, is not the only
contributing factor for cellular rearrangement in OE. Indeed, the
discrepancy observed in postnatal stages is caused by an
insufficiency in the model parameters rather than by the level
set-based numerical method or the model itself, since if the
parameters of the model are chosen in a suitable hypothetical
way, cellular patterns matching those observed experimentally are
obtained by the level set approach. To generate cellular patterns
similar to those observed in OE at P1 stage, we took the same
initial configuration and the same discretization parameters as
above. The interfacial tensions σSS, σOS, and σOO were evolved as
shown in Fig. 4a; namely, until stage E18 interfacial tensions
identical to those obtained from measurements as presented in
Fig. 3b are adopted, while at further stages σOS and σOO were
increased so that eventually σOS is twice larger than σSS and σOO is
twice larger than σOS. This intends to imitate the hypothesized
prominent activity of cytoskeleton within OCs. The resulting
evolution of the aggregate is shown in Fig. 4b and Supplementary
Movie 310, exhibiting a clear agreement with the actual pattern

Fig. 2 Total engulfment via level set-based model. An initial aggregate of 10 blue and 40 orange cells surrounded by a gray medium and snapshots of its
evolution generated by our level set-based method, resulting in total engulfment of the blue cell mass by the orange cell mass. Here the interfacial tensions
are σBB= σOO= 1.0, σBG= 7.5, σOG= 3.5, and σBO linearly changing from 7.5 at time t= 0 to 2.5 at time t= 100δt and then kept constant.
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Fig. 3 Actual images and simulation results of a developing olfactory epithelium. a Immunostaining for junctional marker (ZO-1) on the apical surface of
the mouse OE from embryonic days (E14, E16) to postnatal day (P1) (reproduced from Journal of Cell Biology, ⓒ2016 Katsunuma et al.6). Scale bar 5 μm
(all figures have the same scale). b Plot of relative intensity of β-catenin accumulations at OO (orange dotted line), OS (solid black line), and SS (blue
dashed line) junctions during development, obtained by interpolation of β-catenin intensity mean values at time instants E14, E16, E18, and P1 reported in
Fig. S2 of Katsunuma et al.6. Moreover, the initial (E14) and final (P1) values were kept constant until the cellular pattern equilibrated (Supplementary
Data 1). c A simulation of cellular rearrangement of an olfactory epithelium from initial aggregate of 26 OCs (orange) and 24 SCs (blue) to embryonic
stages E14, E16, E18 until postnatal P1 stage obtained by the level set-based model. d Cell neighbor counts obtained from three representative actual images
and one simulation image for t= 45δt, 145δt and 345δt shown in (c). The boxes in boxplots show first and third quartiles, whiskers show 9th and 91th
percentiles and+ sign shows the mean. Raw data are provided in Supplementary Data 2. Significant difference (independent t-test with p= 0.0002,
marked by asterisk) was found in OC-OC neighbors at P1 stage (n= 8 (experiment); n= 24 or n= 26 (simulation)). e–h Corresponding results for
αN-catenin KO mouse model based on experimentally measured β-catenin intensities.

Fig. 4 Simulation of developing olfactory epithelium until postnatal stage. a Evolution of interfacial tensions at OO (orange dotted line), OS (solid black
line), and SS (blue dashed line) junctions based on measurements up to embryonic stage E18 but is selected hypothetically for postnatal stage P1
(Supplementary Data 3). b Pattern obtained at the final time 445δt, showing round separate olfactory cells (orange) and supporting cells (blue) arranged in
a pattern similar to experimental image in Fig. 3a (P1). Patterns obtained at earlier times until 245δt are identical to those in Fig. 3c. c Boxplot of neighboring
cell counts corresponding to this hypothetical simulation. Counts for the simulation image (b) are shown on the right in light colors. The meaning of the
boxes and markers is the same as in Fig. 3d.
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depicted in Fig. 3a (P1), which is further quantified in Fig. 4c by
analyzing the numbers of neighboring cell types. In particular,
OCs are separated one from another and are located either at
tricellular junctions or in the middle of boundary between SCs.

To assess how well our numerical simulation captures
experimentally observed results, we also consider cellular patterns
observed in developing OE derived from αN-catenin knock-out
(KO) mice. Here adhesiveness at OC-SC junctions is substantially
decreased, which severely affects the resulting cellular pattern
(Fig. 3e). Using distributional patterns of β-catenin intensities
measured from αN-catenin KO mice, we applied our level set-
based approach to simulate cellular rearrangements in the OE
from E14 to P1 stage (see Fig. 3g and Supplementary Movie 210).
We then analyze both wild-type (WT) and KO cellular patterns
by counting neighboring OCs and SCs at randomly selected cells
in three actual images, and at each computational cell of the
simulations shown in Fig. 3c, g. To be precise, for each olfactory
cell, number of neighboring supporting cells (OC-SC) and
olfactory cells (OC-OC), and for each supporting cell, number
of neighboring supporting cells (SC-SC) is counted. We
confirmed that the counts do not essentially depend on the
initial condition by running four more simulations, starting from
randomly generated initial configurations of 26 OCs and 24 SCs.
Figure 3d, h reveals that the mean cell morphology for both WT
and KO obtained in silico matches well with experimental
counterparts in the embryonic stage, but a major discrepancy is
observed in the postnatal stage. We conclude that the level-set
based numerical method is able to simulate complex cell
behaviors in evolving OE across all stages until P1, while the
physical model based on β-catenin mediated adhesion captures
well the phenomenon only in the embryonic stages.

Simulation of checkerboard pattern formation in auditory
epithelia. Another example of unique cellular pattern formation
in tissues is the auditory epithelium, which is responsible for
hearing. It is composed of mechanosensory hair cells (HCs),
equipped with stereocilia that sense sound, and SCs that help the
functions of HCs. These cells rearrange to form a checkerboard
pattern from embryonic day 14 (E14) to 16 (E16) (Fig. 5a, b). At
E18, HCs are arranged in ordered rows, and each HC is separated
from one another by a SC, forming an alternating mosaic pattern.
In the auditory epithelium, nectin-1 and nectin-3 are com-
plementarily expressed in HCs and SCs, respectively. During the
above-mentioned developmental stages, molecular interactions
occur between nectin-1 on HCs and nectin-3 on SCs, where the
heterophilic molecular interaction between nectin-1 and -3 is
much stronger than the homophilic interactions of nectins
between the same type of cells. This biased cell-cell adhesion is
responsible for the checkerboard assembly of cells. On the other
hand, absence of nectin-3 (Nectin-3 KO) eliminated this bias in
cell-cell adhesion, leading to cell rearrangement including
attachments between HCs, and an overall disruption of the
checkerboard pattern11,12.

To unravel the mechanism of this cell rearrangement, we
applied the level set-based method to an initial configuration of
12 HCs (orange), 12 SCs (blue), and one pillar cell (gray) aligned,
as observed in experiments, at the top and bottom of a
rectangular domain Ω ¼ ½0; 1� ´ ½0; 58� with periodic boundary
conditions both on left and right boundaries, and on top and
bottom boundaries (Fig. 5c). We discretized Ω uniformly into
M= 480 × 300 points and set time step to δt= 0.002. We start
with interfacial tensions σSS= σHS= σHH= σSP= σHP= 1.0 at
E14 stage, changing only the SC-HC tension linearly to σHS= 0.6,
which qualitatively follows the change in adhesion strengths
measured experimentally in terms of β-catenin intensities in

auditory epithelium derived from WT mice at E16 stage
(see Section Quantification of Junctional Intensity of Mouse
Sensory Epithelium). Pattern formation at later stages after E16
cannot be explained only by adhesion. Indeed, the change in hair
cell morphology from square to circular is thought to be caused
by pronounced cytoskeletal dynamics within HCs, leading to
increased hair cell stiffness. To express this factor in our model,
we evolve the interfacial tensions so that σSS < σHS < σHH.
Specifically, we impose their linear change reaching σSS= 0.3,
σHS= 0.6, σHH= 1.0, σSP= 0.65 and σHP= 1.0 at E18 stage.
Figure 5c and Supplementary Movie 410 show that the expected
patterns from E14 to E18 stages can be reproduced solely by
designing the interfacial tensions. Although the nature of the
relationship between interfacial tension and adhesion, contrac-
tility, stiffness, internal pressure, etc., is still unknown, our results
show the relevant potential of the level set-based approach as an
effective tool for investigating this relationship.

Let us further test the proposed method by investigating
pattern formation in auditory epithelium of Nectin-3 KO mice,
where the strong adhesion between HCs and SCs is inhibited at
E16 stage. Based on experimental measurements (see Section
Quantification of Junctional Intensity of Mouse Sensory Epithe-
lium), this is reflected in the model by setting σHS= 0.9 at E16,
while all the remaining values of interfacial tensions are retained
from the above WT simulation. The numerical results presented
in Fig. 5d and Supplementary Movie 410 show that checkerboard
pattern is not formed at E16 and the final pattern is similar to the
pattern observed in Nectin-3 KO mice (Fig. 5g). These
simulations indicate the importance of transitory formation of
checkerboard pattern at the E16 stage for robust attainment of
mosaic distribution of HCs and SCs. In Supplementary Note 9,
we demonstrate that results of simulation may depend on initial
condition but this dependence is eliminated by including
fluctuations in the model.

The only publication on mathematical modeling of pattern
formation in sensory epithelia that we are aware of, is the recent
paper by Cohen et al.13. The authors used vertex dynamics model
to replicate the checkerboard-like pattern in auditory epithelium,
corresponding to Fig. 5a–c (E16). Their main assumptions are
global shear motion of sensory HCs and repulsion force between
HCs, in addition to tension and volume preservation. However,
although repulsive forces between HCs play a central role in their
model, there is no real evidence for the existence of such forces.
On the other hand, our method, assuming only forces due to
interfacial tension and volume preservation, reproduces the final
pattern shown in Fig. 5c (E18), which cannot be obtained using
vertex dynamics model due to restrictions on available cell
shapes. Our work indicates that differential interfacial tension is
the main driving force of pattern formation in auditory
epithelium. We believe that this result has a substantial impact
in developmental biology since a number of researchers expect
that intercalation of cells in auditory epithelium requires a
convergent extension process whose mechanism is not yet
understood14.

Discussion
We have presented a mathematical model together with a com-
putational method for simulating cellular rearrangements
occurring in tissue morphogenesis, based on the level set
approach. In particular, we adopt an implicit representation of
cell-cell junctions and approximate their evolution by a thresh-
olding scheme, which features good compatibility with the level
set representation and a solid mathematical background includ-
ing stability and convergence. We have combined this approach
with auction dynamics algorithm to control cell volumes and
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augmented the numerical scheme with several aspects pertinent
to cell biology, most importantly, a localization step which pre-
vents cells from unnatural splitting during their rearrangement.

Because our level set-based approach is simply a numerical
implementation of mathematical models founded on free energy
minimization, it is therefore necessary to evaluate its pros and
cons relative to its known counterparts (e.g., vertex dynamics
model), and to specify types of problems, for which it is suitable.
We have shown that the proposed level set-based algorithm
enjoys the following merits:

(1) it is able to accurately express complex geometries of cell-
cell junctions and correctly realize cell contact angles, which
is indispensable for finding the correct energy minimum
and the corresponding dynamics including topology
changes such as cell intercalations;

(2) it has minimal number of parameters which is essential in
using the model as a tool for testing biological hypotheses.

In this respect, the proposed computational method surpasses
its counterparts, but at the price of a more complex algorithm and
moderate computational cost (see Supplementary Note 6). Thus,
it is recommended that one employs vertex dynamics for large-
scale problems where detailed understanding of intercalation
dynamics is not a priority, while level set-based method is more

suitable for relatively small-scale simulations involving frequent
topology changes and complex geometry.

A morphogenetic phenomenon, whose understanding essen-
tially relies on these merits, is the formation of cellular patterns in
sensory epithelia. Applying our level set-based method to the
analysis of its underlying mechanism led us to the discovery that
differential interfacial tension plays a decisive role in the forma-
tion of sensory epithelia. Indeed, by simulating the epithelial
formation based solely on interfacial tensions, we were able to
reproduce the evolution of cellular patterns that is observed in
experiments. Such finding was not possible until now because
established methods either are not able to capture complex
curved shapes of cells with largely differing sizes and/or are not
sufficiently mathematically accurate to grasp the frequent and
delicate topology changes, such as intercalations, that are at the
core of the patterning process.

Methods
Numerical scheme. We present our algorithm based on the level set approach,
starting with the formulation of the mathematical model. We represent an
aggregate of cells as a bounded domain Ω � Rd (d= 2 or 3) partitioned into N
closed sets C1; ¼ ; CN , representing cells (see Fig. 1a for the basic notation). It
naturally follows that cell-cell junction γij :¼ Ci \ Cj ¼ ∂Ci \ ∂Cj is the common
boundary of sets Ci and Cj .

Fig. 5 Actual images and simulation results of a developing auditory epithelium. a Localization of junctional marker (ZO-1) at the apical surface of the
auditory epithelium at embryonic days E14, E16, and E18 (reproduced from Front. Cell Dev. Biol., ⓒ2016 Togashi11). b Schema of the distribution of hair cells
(HC, orange) and supporting cells (SC, blue) observed in experiments (adapted from Front. Cell Dev. Biol., ⓒ2016 Togashi11). c, d Simulations of cellular
rearrangements of WT (c) and Nectin-3 KO (d) embryonic auditory epithelium from initial aggregate of 12 HCs (orange), 12 SCs (blue), and one pillar cell
(gray), generated employing level set-based model. e Plot of evolution of interfacial tensions at SS (blue dashed line), HS (WT: black solid line, KO: gray
dash-dotted line), and HH (orange dotted line) junctions used for the simulations in (c, d) (Supplementary Data 4). f, g Actual images of auditory epithelium
of WT mouse and Nectin-3 KO mouse at E18 stage, with arrows indicating aberrantly attached HCs (reproduced from Science, ⓒ2011 Togashi et al.12).
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We consider cellular rearrangement as the L2-gradient flow (see Laux and Otto7

and references therein for a precise definition) of the weighted surface energy

EðC1; ¼ ; CN Þ ¼ ∑
i≠j
σij Area ðγijÞ ð2Þ

constrained by each cell’s prescribed volume V0
‘ (ℓ= 1, 2,…,N). Here, Area(γij)

denotes the area of cell-cell junction γij in a 3d model or the length of the junction
in a 2d model, and the weights σij= σji > 0 for i ≠ j may be related to cell-cell
adhesion and/or cell contractility (see Supplementary Note 2 for more). When
i= j, we formally set σij= σii= 0.

In materials science, this problem—considered without volume constraint to
begin with—is widely known as the Mullins model for normal grain growth, where
Ci denotes a grain in polycrystalline materials. To realize the least energy, lower
semicontinuity of the functional is required, a necessary and sufficient condition
for which is the triangle inequality σik≤σij+ σjk for any distinct i, j, and k15. The
grain boundary γij in the L2-gradient flow moves with a velocity μijσijκijηij where κij,
μij and ηij denote the mean curvature, mobility, and unit normal of γij, respectively.
Moreover, at triple junction where three grains Ci , Cj, and Ck meet, the Herring
angle condition holds, that is, σijηij+ σjkηjk+ σikηik= 0. Thus, grain boundaries in
the annealing of pure metals (with equal surface tensions) evolve by mean
curvature flow, where triple junctions meet at angles of 120∘.

Although the mathematical model is simple, its numerical realization is not at
all obvious. Let us first explain the background of the proposed numerical scheme.
Earlier works in simulating the above-mentioned grain boundary motion involve
front-tracking16, which discretizes grain boundaries into finite number of points at
which the mean curvature is explicitly calculated to determine its position at next
time step. This resembles the vertex dynamics model, in the sense that both
approaches evolve vertices based on explicitly calculated quantities. Consequently,
its major drawback lies in its inability to handle grain boundaries that cross or have
complicated topologies. Proper approximation of the subsequent evolution then
requires some form of ad hoc “numerical surgery” which may lack physical
justification and can be impractical to implement, particularly in three dimensions.
To alleviate this drawback, Merriman et al.17 introduced the MBO thresholding
scheme for diffusion-generated curvature-dependent motion of multiple junctions,
which is based on the level set formulation of Osher and Sethian18 for propagating
fronts with curvature-dependent speed. This scheme tracks interfaces implicitly by
following level sets, facilitating natural handling of topological changes. In recent
years, Esedo�glu and Otto3 extended the MBO method to realize motion of grain
boundaries in polycrystalline materials with arbitrary surface tensions. This
method inherits the main advantages of the MBO approach: efficiency in the sense
of low computational cost; and under a mild condition on the weights σij, gradient
stability in the sense that in every time step energy (Eq. 2) is decreased.

With the aforementioned advantages, we introduce a level set-based algorithm
to simulate cell dynamics in tissue morphogenesis. It is based on the Esedo�glu-Otto
algorithm but incorporates cell volume constraints and other aspects typical for
cells. Following the lines in Esedo�glu and Otto3, we briefly explain the derivation of
the algorithm for the gradient descent of energy (Eq. 2) under the volume
constraints

Volume ðC‘Þ ¼ V0
‘ ; ‘ ¼ 1; ¼ ;N: ð3Þ

The area (corresponds to “length” in a two-dimensional model) of a cell-cell
junction γij can be estimated using the so-called “heat content approximation”,
which states that the area of the junction is proportional to the heat that flows from
cell Cj to cell Ci in a short time δt:

Area ðγijÞ �
1ffiffiffiffi
δt

p
Z

χCi Gδt � χCj dx: ð4Þ

Here GδtðxÞ ¼ 4πδtð Þ�d
2e�

jxj2
4δt is the d-dimensional Gaussian kernel, where d is the

spatial dimension of the model, and χC denotes the characteristic function of a cell
region C. Hence, multiplying by the weights σij and adding overall junctions, the
energy E can, with a small error, be replaced by

EðC1; ¼ ; CN Þ � EδtðuÞ :¼
1ffiffiffiffi
δt

p ∑
N

i;j¼1
σ ij

Z
uiGδt � uj dx; ð5Þ

where we have expressed the cell regions C‘; ‘ ¼ 1; ¼ ;N by a vector-valued
function u= (u1,…, uN) on Ω, whose components uℓ(x) can take only two values: 1
if the point x belongs to C‘ , or 0 if it does not. It was shown3 that Eδt is a correct
approximation of the original energy E in the sense that it Γ-converges to E when
δt→ 0.

Due to the condition on cell volumes, function u is constrained to the set

B :¼ u 2 f0; 1gN : ∑
N

j¼1
ujðxÞ ¼ 1 a.e. x 2 Ω and

Z

Ω
u‘ ¼ V0

‘ ; ‘ ¼ 1; ¼ ;N

� �
;

ð6Þ
which is not convex. This poses a difficulty in the minimization problem, but it can
be shown in a similar fashion to Esedo�glu and Otto3 that the minimum of Eδt over
B coincides with the minimum over the convex set K obtained from B by

relaxation, i.e., by allowing the components of u to take any value between 0 and 1:

K :¼ u 2 ½0; 1�N : ∑
N

j¼1
ujðxÞ ¼ 1 a.e. x 2 Ω and

Z

Ω
u‘ ¼ V0

‘ ; ‘ ¼ 1; ¼ ;N

� �
:

ð7Þ
The approximate energy Eδt is still nonlinear, so to devise a simple

minimization scheme, we adopt an iterative process by virtue of Lemma 5.2 in
Esedo�glu and Otto3 as follows. Given an approximation uk of the minimizer of Eδt
in K, we compute the next best approximation uk+1 by linearizing energy Eδt(u)
around uk and defining uk+1 to be the minimizer of the linearized energy over K:

ukþ1 ¼ argmax
u2K

LEδt
ðu; ukÞ: ð8Þ

Here LEδt
is the linearized energy given by

LEδt
ðu; ukÞ ¼ 2ffiffiffiffi

δt
p ∑

N

i¼1

Z
φk
i ui dx; φk

i :¼ ∑
N

j¼1
σ ijGδt � ukj : ð9Þ

In the main algorithm below, we use function ψk
i ¼ 1� φk

i instead of φk
i for the

purpose of reformulating the minimization problem into a maximization one. It
was proved3,7 that in the absence of volume constraints the sequence {uk} decreases
the approximate energy Eδt with increasing step number k and correctly
approximates the L2-gradient flow of the original energy E in the limit δt→ 0.

In the case when there is no volume constraint, minimization (Eq. 8) becomes a
problem of minimizing a linear function over a simplex set K. Thus the solution is
obtained immediately as

ukþ1
i ðxÞ ¼ 1 if φk

i ðxÞ ¼ minjφ
k
j ðxÞ

0 otherwise

(
ð10Þ

which leads to a very simple thresholding scheme. However, when the set K
includes volume constraints, the solution of the minimization (Eq. 8) involves
unknown Lagrange multipliers λij:

ukþ1
i ðxÞ ¼ 1 if φk

i ðxÞ ¼ minjðφk
j ðxÞ þ λijÞ

0 otherwise .

(
ð11Þ

Direct computation of the Lagrange multipliers for more than three cells is
complicated and can be avoided by the application of auction algorithm8. The idea
is to discretize the domain Ω into a uniform grid of points ωM ¼ fxmgMm¼1 � Ω and
assign cell membership to each point of ωM by simulating an auction, so that in the
end each cell C‘ contains v0‘ points. Here, the number of grid points v0‘ corresponds
to the volume of the cell C‘ in the sense of v0‘ =M � V0

‘ =jΩj. It is natural to take the
grid nodes {xm} identical to the grid nodes of the mesh used to numerically realize
the convolutions in (Eq. 9). The starting point of the auction dynamics algorithm is
the configuration of the cells obtained by the gradient flow of energy without any
volume constraint which is determined by the functions φk

i above, or by the
functions ψk

i in the Algorithm below. In this configuration, some cells expand and
some deflate with respect to their original volume. The algorithm then starts with
all grid points unassigned and in arbitrary order takes the yet unassigned points
and assigns them to their most preferred cell, where the extent of preference is in
the beginning determined solely by the unconstrained configuration but later have
to be adjusted via two new variables, namely the grid point’s bid and the cell’s price.
This is because the “popular” cells, i.e., those which tend to expand in the
unconstrained motion, become full in the sense that they reach the upper limit of
points that can be accepted in them due to the volume constraint, and thus either
some points have to be kicked out of the cell or the current point has to be assigned
to its second favorite cell. The design of bids and prices that direct the unassigning
and accepting of points resembles an auction performed by the grid points on the
cells, leading to the naming of the algorithm. It is proved that the kicking out and
accepting process finishes in a finite number of cycles and leads to the exact
solution (at the discrete level of grid points) of the volume-constrained
minimization problem. We refer to the main Algorithm below for precise
description of the steps and to Jacobs et al.8 for a more concise exposition and
rigorous proofs.

The Esedo�glu-Otto scheme is simple and efficient but there are some issues that
need to be tackled, in particular, the phenomena of wetting and nucleation3. Failure
to satisfy the σ-triangle inequality condition leads to wetting, where a new cell Cn
suddenly appears along an unrelated cell-cell junction γij. Moreover, even when σ-
triangle inequality is satisfied, a new cell may still get nucleated at a tricellular
junction. For evolutions computed with auction dynamics, such wetting and
nucleation will force a cell to split into two or more disjoint parts, some of which
transfer to the wetting or nucleation regions. It is important to address this issue
since such cell splitting phenomena do not occur during cellular rearrangements;
yet it is possible that σij’s may not necessarily satisfy the triangle inequality
condition in real tissues (see Supplementary Note 3 for more detailed exposition).
To this end, we modify the auction algorithm by incorporating a topological
constraint, so as to preserve cell connectivity. This makes sense physically, since
individual cells only move in response to their local surroundings, i.e., to their
neighboring cells. Hence, when we establish cell membership, we only allow local
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bidding processes in the auction, as shown in the following main algorithm (see
Fig. 1b for illustrations).

Algorithm 1. (for numerical approximation of the L2-gradient flow of energy
(Eq. 2) with preservation of cell volumes and connectivity)

Notation: Denote by χC the characteristic function of a set C. For given grid
points ωM ¼ fxmgMm¼1 � Ω and a cell region C, define the number of grid points in
C by Cj j :¼ #fm : xm 2 Cg.

Initialization: Split the time interval [0, T] into K subintervals of equal length
δt= T/K. Discretize the computational domain Ω into a uniform finite grid

ωM ¼ fxmgMm¼1 � Ω. Prescribe initial cell regions C0n
� �N

n¼1 by assigning each

discrete point xm∈ ωM to a cell region. For each n= 1,…,N, record v0n ¼ jC0nj, the
number of grid points in C0n . Set the weights fσkijgi;j¼1;¼ ;N;k¼0;¼ ;K�1

(here index k

refers to time) and the initialization parameter 0 < ε≪ 1 for the auction algorithm.
For each time step k= 0, 1,…, K− 1 perform the following steps, in order to

determine the numerical cell regions Ckþ1
n

� �N

n¼1 at time t= (k+ 1)δt:

1. Solving heat equation. For each xm∈ ωM compute

ψk
i ðxmÞ :¼ 1� ∑

N

j¼1
σkij Gδt � χCkj
� �

ðxmÞ; ð12Þ

where GδtðxÞ ¼ 4πδtð Þ�d
2e�

jxj2
4δt is the d-dimensional Gaussian kernel.

2. Localized auction dynamics. Initialize prices pn= 0 and cell regions Ckþ1
n ¼

; (n= 1,…,N). Until all points in ωM are assigned, do:

(a) Find a point xm ∈ ωM which is not assigned.
(b) Let i be the index of the cell to which xm belonged at step k.
(c) Find the set of the indices of neighboring cells of

Cki : N xm
:¼ fj : ∂Cki \ ∂Ckj ≠ ;g.

(d) Determine

i� ¼ argmax
i2N xm

ψk
i ðxmÞ � pi

	 

; i] ¼ argmax

i2N xm
nfi�g

ψk
i ðxmÞ � pi

	 

: ð13Þ

(e) If jCkþ1
i� j ¼ v0i� ,

• find l such that xl ¼ argminx2Ckþ1
i�
bðxÞ, and

• unassign xl from Ckþ1
i� .

(f) Assign xm to Ckþ1
i� .

(g) Calculate the bid

bðxmÞ ¼ pi� þ εþ ψk
i� ðxmÞ � pi�

	 
� ψk
i] ðxmÞ � pi]

	 

: ð14Þ

(h) Update the price pi� ¼ minx2Ckþ1
i�

bðxÞ.
It can be shown that thanks to the positive value of ε, the second auction

dynamics step finishes in finitely many steps, yielding a partition of ωM into cell
regions, such that each cell region has the prescribed number of grid points8.
Characteristic functions of this partition are fed into the first step of the algorithm
and the algorithm repeats until the final time is reached. The bid function b appears
for the first time in step 2(e) of the algorithm without being previously initialized
but this definition is consistent since the bid has meaning only for grid points that
are already assigned to a cell region. The bid expresses the extent to which the grid
point “wants to be a member” of the cell region which it currently belongs to, and
its role is to resolve conflicts among grid points that are trying to become members
of the same, already full cell region. Supplementary Movie 510 shows an animation
of the auction dynamics algorithm for one time step of rearrangement in a simple
3-cell aggregate, tracking current cell price, node bid and nodal assignments.

We now briefly comment on the parameters related to the numerical
implementation. The discretization parameters are the numberM of discrete points
in the computational domain Ω and the time step size δt. The convolutions
(Eq. 12) in each step are efficiently computed on rectangular grids using fast
Fourier transform (FFT) algorithm with a complexity of OðM logMÞ operations3.
The time step can be changed throughout the computation but we emphasize that
there are restrictions on the relative size of the spatial and temporal grids in order
to obtain reasonable results; namely, an excessively small time step relative to the
space grid size leads to incorrect stagnation of moving level sets. A common
practice is to take δt proportional to the first power of the spatial grid size δx19.
Moreover, the parameter ε of the auction algorithm is taken as a small positive
value and has the role of preventing a “price war” infinite loop, where the prices pi
get stuck at a certain value. Too small ε may result in an increase in computational
time, while a large value may lead to deviations from the prescribed cell volumes.
An idea of ε-scaling introduced in Jacobs et al.8 consists in starting with a relatively
large ε and repeating the auction with smaller and smaller values of ε, which not
only eliminates the influence of this parameter but also improves both
computational time and accuracy. The complexity of the auction step for a fixed ε
is OðNvðlog v þ NÞC=εÞ, where v ¼ maxi v

0
i and C ¼ maxi;x ψ

k
i ðxÞ8. In summary,

except for the unavoidable discretization parameters M and δt, the output of the
algorithm depends solely on the model’s physically meaningful parameters σij. The
meaning and choice of these parameters are discussed in Supplementary Note 2.

Regarding the choice of boundary conditions we remark that the Esedo�glu-Otto
scheme is originally formulated in the whole space Rd and thus numerical
implementation on a bounded domain requires additional modifications. The
simplest approach, which is usually compatible with biological settings, is to adopt
a rectangular computational domain and apply Fourier transform to solve the
convolutions (Eq. 12). This naturally leads to periodic boundary condition for the
evolution. Application of Fourier transform also allows for boundary conditions of
Neumann type but other types of boundary conditions may require nontrivial
adjustments and conceding the effective FFT method in favor of more general but
more costly algorithms.

Next, we summarize basic mathematical properties of the algorithm, i.e., its
stability and convergence. Firstly, for the original algorithm without volume
constraint, Esedo�glu and Otto3 showed that it is unconditionally gradient stable: for
any choice of the time step δt, it dissipates in every time step the approximate
energy (Eq. 5) (which Γ-converges to energy (Eq. 2)) under the sufficient condition
that the surface tension matrix fσ ijgNi;j¼1

is conditionally negative semi-definite:

∑
N

i;j¼1
σ ijξiξj ≤ 0 for any ðξ1; ¼ ξN Þ 2 RN such that ∑

N

i¼1
ξi ¼ 0: ð15Þ

This condition is often satisfied in materials science but there is no guarantee that it
will hold in biological settings, e.g., cell-cell adhesiveness strengths in OE measured
in terms of its β-catenin intensity values6. In such a case, it is possible to devise a
slightly more complex version of the algorithm that guarantees gradient stability
solely under the σ-triangle inequality condition (we refer to Section 5.4 of Esedo�glu
and Otto3 for details). The convergence of the algorithm to the weak solution of the
L2-gradient flow of energy (Eq. 2) has been proved by Laux and Otto7. We note
that due to the fundamental idea of the algorithm to propagate interfaces over a
fixed grid and due to the stagnation phenomenon mentioned above, the order of
convergence is restricted to at most 1 in both time and space, while the order near
multiple junctions turns out to be only 1

2 in time.
The nontrivial difficulty in the analysis of the volume-preserving combined

algorithm lies in the fact that the auction algorithm is in essence space-discrete,
while all existing proofs deal with space-continuous problems. Moreover, in our
scheme we localize the auction step which makes the analysis even more involved.
However, the stability of the volume-constrained problem in the space-continuous
setting (formulated using Lagrange multipliers for each cell’s volume) can be
proved in the same way and under the same assumptions as in the unconstrained
case (see Xu et al.20 for the idea of the proof), while convergence has been
established in Laux and Swartz21. This, together with the known convergence of the
auction algorithm (at the spatially discretized level, the optimal solution can be
achieved precisely) supports the expectation for the correct behavior of the
combined scheme, which still remains to be precisely proved. Since a rigorous
proof is beyond the scope of the paper, we have included a series of numerical tests
confirming the correct behavior of our scheme. An exhaustive account on the
results of these numerical tests is provided in Supplementary Note 4 with the
following conclusions. The scheme is of order one in time away from junctions and
the order of convergence falls to around 0.5 when triple junctions are involved.
This was tested also on a configuration involving topology change. However, this
convergence property holds true only for time steps larger than a certain threshold
depending on the spatial grid—if the time step δt is several times smaller than the
grid size δx then interfaces stagnate and the scheme fails to converge. Further, the
algorithm was tested on a three-phase configuration with triple junctions leading to
an anisotropic double bubble and it was confirmed that its output closely follows an
accurate front-tracking approximation of the evolution, with error decreasing with
refinement of discretization. The same holds true for the stationary solution of
double bubble evolution.

Immunofluorescence microscopy. To prepare whole-mount samples of OE from
embryos and P1 mice, the OE was dissected out and fixed with 4% paraf-
ormaldehyde (PFA) in Hank’s balanced salt solution (HBSS) containing 1 mM
Ca2+ and Mg2+ at 4 °C for 1 h or overnight. The olfactory mucosa was dissected
out and fixed at 4 °C for 1 h. They were decapitated and post-fixed for 3 h at 4 °C in
the fixative. To avoid variations in developmental growth rates between the regions
of interest, the observation of the OE was restricted to the posterior ventral part of
the nasal septum.

To visualize cells, the cells were fixed in 4% PFA in HBSS for 10–15 min at
room temperature. After treatment with 0.25% Triton X-100 in TBST (TBS with
0.005% Tween-20) for 5 min, the cells were blocked with 5% skim milk in TBST
and exposed for 2 h to primary antibodies in 5% skim milk in TBST.

The Abs used were: mouse anti-mouse β-catenin (Clone 5H10; Invitrogen) and
rat anti-mouse nectin-1 monoclonal Ab (mAb) (clone 48-12; MBL), rat anti-mouse
nectin-3 mAb (clone 103-A1; MBL), rat anti-E-cadherin mAb (clone ECCD2,
Takara), and mouse anti-N-cadherin mAb (clone 32, BD Transduction
Laboratories). Primary Abs were visualized with goat fluorochrome-conjugated
secondary Abs. The fluorochromes used were Alexa Fluor 488 and 555
(Invitrogen). Images of a whole-mount of OE or cell culture were obtained using a
confocal microscope (LSM700; Carl Zeiss) equipped with a 40 × NA 1.2 lens using
ZEN software (Carl Zeiss).
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Quantification of junctional intensity of mouse sensory epithelium. Measure-
ments of β-catenin intensity of cell-cell junctions in the mouse olfactory and
auditory epithelium were performed by quantifying the pictures of specimens using
ZEN software (Carl Zeiss). Quantifications were performed for normalized fluor-
escence intensities, and the average was calculated. αN-catenin KO mice and
nectin-3 KO mice were generated as previously described22,23. The animal
experiments were approved by the Institutional Animal Care and Use Committee
and carried out according to the Kobe University Animal Experimental
Regulations.

Statistics and reproducibility. Data were collected from three individuals and
were quantified using five fields in each individual. A p value of < 0.05 was con-
sidered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files) or are fully accessible in the cited previous
work. Data used to generate plots, together with supplementary movies are available on
Figshare (https://doi.org/10.6084/m9.figshare.1807042124, https://doi.org/10.6084/
m9.figshare.1807042410). Accession numbers for cDNAs are listed as below: mouse
nectin-1 gene, AF297665.1; mouse nectin-3 gene, NM_021495.4; mouse cadherin-1 gene,
NM_009864.3; mouse cadherin-2 gene, NM_007664.5.

Code availability
The code implementing the proposed algorithm to obtain all level set-based simulations
is fully accessible on Zenodo (https://doi.org/10.5281/zenodo.5834687).
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