Skip to main content
. 2022 Mar 19;30:100916. doi: 10.1016/j.imu.2022.100916

Table 3.

Architecture for proposed fine-tuned ResNet50 TL. Building blocks are shown in brackets, with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

Layer name Output size Layer
conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56 3 × 3 max pool, stride 2
[1 × 1, 64
3 × 3, 64
1 × 1, 256] ×3

conv3_x 28 × 28 [1 × 1, 128
3 × 3, 128
1 × 1, 512] ×4

conv4_x 14×14 [1×1, 256
3 × 3, 256
1 × 1, 1024] ×6

conv5_x 7 × 7 [1 × 1, 512
3 × 3, 512
1 × 1, 2048] ×3

fc1 1 × 1 Average pool
in_features = 2048, out_features = 2048

fc2 1 × 1 Dropout 0.5
in_features = 2048, out_features = 2048

fc3 1 × 1 relu, dropout 0.5
in_features = 2048, out_features=2