Skip to main content
. 2022 Mar 19;30:100916. doi: 10.1016/j.imu.2022.100916

Table 5.

Various scores calculated in test dataset for different ResNet50 TL model where Pre = Precision, Re = Recall, F1 = F1-score, Sup = Support, Acc = Accuracy, INCXR14 =ImageNet_ChestXray14, INCxP =ImageNet_ChexPert, iNSup =iNat2021_Supervised, iNSupFS =iNat2021_Supervised_From_Scratch, iNMSwAV =iNat2021_Mini_SwAV_1k.

Model Class Pre Re F1 Sup Acc
ChestX-ray14 Covid 0.9791 0.9737 0.9764 723 0.9766
Normal 0.9741 0.9795 0.9768 730
ChexPert Covid 0.9861 0.9834 0.9848 723 0.9849
Normal 0.9836 0.9863 0.9850 730
ImageNet Covid 0.8394 0.7953 0.8168 723 0.8224
Normal 0.8073 0.8493 0.8278 730
INCXR14 Covid 0.9902 0.9737 0.9819 723 0.9821
Normal 0.9744 0.9904 0.9823 730
INCxP Covid 0.9650 0.9544 0.9597 723 0.9601
Normal 0.9553 0.9658 0.9605 730
iNSup Covid 0.9635 0.9488 0.9561 723 0.9566
Normal 0.9501 0.9644 0.9572 730
iNSupFS Covid 0.9696 0.9710 0.9703 723 0.9704
Normal 0.9712 0.9699 0.9705 730
iNMSwAV Covid 0.9931 0.9903 0.9917 723 0.9917
Normal 0.9904 0.9932 0.9918 730
MoCo_v1 Covid 0.9411 0.9281 0.9345 723 0.9353
Normal 0.9297 0.9425 0.9361 730
MoCo_v2 Covid 0.7974 0.8382 0.8173 723 0.8135
Normal 0.8312 0.7891 0.8096 730