Skip to main content
. 2022 Mar 19;30:100916. doi: 10.1016/j.imu.2022.100916

Table 6.

Accuracy summary of different ResNet50 TL models during 50 epochs of training where Acmx = Maximum Accuracy, Acmn = Minimum Accuracy, Avacy = Average Accuracy, E = epoch, INCXR14 =ImageNet_ChestXray14, INCxP =ImageNet_ChexPert, iNSup =iNat2021_Supervised, iNSupFS =iNat2021_Supervised_From_Scratch, iNMSwAV =iNat2021_Mini_SwAV_1k.

Model Set Acmx Acmx
at E
Acmn Acmn
at E
Avacy
of 50E
ChestX-ray14 Train 0.9764 47 0.8988 1 0.9688
Test 0.9780 36 0.9456 3 0.9696
ChexPert Train 0.9886 30 0.9107 1 0.9810
Test 0.9862 41 0.5038 1 0.9701
ImageNet Train 0.8024 44 0.6729 1 0.7925
Test 0.8259 31 0.7688 1 0.8123
INCXR14 Train 0.9904 34 0.9206 1 0.9823
Test 0.9828 46 0.5561 2 0.9644
INCxP Train 0.9583 18 0.8879 1 0.9519
Test 0.9621 43 0.6965 1 0.9514
iNSup Train 0.9494 42 0.8666 1 0.9419
Test 0.9566 24 0.7770 1 0.9467
iNSupFS Train 0.9594 31 0.8816 1 0.9506
Test 0.9711 42 0.9284 6 0.9611
iNMSwAV Train 0.9995 39 0.9363 1 0.9951
Test 0.9952 23 0.9140 1 0.9892
MoCo_v1 Train 0.9379 44 0.8179 1 0.9289
Test 0.9353 45 0.8665 29 0.9256
MoCo_v2 Train 0.8027 42 0.7447 1 0.7917
Test 0.8135 47 0.5045 1 0.7961