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Abstract

Huntington’s disease (HD) is a unique disease caused by a CAG trinucleotide expansion in the 

Huntingtin gene and with the power to predict age-at-onset from subject-specific features like 

motor and neuroimaging measures. In clinical trials, properly modeling onset age is important 

because it improves power calculations and directs clinicians to recruit subjects with certain 

features. We discuss the history of modeling onset, from simple linear and logistic regression to 

advanced survival models. We highlight their advantages and disadvantages, emphasizing the 

methodological challenges when genetic mutation status is unavailable. We also discuss the 

potential bias and higher variability incurred from the uncertainty associated with subjective 

definitions for onset. Methods to adjust for the uncertainty in survival models are still in its 

infancy, but would be beneficial for HD and neurodegenerative diseases with long prodromal 

periods like Alzheimer’s and Parkinson’s disease.
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1 Introduction

Huntington’s disease (HD) is a unique, genetic disease caused by a CAG repeat expansion in 

the Huntingtin gene and with the power to predict age at onset as it relates to subject-specific 

features such as neuroimaging measures and measures from the Unified Huntington’s 

Disease Rating Scale (UHDRS). Such a relationship is statistically powerful because it 

allows one to estimate the effects of phenotypic features on age-at-onset, and the likeliness 

of onset, which in the case of HD has been defined by motor signs occurring by a given 
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age. In clinical trials, properly modeling age-at-onset in relation to subject-specific features 

is important because it improves power calculations and improves the trial’s efficiency by 

directing the clinicians’ efforts to recruit subjects with specific features. In this chapter, 

we discuss the history of models used to predict age-at-onset and estimate its distribution 

function (i.e., the likeliness of onset occurring by a given age). We especially focus on the 

utility and limitations of the different models proposed.

How one defines age of onset has evolved throughout the years. Early criteria included 

when a first abnormality (Andrew et al., 1993) or combination of abnormalities (Vuillaume 

et al., 1998) appeared; these included chorea, dystonia, inability to perform complex 

hand movements, as well as psychiatric and cognitive impairments. However, the greater 

emphasis on extrapyramidal signs due to their specificity led to the current, semi-

quantitative motor assessments and diagnosis (Huntington Study Group, 1996). The motor 

assessments form part of the UHDRS, and their results are summarized into two summary 

scores. The first is a total motor score, ranging from 0 to 124, with higher numbers 

indicating greater impairment. The second is a diagnostic confidence level (DCL) from 0 

to 4 that indicates the clinician’s confidence that the subject’s extrapyramidal signs are 

unequivocally associated with HD; a score of 4 indicates ≥99% confidence, and is the point 

of HD diagnosis.

For nearly two decades, clinicians have used the UHDRS exams and DCL score to diagnose 

HD. Recently, however, an interest to re-evaluate the criteria has emerged given that the 

current standard may not comprehensively account for all relevant information needed to 

make a diagnosis(Biglan et al., 2013; Reilmann et al., 2014). Specifically, the DCL score 

solely focuses on the motor aspect of HD, whereas it is well known that HD develops 

insidiously (Ross et al., 2014) with, for example, cognitive impairments emerging years 

before a motor-diagnosis (Stout et al., 2011). Hence, limiting the criteria to only one aspect 

may yield delays in diagnosis, and may affect results in future intervention studies where 

onset is a primary endpoint. To remedy this limitation, newer criteria (Table 1) have been 

proposed that emphasize a collective analysis of multiple aspects of HD. In particular, 

Biglan et al. (2013) proposed a multidimensional diagnosis which essentially asks clinicians 

to base diagnosis on motor, cognitive, behavioral, and functional components. Reilmann et 

al. (2014) proposed a natural history-based diagnosis which builds on the multidimensional-

diagnosis by including a subject’s medical history and stratifying criteria according to 

individuals who are “genetically confirmed” (i.e., subject has ≥ 36 CAG repeats) or not. 

Both definitions have the potential to lead to earlier diagnosis than the current standard; 

Biglan et al. (2013) showed in a recent study that subjects assessed by their proposed 

multidimensional definition (Table 1) tended to receive an earlier diagnosis than when 

assessed with the current standard.

1.1 Potential for uncertainty in age-at-onset

Though both definitions show promise in yielding earlier diagnoses—an aspect favored in 

intervention studies—they also have the potential for incorrectly determining age-at-onset. 

While efforts are made to ensure that a subject is viewed by the same rater at each visit, 

this is not always the case. For the multidimensional (Biglan et al., 2013) or natural 
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history-based (Reilmann et al., 2014) diagnoses, having different raters at each visit and 

different raters evaluating the motor, cognitive, behavioral, functional components may lead 

to uncertainty. For example, Biglan et al. (2013) showed that if the same rater assessed 

subjects based on the multidimensional and standard motor-based diagnoses, then a similar 

age-at-diagnosis was more likely to occur (89.8%) than when different raters were used. 

Different ages-at-onset between multiple raters is common in any rating scale, and is a prime 

motivation for more objective, non-rater dependent measures (Ross et al., 2014).

Differences in age-at-onset can also stem from the non-quantitative criteria in the 

multidimensional and natural history-based diagnoses definitions. For example, Reilmann et 

al. (2014) suggest that a clinician should identify a subject as having manifest HD if “clear 

changes” occur in the functional scales of UHDRS. However, no quantitative threshold is 

provided that would indicate a ‘clear’ functional change. Hence, in their current forms, both 

new diagnoses definitions largely rely on subjective measures which can ultimately lead to 

poor interrater reliability—an issue that is problematic if the criteria is used in intervention 

studies where accurate diagnoses are needed.

The potential for incorrectly determining age-at-onset can also induce bias in statistical 

models used to predict onset or estimate its distribution. The uncertain onset ages are 

referred to in the statistical literature as mismeasured onset ages. That is, a mismeasured 

onset age is equal to the true, unobservable onset age plus some error; the error is 

the so-called measurement error. A range of statistical methods have been developed to 

handle different models with measurement error; see Carroll et al. (2006) for an excellent 

review of different methods. However, to the best of our knowledge, none of the statistical 

measurement error techniques has been utilized in the HD literature. In Section 4, we 

highlight the impact of measurement error in the models developed over the past two 

decades. We also discuss potential methodologies needed to handle mismeasured ages of 

diagnoses—techniques which could also be useful in other neurodegenerative diseases such 

as Alzheimer’s or Parkinson’s.

2 Regression models for age-at-onset

Regression models to predict age-at-onset have been extensively developed in the HD 

literature. We discuss the history of these models and highlight their advantages and 

disadvantages, with potential remedies in the latter case. In addition, we discuss the impact 

of mismeasured on set ages on these models. A summary of our findings are listed in Table 

2.

2.1 Correlation analysis and linear regression

A first approach to assessing the relationship between age-at-onset and subject-specific 

features is through the Pearson (1895) correlation coefficient: a measure of the strength of 

the linear relationship between two variables. After the discovery of the Huntingtin gene in 

1993, several studies used the Pearson correlation coefficient to show that age-at-onset is 

significantly and inversely correlated with CAG repeat length (Andrew et al., 1993; Duyao 

et al., 1993; Stine et al., 1993; Snell et al., 1993; Trottier et al., 1994; Lucotte et al., 1995; 

Huntington Study Group, 1996; Brandt et al., 1996; Rubinsztein et al., 1997; Vuillaume 
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et al., 1998; Foroud et al., 1999). This relationship has proved useful in HD studies, but 

correlation analysis alone is limiting. It is strongly influenced by outliers such as juvenile 

onset where onset occurs in individuals ≤ 20 years (Quarrell et al., 2012) which is much 

younger than the average adult onset of 40 years (Myers, 2004). Similarly, outliers are 

prevalent in the number of CAG repeats where some studies have reported individuals 

(e.g., juveniles) with 250 repeats (Nance et al., 1999). Such a high CAG repeat number far 

exceeds the threshold used to genetically confirm individuals as carriers of the HD gene 

(i.e., 36 CAG repeats). Moreover, correlation analysis does not reveal a potential nonlinear 

relationship between two variables. For example, computing the correlation coefficient 

between age-at-onset and CAG repeats does not reveal that the relationship between the 

two is actually a curved S-shape as shown by Langbehn et al. (2004).

An improvement over correlation analysis is linear regression which expresses the linear 

relationship between age-at-onset and subject-specific features via:

TAAO = β0 + β1X1 + β2X2 + ⋯ + βpXp + ϵ. (1)

Here, TAAo represents the age-at-onset (response variable), x1, ⋯, xp are p subject-specific 

features (covariates) and ϵ is the residual model error assumed to be normally distributed 

with mean zero and variance σ2. The parameters β0, ⋯, βp and σ2 are estimated using 

standard regression techniques (i.e., ordinary least squares). Linear regression permits 

quantifying the effect each feature has on age-at-onset, and assessing how much of the 

variability of age-at-onset is explained by the features (i.e., coefficient of determination). 

Linear regression techniques have led to the discovery that CAG repeat-length accounts for 

50–70% of the variance in age-at-onset (Andrew et al., 1993; Duyao et al., 1993; Stine et 

al., 1993; Snell et al., 1993; Trottier et al., 1994; Lucotte et al., 1995), with the remaining 

variance attributed to other features. These include, for example, genetic markers such as 

the GluR 6 kainate receptor which accounts for 1 3 % of the variability of age-at-on set 

after accounting for C A G repeats (Rubinsztein et al., 1997) and a Δ2642 mutation which 

significantly decreases age-at-onset (Vuillaume et al., 1998); high passive activity scores 

indicating that a subject prefers less physical or intellectual activities which significantly 

decrease age-at-onset (Trembath et al., 2010); neuroimaging markers which have varying 

associations with age-at-on set (Stout et al., 2011; Ciarmiello et al., 2012) and higher 

caffeine intake before disease onset which significantly decreases age-at-on set (Simonin 

et al., 2013). The aforementioned results are all from linear regression analyses; more 

advanced analyses have led to other features associated with age-at-onset (Paulsen et al, 

2014).

While linear regression techniques have aided to identify and estimate the effects of 

influential features on age-at-onset, a limiting factor is that it requires the onset ages to 

be fully observed. Subjects with missing or unknown onset are ignored in the analysis. 

This is problematic since missing observations can limit the study sample sizes to less than 

100 subjects, as in Trottier et al. (1994), Brandt et al. (1996), Vuillaume et al. (1998), and 

Ciarmiello et al. (2012). Missing onset ages can occur, for example, with subjects having 

36 to 39 CAG repeats; such subjects exhibit variable penetrance (Walker, 2007) and late 

onset, meaning that their onset ages may occur after the study period ends. One potential 
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remedy for missing observations is to replace or impute the unobserved onset ages with 

data-driven, biologically meaningful values (Rubin, 1996; Little and Rubin, 2002). For 

example, one could impute the missing ages-at-onset with the average of the observed onset 

ages, or with a predicted age from a linear regression model based on data from subjects 

whose onset ages are fully observed. Doing so, however, may lead to incorrect imputations 

since, as previously mentioned, subjects whose onset ages are observed are not necessarily 

representative of subjects for whom onset ages are missing.

2.2 Logistic regression with binary phenoconversion status outcome

A limiting factor of correlation analysis and linear regression is that both rely on all ages-at-

onset being observed; that is, individuals who have not phenoconverted during the study 

period are ignored. However, information from individuals who have not phenoconverted 

is also beneficial in predicting age-at-onset since it is important to understand what 

features these individuals have that might delay age at onset. To use information from 

all study subjects, whether phenoconverted or not, one modeling approach is logistic 

regression. Here, a binary response indicating diagnostic status (i.e., whether or not a 

subject has phenoconverted) is related to subject-specific features (covariates) through log 

odds (Vittinghoff et al., 2012, chap. 5). More exactly, letting Y AAO = 1 if a subject has 

phenoconverted, and 0 if not, a logistic model takes the form:

log pr Y AAO = 1 ∣ X1, ⋯, Xp
1 − pr Y AAO = 1 ∣ X1, ⋯, Xp

= β0 + β1X1 + ⋯ + βpXp . (2)

This equation implies that the log odds of onset occurring (left-hand-side) is linearly related 

to p subject-specific features x1, ⋯, xp (right-hand-side).

The logistic model in equation (2) has been used in the HD literature, not only to 

assess what features significantly impact the log odds of onset, but other outcomes as 

well. Aylward et al. (2012) used logistic regression to show that putamen volumes are 

significantly associated with the log odds of diagnostic status, and the log odds of UHDRS 

motor score groups (individuals with a motor score ≥10 or <10). In another study, Beglinger 

et al. (2010) used logistic regression to show that the log odds of functional decline is 

significantly predicted by motor, cognitive, and depressive symptoms as measured on the 

UHDRS.

Logistic regression is beneficial in that it extracts information from subjects who have and 

have not experienced the outcome of interest (e.g., motor-onset). One limitation, however, 

is that it ignores any time differences between subjects experiencing the outcome. More 

specifically, if the outcome of interest is phenoconversion, then logistic regression treats a 

subject who phenoconverts after 6 months the same as a subject who phenoconverts after 

18 months. That is, both will have Y AAO = 1 in equation (2) although the 12-month time 

difference between the two subjects may be clinically relevant. For example, subjects with 

fewer CAG repeats will have delayed onset and capturing the relationship between CAG 

repeats and this delayed onset may provide insights for establishing guidelines in clinical 

studies and understanding a diagnosis in genetic counseling sessions. A remedy to this loss 
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of time information is defining multiple binary variables indicating if onset occurs in certain 

time intervals: Y AAO in [t1, t2], = 1 if age-at-onset occurs in the time interval [t1,t2], where 

the time intervals are non-overlapping. Specifying the time intervals requires care, however, 

since an interval where no subjects experience onset would lead to a numerically unstable 

situation of logistic regression with rare events (King and Zeng, 2011). Time intervals with 

rare events are more likely to occur in studies with varying lengths of follow-up; see Section 

3 for an alternative method that better handles high follow-up variability.

3 Survival models for age-at-onset

Up to now, we have discussed two important regression models used to model age-at-onset: 

linear regression where all onset ages must be observed, and logistic regression where not all 

onset ages are observed and the focus is on whether or not each subject has phenoconverted. 

A strong limitation of logistic regression is it ignores any time differences between subjects 

experiencing phenoconversion—information which is useful to understanding how subject-

specific features affect when onset occurs. An approach better suited to capturing the time 

differences is a survival model: a model specifically designed to represent time-to-event data 

in relation to subject-specific features without losing information due to varying lengths of 

follow-up.

3.1 Brief overview of survival analysis

Before discussing the evolution of survival-type models in the HD literature, we first provide 

a brief overview of the key features in survival analysis: the ability to handle varying lengths 

of follow-up, the ability to estimate so-called survival and hazard functions, and the ability 

to handle random censoring as defined next.

Random censoring occurs when the onset age for an individual is unobserved either because 

the subjects leaves the study, is lost to follow-up or does not phenoconvert during the 

study period due to reasons related to their observed characteristics (covariates), but not 

their underlying likeliness of HD onset in the future. It is also referred as non-informative 

censoring in the survival analysis literature (Kleinbaum and Klein, 2011). Unlike in linear 

regression where censored subjects are generally removed from the analysis, a survival 

model adjusts for censoring using a technique called likelihood-based methods (Vittinghoff 

et al., 2012, chap. 6). Likelihood methods involve a likelihood function: a product formed 

by the likeliness that each subject’s onset age is censored or observed at different time 

points. The likelihood function can incorporate the effects of subject-specific features which 

can then be unbiasedly estimated using maximum likelihood (Aldrich, 1997), Expectation-

Maximization (Dempster et al., 1977), or other techniques. Though likelihood-based 

methods are designed to handle censoring, too much censoring is also not helpful. A high 

percentage of censoring indicates that a significant part of the target population is not being 

included. One solution is to have more representative sampling, but this may be difficult in 

HD studies since there is a varied prevalence of nonsymptomatic CAG expansion in the 36 

to 40 range, for example, and including subjects with such a range in clinical samples is rare. 

Large sample from multiple sites as are being assembled in the ENROLL-HD study may 

allow such specific recruitment and help to alleviate this issue.
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The survival and hazard functions in survival analysis help to describe the distribution 

of event times. The survival function is the probability of not experiencing onset (i.e., 

“surviving”) up to a pre-specified time t, and the hazard function is the rate at which a 

subject will experience onset given he has not yet done so. Modeling the survival and hazard 

function is generally achieved using one of three approaches: parametric, semiparametric 

and nonparametric methods. Parametric methods involve positing a particular model for the 

survival and/or hazard function; the posited model is fully specified except for a small, finite 

number of parameters that need to be estimated from the data. A parametric model may 

be reasonable, for example, when the researcher has enough biological understanding of 

the underlying disease mechanism. If the posited model is indeed correct, then parametric 

methods are numerically simple, and yield unbiased and efficient estimates. Correctness 

of the posited model is important, however, since inadequacy results in bias and incorrect 

inference conclusions.

At the other end of the spectrum, nonparametric methods make no a priori assumptions 

about the survival/hazard function form; instead, the forms are completely estimated from 

the data. A popular nonparametric method is the Kaplan and Meier (1958) product limit 

estimator which estimates the survival function free of any restrictive assumptions on 

the underlying time-to-event process. Lastly, semiparametric methods are a compromise 

to parametric and nonparametric methods. Semiparametric methods involve a priori 

assumptions for some model components and complete flexibility for others. A well-known 

semiparametric model is the Cox proportional hazards model which links the linear effect 

of subject-specific features to a ratio of hazard functions through a log-transformation. 

Unfortunately, it is not always valid in HD studies as shown by Langbehn et al. (2004). 

Still, semiparametric and nonparametric methods are not susceptible to misspecification 

of the survival/hazard functions and are especially useful when the researcher does not 

have sufficient biological knowledge about the underlying disease mechanism, which is 

particularly common in HD studies.

In the subsequent sections, we discuss different forms of parametric, semiparametric and 

nonparametric models proposed in the HD literature, and highlight their advantages and 

disadvantages in better understanding age-at-onset and its distribution. The subsections are 

divided according to whether the analysis is performed under known or unknown genetic 

information, the latter of which occurs in kin-cohort studies (see Section 3.3).

3.2 Models with genetic mutation status known

A variety of parametric and semi- or nonparametric survival models have been developed 

for HD studies where genetic information of study individuals is available. Given the strong 

associations between CAG repeat-length and age-at-onset, the available genetic information 

helps to more accurately model the relationship between the two. A summary of our findings 

is in Table 3.

3.2.1 Parametric methods—Parametric survival models in the HD literature include 

the work of Gutierrez and MacDonald (2002), Langbehn et al. (2004), and Zhang et al. 

(2011), all of which can predict age-at-onset and its distribution based on subject-specific 
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features (i.e., CAG repeat length, age). The Gutierrez and Macdonald (2002) model was 

constructed from the data of Brinkman et al. (1997), which included 1,049 subjects (CAG 

repeats 29–121) whose information was collected retrospectively. Roughly 69.4% of the 

subjects had reported onset and 30.6% did not (i.e., onset ages were censored). Similarly, 

the Langbehn et al. (2004) model was constructed based on 2,913 subjects (CAG repeats 

41 to 56) whose information of onset was also collected retrospectively. Roughly 78.9% 

of the subjects reported onset and 21.1% did not. The model of Zhang et al. (2011) was 

constructed based on 730 prodromal individuals from PREDICT-HD (Paulsen et al., 2008) 

followed prospectively for up to 7 years (CAG repeats ≥36). Roughly 18.8% of the subjects 

experienced onset (i.e., phenoconverted), and 81.2% did not. The larger censoring rates 

in the Zhang et al. (2011) study certainly increase the difficulty of identifying adequate 

model fits, but do not invalidate the analysis. Plausible reasons for the higher censoring in 

Zhang et al. (2011) compared to that in Gutierrez and MacDonald (2002) and Langbehn et 

al. (2004) are (i) the differences in the distribution of CAG repeat lengths: Gutierrez and 

MacDonald (2002) and Langbehn et al. (2004) involved many subjects with a high number 

of CAG repeats who would more likely experience onset; and (ii) different inclusion criteria 

for retrospective and prospective studies where the former may have been more relaxed to 

include more onset cases.

All three studies followed similar strategies to formulate their models, but used different 

criteria for best-fit. First, the age-at-onset data was used to find an appropriate distribution 

function; i.e., the probability age-at-onset TAAO occurs by age t given subject specific 

features x, represented mathematically as pr TAAO < t ∣ x  Second, a parametric model was 

identified to best relate age-at-onset (or its summary measures) and the subject-specific 

features.

Following this two-part strategy, Gutierrez and MacDonald (2002) fit different Kaplan-

Meier curves for the ages-at-on set stratified by CAG repeat length. To avoid issues of 

under ascertainment, Gutierrez and MacDonald (2002) focused on the subset of subjects 

with 40–50 CAG repeats. After studying the general shapes formed from the Kaplan-Meier 

curves, the authors found that a gamma distribution with a linear function for the effect of 

CAG repeats best fit the age-at-onset distribution. A gamma distribution is a flexible model 

of two parameters commonly used to represent time-to-event data (Kleinbaum and Klein, 

2011). Best-fit was assessed graphically by comparing different parametric models to the 

nonparametric Kaplan-Meier curves.

In a similar spirit, Langbehn et al. (2004) and Zhang et al. (2011) also used Kaplan-Meier 

curves stratified by CAG repeat length to learn the general shape of the age-at-onset 

distribution. Langbehn et al. (2004) then examined 12 different parametric families of 

functions to see which function fit the average shape of the Kaplan Meier curves best. 

Unlike the gamma distribution of Gutierrez and Macdonald (2002), Langbehn et al. (2004) 

found that the best fit was given by the following logistic distribution:

pr TAAO < t ∣ x = 1
1 + exp −α1(x) − α2(x)u(t) . (3)
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Here, x is a vector of subject-specific features and the functions, α1(x), α2(x) u(t), are as 

defined below. The logistic distribution in equation (3) is much simpler than the gamma 

distribution of Gutierrez and MacDonald (2002) because the former does not involve 

complex numerical integration.

The forms of α1(x), α2(x), u(t) in Langbehn et al. (2004) were determined by assessing the 

relationship between CAG repeat-length and the mean and dispersion of the ages-at-onset. 

They ultimately found that a so-called exponential-linear model adequately described the 

relationship. This form was later validated using prospective data from PREDICT-HD 

(Langbehn et al., 2010) involving 610 subjects with at least 1 year of follow-up, where 

13.3% experienced motor-onset and 86.7% did not. In spite of the high censoring rates, 

Langbehn et al. (2010) demonstrated that their proposed model captured the general 

experience of the prospective data fairly well: the 95% confidence band from the predicted 

onset rates covered the observed onset rates from the prospective data, but the predicted 

onset rates and observed onset rates did not overlap in general.

In comparison, the forms of α1(x), α2(x), u(t) in Zhang et al. (2011) were determined by 

relating age-at-onset to both CAG repeat-length and age at study-entry. Thirty-five different 

forms were assessed and ultimately an exponential-linear model different from that of 

Langbehn et al. (2004) was determined appropriate. The model was shown to perform well 

in terms of predicting individuals who would be diagnosed in the next two years using a 

longitudinal receiver operating characteristic analysis (Heagerty and Zheng, 2005).

To the best of our knowledge, only a formal comparison between the parametric survival 

models of Gutierrez and MacDonald (2002) and Langbehn et al. (2004) has been carried out 

(Langbehn et al., 2010). It has been shown that the model of Langbehn et al. (2004) provides 

earlier estimates of onset probabilities compared to those of Gutierrez and MacDonald 

(2002). The differences are most likely due to the Gutierrez and MacDonald (2002) study 

using subjects with 40–50 CAG repeats, whereas Langbehn et al. (2004) used subjects with 

41–56 CAG repeats, and purposely excluded subjects with 40 CAG repeats to avoid under 

ascertainment bias (Langbehn et al., 2010).

All three parametric models provide substantial benefits to the HD literature. They (i) 

provide means to use subject-specific features x to predict the likeliness of onset occurring 

by a given age; (ii) predict the probability of onset occurring in s-year intervals (e.g., 5-year 

intervals); (iii) estimate penetrance rates at different CAG repeat-lengths; (iv) model the 

explicit effect of subject-specific features on the age-at-onset distribution; and (v) provide 

clinically meaningful divisions of subjects so that they can be compared cross-sectionally.

In regards to benefit (v), a clinically meaningful division from the Langbehn et al. (2004) 

model is the division of subjects into so-called Far-Mid-Near categories for the estimated 

time to diagnosis. A subject is said to be in the Far category if his estimated time to 

diagnosis is ≥15 years; he is in the Mid category if his estimated time to diagnosis is 

between 9 and 15 years; and h e i s in the Near category if his estimated time to diagnosis is 

<9 years. The estimated time to diagnosis is based on the Lanbehn et al. (2004) model using 

equation (3) with the specific α1(x), α2(x), u(t) . In comparison, estimates from the Zhang et 
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al. (2011) model lead to a different set of clinically meaningful divisions. The Zhang et al. 

(2011) division is defined by the so-called CAG-Age-Product (CAP) score which divides 

subjects into Low-Med-High categories that emphasize the amount of disease burden. A 

subject is in the Low category if he has less than 50% chance of being diagnosed in the next 

5 years; a subject is in the Med category if he has 50% chance of being diagnosed in the 

next 5 years; and a subject is in the High category if he has more than 50% chance of being 

diagnosed in the next 5 years. Zhang et al. (2011) demonstrated that classifying individuals 

in Far-Mid-Near compared to Low-Med-High generally moves individuals from being in 

less severe categories to more severe ones. The authors point out that such a migration 

is useful, especially in the PREDICT-HD cohort which has aged since the Far-Mid-Near 

categorization and thus are more susceptible to being diagnosed.

While the explicit parametric survival models have clear advantages, they also have 

limitations. One limitation is that CAG repeat length and age-at-entry are the only subject-

specific features in the model. This is relatively understandable given that two of the 

studies (Gutierrez and Macdonald, 2002; Langbehn et al., 2004) are retrospective and 

so collecting additional information on subjects may be infeasible. In addition, finding 

explicit mathematical formulations that adequately describe the effects of CAG repeat-length 

and age-at-entry on age-at-onset is challenging. Searching for an explicit formulation is 

challenging with one or two features, and the difficulty only grows exponentially as the 

number of features increase. Still, advancements in the field have shown numerous other 

subject-specific features having significant impact on age-at-onset. These include the effect 

of parental age of onset which presumably reflects additional genetic and/or environmental 

influences (Duyao et al., 1993; Snell et al., 1993; Andrew et al., 1993; Stine et al., 

1993; Trottier et al., 1994; Lucotte et al., 1995; Ranen et al., 1995); paternal vs maternal 

transmission (Trottier et al., 1994; Ranen et al., 1995); additional genetic polymorphisms 

(Li et al., 2003; Rubinsztein et al., 1997; MacDonald et al., 1999; Kehoe et al., 1999; 

Panas et al., 1999), and neuroimaging measures (Tabrizi et al., 2013), among others. A 

model that explains the cumulative effect of these features on the distribution of age-at-onset 

would certainly be advantageous in designing clinical studies and providing guidance during 

genetic counseling sessions. However, assessing a cumulative effect may be challenging in 

the parametric setting, and finding a correct explicit formulation with so many features may 

be near impossible. One possible way to avoid incorrect explicit formulations is to use more 

flexible techniques such as semiparametric or nonparametric models as described next.

3.2.2. Nonparametric methods—An implicit assumption of the parametric models in 

Section 3.2.1 is that they accurately relate the effect of subject-specific features on the 

age-at-onset distribution. When this assumption is in doubt, however, the models can be 

misleading. To counteract potential model misspecification, more flexible nonparametric 

techniques can be used.

A popular nonparametric estimator is the Kaplan-Meier which has been used to flexibly 

estimate the age-at-onset distribution stratified by the number of CAG repeats (Brinkman 

et al., 1997; Maat-Kievit et al., 2002; Langbehn et al., 2004; Gutierrez and Macdonald, 

2002, 2004). In all studies, log rank tests agree that penetrance significantly differs by the 

number of CAG repeats, with complete penetrance observed for CAG repeats ≥ 42, and 
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reduced penetrance for 36–41 CAG repeats (Brinkman et al., 1997). A limitation of the 

Kaplan-Meier estimator, as argued by Langbehn et al. (2010), is that it does not permit 

an explicit relationship between the effect of CAG repeats and the age-at-onset distribution 

as done so by the parametric models of Section 3.2.1. Still, these parametric models used 

fairly strong assumptions, especially in the forms of α1(x), α2(x) in equation (3). To reduce 

the chance that α1(x), α2(x) are misspecified, a more flexible way to model them is through 

kernel functions or smoothing spline techniques (De Boor, 2001) as explored by Ma and 

Wang (2014b).

Kernel functions and smoothing splines are nonparametric techniques that estimate 

α1(x), α2(x) flexibly and without making any a priori assumptions of their particular forms. 

For example, we do not assume α1(x), α2(x) follow an exponential-linear formula as in 

Langbehn et al. (2004) or Zhang et al. (2011). Instead, the forms for α1(x), α2(x) are 

completely decided by the data using kernel and smoothing functions implemented in 

standard software (e.g., SAS, R, STATA); the flexible estimation helps to avoid issues of 

model misspecification. The flexibility, however, does mean that the final estimates for 

α1(x), α2(x) are usually very complex and cannot be written down explicitly. For this reason, 

it is nearly impossible to have an explicit and clinically meaningful division of the subjects 

based on a model with a nonparametric estimate for, α1(x), α2(x) In summary, nonparametric 

methods provide wider flexibility but at the incurring cost of computational challenges.

In an analysis of the Cooperative Huntington’s Observational Research Trial (COHORT), 

Ma and Wang (2014b) compared their estimates of the age-at-onset distribution with 

α1(x), α2(x) estimated using nonparametric kernel functions to the estimates obtained from 

the Langbehn et al. (2004) model with parametric forms for α1(x), α2(x) The nonparametric 

estimates differ from those of the Langbehn et al. (2004) model in that the parametric model 

forces the age-at-onset distribution to be an increasing function of CAG repeats. That is, 

the model enforces that the likeliness of onset occurring increases with longer CAG repeats. 

Surprisingly, however, this increasing trend is not supported by the COHORT data at ages 

15, 25, and 35 years (see Figure 3 in Ma and Wang (2014b)). Instead, the nonparametric 

model of Ma and Wang (2014b) shows evidence that for younger ages, the age-at-onset 

distribution remains constant across CAG repeats. The results suggest that further studies are 

needed and that the clinical impression of higher CAG repeats increasing the risk of disease 

may need to be re-evaluated especially for younger individuals. The observed discrepancies 

for younger individuals may be due in part to the low sample size of subjects who are under 

35 in the COHORT study. Also, the phenotype for very young individuals differs from older 

subjects with the phenotype resembling more Parkinsonism than chorea.

3.3 Models with gene mutation status unknown

Up to now, we have discussed analytical techniques for studies where the gene mutation 

status of individuals is known. Due to high costs or reluctance to undergo genetic testing, 

genetic mutation status is not always available. A recent body of literature has explored 

techniques for analyzing such data as collected in kin-cohort studies. The overall aim of 
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these methods is to find ways to extract all meaningful information from the kin-cohort 

studies so as to not dismiss subjects with missing genetic mutation status.

Kin-cohort studies involve a sample of (usually diseased) subjects referred to as probands 

that are genotyped. Disease history and age-at-onset in the probands’ first-degree relatives 

is obtained through validated interviews (Marder et al., 2003). The relatives’ genotype 

information, however, is not collected because of practical considerations. Instead, the 

probability that the relative has the genetic mutation or not is computed under the 

assumption of Mendelian transmission using information about the relative’s relationship to 

the proband and the proband’s mutation status (Khoury et al., 1993, sec. 8.4). The relatives’ 

ages-at-onset and probability of having the gene mutation or not are then used to estimate 

the age-at-onset distribution via survival models. Information from the probands can also 

be utilized, but one may prefer to not do so if there are concerns of ascertainment bias: 

when the mutation carrier probands are not a representative sample of the population of HD 

mutation carriers. Ascertainment bias is difficult to adjust (Begg, 2002), and easily avoided 

by excluding the probands from the analysis.

The model for the age-at-onset distribution in kin cohort studies takes the form of

pr TAAO < t ∣ x = πpr TAAO < t ∣ x, CAG ≥ 36 + (1 − π
)pr TAAO < t ∣ x, CAG < 36 , (4)

which is essentially a mixture of two distributions: the distribution for the mutation carrier 

group,pr pr TAAO < t ∣ x, CAG ≥ 36  and the distribution for the mutation non-carrier group, 

pr TAAO < t ∣ x, CAG < 36 . Each distribution is multiplied by π or 1-π which denotes, 

respectively, the probability an individual has the gene mutation, or not. This mixture of 

distributions is needed because the exact genotype status is unknown, and only probabilities 

(or proportions) of the status are known via Mendelian assumptions. The type of model 

above is referred to in the statistics literature as a genetic mixture model.

We now discuss different parametric and nonparametric survival models for kin cohort 

studies; see Table 4 for a summary of the models. Compared to the models in Section 

3.2, the exact form of the models here are much more involved and beyond the scope of 

this chapter. Instead, we provide the appropriate references for readers interested in the 

mathematical details.

3.3.1 Extensions of Langbehn et al (2004) model—Chen et al. (2012) extended 

the parametric model of Langbehn et al. (2004) to a kin cohort study by incorporating 

information from the probands and relatives, along with the mixture proportion π. The 

authors modeled pr TAAO < t ∣ x, CAG ≥ 36  in equation (4) using the Langbehn et al. (2004) 

model. For relatives of probands where covariates x are not observed, the authors assume 

that a relative inherits the same CAG repeat length as the proband if the proband has the 

gene mutation. Such an assumption may be an oversimplification of the gamete transmission 

process, but a model that better represents the changing CAG repeat-length can be later 

incorporated into the mixture proportion π. A future area of research is finding models to 

adequately represent the gamete transmission process (the fact that transmission from fathers 
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may result in an increased CAG repeat length compared to transmission from mothers) and 

seeing its effects on these genetic mixture models.

Under the simplified assumption for gamete transmission and using a so-called Expectation-

Maximization algorithm (Dempster et al., 1977) to estimate model parameters, Chen et 

al. (2012) ultimately found that their model which combines history of HD observed in 

first-degree relatives and probands leads to lower estimates of penetrance than when using 

probands alone. One potential reason contributing to this difference is that the proband data 

may consist of a biased clinical sample of premanifet or HD-affected subjects. Probands 

with more severe disease or with earlier onset may be more likely to participate. Premanifest 

probands might be undersampled and therefore may not b e a fair representative sample of 

the entire HD population, especially underrepresenting subjects at risk. The family data may 

be a better representative of the population since the family members are included in the 

analysis only through the inclusion of the probands, not their own HD disease status.

Ma and Wang (2014b) also modeled pr TAAO < t ∣ x, CAG ≥ 36  in equation (4) using 

the Langbehn et al. (2004) model except with α1(x), α2(x) in equation (3) estimated 

nonparametrically. Ma and Wang (2014b) made the same gamete transmission assumptions 

as in Chen et al. (2012), and used techniques such as local kernel and backfitting to estimate 

the model parameters for the genetic mixture model. Analogous to the results of Chen 

et al. (2012), Ma and Wang (2014b) had lower estimates of penetrance than observed 

by the Langbehn et al. (2004) model; see Figure 3 in Ma and Wang (2014b). There are 

several possible reasons for these differences. The model outcome, age-at-onset, might be 

considered to be slightly different in the two models. The event in Langbehn et al. (2004) 

was earliest age at which a clinician documented an irreversible objective sign of the illness. 

This may occur earlier than the point at which an actual diagnosis of manifest HD is 

given, which was the event being considered in Ma and Wang (2014b). Possible systematic 

variability between the clinicians in the two studies may also account for the differences in 

the estimates.

3.3.2 Nonparametric Methods—Beyond extensions of the Langbehn et al. (2004) 

model, a wide range of methods have been developed to estimate the mixture distributions 

pr TAAO < t ∣ x, CAG ≥ 36  and pr TAAO < t ∣ x, CAG < 36  in equation (4) nonparametrically. 

The methods vary in computational difficulty and correctness, but in general provide the 

following key advantages: the resulting estimated cumulative risk curve can (i) serve as 

time-dependent positive and negative predictive values of the HD mutation test (Heagerty 

and Zheng, 2005); (ii) provide a numerical summary of cumulative risk by a certain age 

associated with a positive mutation test; (iii) predict the risk of onset for a subject based on 

his genetic test results and demographic information; (iv) predict conditional probabilities 

of developing HD in the next s-years (i.e., 5-years) given the subject’s current age current 

age of a subject. The advantages are similar to those as stated for parametric models in 

Section 3.2.1, except that the nonparametric estimation for pr TAAO < t ∣ x, CAG ≥ 36  and 

pr TAAO < t ∣ x, CAG < 36  completely avoid model misspecification issues.
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We now discuss the range of nonparametric estimators for the genetic mixture model, 

emphasizing their utility and limitations. Wacholder et al. (1998), Chatterjee and Wacholder 

(2001) and Fine et al. (2004) proposed different nonparametric maximum likelihood 

estimators (NPMLEs), all of which make no a priori assumptions about the mixture 

distributions. The so-called type I NPMLE (Wacholder et al., 1998) models the mixture 

distributions using a linearly transformed combination of NPMLEs. The so-called type 

II NPMLE (Chatterjee and Wacholder, 2001) is based on an Expectation-Maximization 

algorithm. The NPMLE of Fine et al. (2004) is constructed assuming independence between 

censoring times and the event of interest (i.e., age-at-onset). Given the independence 

assumption, the NPMLE of Fine et al. (2004) is referred to as IND NPMLE.

Although these methods are well-established in the statistics literature, they unfortunately 

are inadequate for kin cohort studies. Using COHORT data, Wang et al. (2012) and Ma 

and Wang (2014a) demonstrated their limitations. First, the type I NPMLE estimates the 

cumulative risk of onset as 40% over all ages—an estimate that completely disagrees with 

clinical findings (Langbehn et al., 2004). Second, Wang et al. (2012) demonstrated that the 

type II NPMLE gives biased and unreliable estimates of cumulative risk of onset. Lastly, the 

IND NPMLE estimates the risk of onset at 65 years as being greater than 1, thus indicating 

that the IND NPMLE violates the constraints that estimated risk, being a probability, must 

be between zero and one.

Motivated by these inadequacies, Wang et al. (2012) and Ma and Wang (2014a) developed 

a series of nonparametric estimators that are asymptotically unbiased (i.e., consistent), 

efficient (i.e., small variability), and provide clinically meaningful estimates of the 

cumulative risk of onset. The estimators stem from deriving all potential unbiased estimators 

(i.e., functions) that appropriately represent the distribution for kin-cohort studies as 

modeled in equation (4); then among all these estimators, we identify which estimator 

has the smallest variability (Tsiatis, 2006). A consistent estimator with smallest variability 

is desired so as to achieve reliability and high power in detecting significant differences. 

Doing the rigorous procedure mentioned, Wang et al. (2012) identified three novel classes 

of nonparametric estimators: an inverse probability weighting (IPW) estimator which gives 

more weight to subjects who are under-represented because of censoring; an augmented 

IPW estimator which has substantially less variability than the IPW estimator; and an 

imputation-based estimator which has similar variability to the augmented IPW but is 

substantially more complicated to compute.

A limitation of the Wang et al. (2012) estimators is the computational difficulties. The 

imputation-based estimator is complex and time-consuming, and the two IPW-based 

estimators can be numerically unstable since the inverse weighting function can lead to 

division by zero in some instances. As a remedy to these computational challenges, Ma 

and Wang (2014a) developed a fourth novel class of nonparametric estimators: a so-called 

weighted least squares estimator that is computationally effortless and has substantially 

less variability than any of the NPMLEs or the estimators of Wang et al. (2012). Using 

the kin-cohort data from the COHORT study, Ma and Wang (2014a) demonstrated the 

computational simplicity of their estimator over the aforementioned ones in estimating the 

cumulative risk curve.
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Lastly, a final limitation of all nonparametric estimators mentioned, including the weighted 

least squares, is that none is guaranteed to satisfy the mathematical properties of a 

distribution function: be positive and non-decreasing over time. Wang et al. (2012) and 

Ma and Wang (2014a) remedied this flaw by a post-estimate adjustment to ensure that 

mathematical assumptions were met. Rather than a post-estimate adjustment, a more 

direct approach is that of Qin et al. (2014) which involved combining an Expectation-

Maximization algorithm and isotone regression (Ayer et al., 1955) to guarantee the 

assumptions were met. The nonparametric estimator of Qin et al. (2014) is also consistent, 

efficient and has high power in detecting differences between age-at-onset distributions for 

different subpopulations (i.e., genetic mutation carriers and non-carriers). Incorporating the 

isotone regression into the estimator of Ma and Wang (2014a) may be worth pursuing to 

make further improvements.

4. Discussion

We discussed the range of models for age-at-onset developed over the past 30 years. Given 

the potential move to more subjective measures of onset—the multidimensional (Biglan et 

al., 2013) and natural-history based (Reilmann et al., 2014) ones—a natural question that 

arises is how would models for predicting onset change if the onset ages are mismeasured? 

See Table 5 for a brief overview of how mismeasured onset ages affect the modeling 

approaches.

Pearson correlations (Section 2.1) would be biased downward (Fan, 2003), meaning that 

the observed correlation will be weaker. Such weaker correlation may be present in the 

studies of Aylward (2014) or Tabrizi et al. (2011, 2013) where correlations are computed 

between structural magnetic resonance imaging (MRI) and estimated ages-at-onset, the latter 

of which could presumably be mismeasured.

For linear regression (Section 2.1), the answer depends on whether or not the measurement 

error is correlated with any subject-specific covariates in the model. If the mismeasured 

onset ages and covariates are correlated, then the estimated covariate effects would be 

incorrect (Abrevaya and Hausman, 2004). This could occur, for example, for subjects who 

do not regularly visit the clinic because they are more symptomatic (covariates) and are in 

denial. The irregular visits could lead to a mismeasured onset age.

In contrast, if the mismeasured onset ages and covariates are uncorrelated, then the 

mismeasurements have minimal impact. The estimated covariate effects would be unbiased 

but more variable (Carroll et al., 2006, chap. 15.1), meaning that the effect of covariates is 

correct but the power to identify significant features would be reduced. The unbiasedness 

and reduced power is because the measurement error in the age-at-onset (response) can be 

absorbed into the residual model error in equation (1) so long as the measurement error is 

independent of covariates (Abrevaya and Hausman, 2004).

In comparison, logistic regression (Section 2.2) is highly sensitive to error, known in the 

literature as misdiagnosis or misclassification. Misclassification occurs when a clinician 

erroneously concludes that a subject has manifest HD (i.e., a DCL score of 4) when s/he 
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does not, or the converse. Ignoring misclassification in logistic regression has a profound 

effect: estimates for the slope parameters β1,⋯, βp in equation (2) are severely biased and 

have high variability (Magder and Hughes, 1997; Carroll et al., 2006). A range of methods 

have been developed to address these concerns (Paulmgren and Ekholm, 1987; Copas, 1988; 

Neuhaus, 1999, 2002; Ramalho, 2002; Prescott and Garthwaite, 2002; Paulino et al., 2003), 

with the majority revolving around estimates for sensitivity and specificity. Sensitivity is 

the proportion of individuals who have manifest HD and are correctly identified as having 

phenoconverted, and specificity is the proportion of individuals who do not have manifest 

HD onset and are correctly identified as not having phenoconverted.

When sensitivity (denoted by π1) and specificity (denoted by π0) are completely unknown, 

yet believed to be independent of subject-specific covariates (i.e., π1,π0 remain constant 

regardless of the covariate values), then one may use so-called maximum likelihood or 

Bayesian approaches (Neuhaus, 2002) to unbiasedly estimate the parameters in equation (2). 

Unfortunately, these methods require extremely large sample sizes to unbiasedly estimate 

the sensitivity, π1, and specificity, π0 (Neuhaus, 2002), which may be impractical in many 

HD studies.

In the rare case that sensitivity and specificity are known, then unbiased estimates of the 

parameters can be easily obtained using standard logistic regression techniques (i.e., the 

method of re-weighted least squares). In this case, while the estimates remain unbiased, their 

variability is increased as a result of the misclassification.

Otherwise, when sensitivity and specificity can be estimated via validation data (i.e., the 

diagnostic status YAAO is correctly observed on a subset of the study data) or replicate data 

(i.e., subjects are assessed by multiple raters so that we observe multiple diagnostic status 

YAAO for each subject), then one may use this additional information to estimate π1,π0. 

Appropriate use of the validation or replicate data allows one to unbiasedly estimate the 

model parameters (Prescott and Garthwaite, 2002), but care must be taken since incorrect 

use can result in biased estimates and inference conclusions (Carroll et al., 2006, chap. 

15.3.2.3), or low power (Carroll et al., 2006, chap. 15.3.2.5).

Lastly, while there is some methodological developments in measurement error for survival 

response (Snappin, 1998; Skinner and Humphreys, 1999; Gelfand and Wang, 2000; 

Richardson and Hughes, 2000; Balasubramanian and Lagakos, 2001, 2003; Meier et al., 

2003; Margaret, 2009; Adeniji et al., 2013), the methods have been developed under 

restrictive modeling assumptions and/or under the assumption of no censoring. Much work 

is still needed to properly handle censoring and the more complex case of genetic mixture 

models, which is especially relevant given that genetic information is not always available 

(Ma and Wang 2014a, Qin et al. 2014).
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Table 1

DEFINITIONS OF HD DIAGNOSIS.

Pre-UHDRS Age of first clearly defined abnormality (Andrew et al., 1993) or combination of abnormalities (Vuillaume et 
al., 1998) such as involuntary movement, psychiatric or cognitive abnormality or inability to perform complex 
movements.

Motor-based diagnosis 
(Huntington Study Group, 
1996)

Age when a clinician believes with ≥ 99% confidence that the subject’s extrapyramidal signs are 
unequivocally associated with HD (i.e., DCL=4).

Multidimensional diagnosis 
(Biglan et al., 2013)

Age when a clinician believes with ≥ 99% confidence that based on the entire UHDRS (motor, cognitive, 
behavioral, and functional components), the subject has manifest HD.

Natural history-based 
diagnosis (Reilmann et al., 
2014)

Age when a clinician believes with ≥99% confidence that based on the entire UHDRS (motor, cognitive, 
behavioral and functional components) and all available history, the subject has manifest HD. The definition 
further involves different criteria for “genetically confirmed” subjects (i.e., ≥36 CAG repeats) and those who 
are not. That is, a subject has manifest HD if
• The subject, whether genetically confirmed or not, exhibits significant cognitive symptoms, shows 
evidence of progression from previous UHDRS exams, and has DCL ≥2.
• Else, the subject exhibits significant changes in the Total Functional Capacity (TFC) and Functional 
Assessment (Marder et al., 2000; Beglinger et al. (2010); Tabrizi et al., 2013) that are only attributable to HD. 
In addition, the subject is genetically confirmed and has DCL ≥ 3; or the subject is genetically unconfirmed 
and has DCL 4.
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Table 2

ADVANTAGES AND DISADVANTAGES OF DIFFERENT REGRESSION METHODS FOR MODELING AGE OF MOTOR-ONSET.

Method Advantages Disadvantages

Correlation 
Analysis

• Simple and available in standard software.
• Assesses strength of linear relationship between two variables 
(e.g., age-at-onset and subject-specific features).

• Missing observations are dropped from the 
calculation.
• Results can be perturbed by outliers.
• Does not reveal any nonlinear relationship 
between two variables.

Linear 
Regression

• Simple and available in standard software.
• Quantifies the linear effect of subject-specific features 
(covariates) on age-at-onset (response).
• Assesses how much of the variability of age-atonset is explained 
by the features (i.e., coefficient of determination).

• Missing observations are dropped from the 
analysis.
• Results can be perturbed by outliers.

Logistic 
Regression

• Simple and available in standard software.
• Assesses the linear effect that subject-specific features have on 
the log odds of onset occurring.
• Extracts information from individuals who have experienced 
onset and from those who have not by incorporating a binary 
response variable in the model.

• Ignores time differences between subjects 
experiencing onset; that is, subjects who experience 
onset at different times are treated similarly.
• Loss of time information can be remedied with 
multiple binary response variables but can result in 
numerically unstable estimation.
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Table 3

ADVANTAGES AND DISADVANTAGES OF DIFFERENT SURVIVAL TYPE METHODS FOR MODELING AGE OF MOTOR-ONSET WHEN 

GENETIC MUTATION STATUS IS KNOWN.

Method Advantages Disadvantages

Parametric methods 
(Gutierrez and 
MacDonald, 2002; 
Langbehn et al., 2004; 
Zhang et al., 2011)

• Simple implementation.
• Predicts likeliness of onset occurring by a given age as 
an explicit function of subject-specific features.
• Predicts probability of onset in s-year intervals (e.g., 
5-year intervals).
• Estimates penetrance rates at different CAG repeat-
lengths.
• Provides clinically meaningful divisions of subjects to 
make crosssectional comparisons.

• Current parametric methods only incorporate 
CAG repeat-length and age-at-study entry, 
although many other subject-specific features 
have been identified to influence age-at-onset.
• Searching for explicit relationships between 
multiple subject-specific features and age-at-
onset is challenging.
• Prone to model misspecification.

Semiparametric Cox 
model

• Available in standard software.
• Relates linear effect of subject-specific features to a ratio 
of hazard functions through a log-transformation.
• Baseline hazard function left completely unspecified to 
allow model flexibility.

• Proportional hazards assumption not always 
satisfied in HD studies (Langbehn et al., 2004).

Nonparametric Kaplan-
Meier

• No assumptions about underlying age-at-onset 
distribution.
• Estimates age-at-onset distribution stratified by different 
subject-specific features (e.g., CAG repeat-length).

• No explicit relationship between the effect 
of CAG repeat-length and the age-at-onset 
distribution.

Nonparametric Kernel 
and Smoothing Splines 
(Ma and Wang, 2014b)

• Effect of subject-specific features estimated using 
smooth functions that do not necessarily adhere to any 
particular explicit formula.

• Computationally demanding.
• No explicit final model available and hence 
no clinically meaningful divisions of subjects.
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Table 4

ADVANTAGES AND DISADVANTAGES OF DIFFERENT SURVIVAL TYPE METHODS FOR MODELING AGE OF MOTOR-ONSET WHEN 

GENETIC MUTATION STATUS IS UNKNOWN.

Method Advantages Disadvantages

1 Parametric model (Chen et al. 
2012)

2 Nonparametric model ( Ma 
and Wang, 2014b)

• Extends Langbehn et al. (2004) model to genetic 
mixture models for kin-cohort studies.
• Ma and Wang (2014b) model assumes 
nonparametric forms of subject-specific effects, 
whereas Chen et al (2012) uses same explicit 
parametric form as Langbehn et al. (2004).
• Consistent estimator.

• Overly simplified assumption of the gamete 
transmission process: assumes a family member 
inherits the same CAG repeat-length as his 
proband if the proband has the gene mutation.
• Ma and Wang (2014b) model is 
computationally demanding.

Type II Nonparametric 
Maximum Likelihood 
Estimator (NPMLE) (Chatterjee 
and Wacholder, 2001)

• Directly maximizes the nonparametric likelihood 
using an Expectation-Maximization algorithm.

• Biased and unreliable estimates of cumulative 
risk of onset.
• Computationally demanding.

1 Type I NPMLE (Wacholder et 
al., 1998)
2 Independent NPMLE (Fine et 
al., 2004)
3 Inverse Probability Weighting 
(IPW) estimator (Wang et al, 
2012)
4 Imputation Estimator (Wang 
et al, 2012)
5 Weighted least squares 
estimator (Ma and Wang, 2014a)
6 Isotone regression (Qin et al., 
2014)

• Consistent estimator.
• Resulting estimated cumulative risk curve can
- Serve as time-dependent positive and negative 
predictive values of the HD gene mutation test.
- Provide a numerical summary of cumulative risk 
associated with a positive mutation test.
- Predict the risk of onset for a subject based on his 
genetic test result and demographic information.
- Predict conditional probabilities of developing 
HD in next s-years.
• Augmented IPW estimator and Imputation 
estimator have least variability.
• Weighted least squares estimator is easiest to 
compute.
• Isotone regression estimator is guaranteed to 
satisfy the mathematical properties of a distribution 
function.

• Type I NPMLE has high variability and its 
estimates of cumulative risk of onset disagrees 
with clinical findings.
• Independent NPMLE can violate 
mathematical constraints on probability risk.
• IPW has high variability.
• IPW, Augmented IPW are susceptible to 
division by zero.
• IPW, Augmented IPW, Imputation and 
Weighted least squares estimators are not 
guaranteed to satisfy the mathematical properties 
of a distribution function and may violate the 
constraints of a probability where values must be 
between zero and one.
• Imputation and isotone regression estimator 
are computationally demanding.
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Table 5

EFFECT OF MISMEASURED ONSET AGES IN DIFFERENT METHODS FOR MODELING AGE OF MOTOR-ONSET.

Method Effect of mismeasured onset age

Correlation Analysis • Pearson correlation is biased downward.

Linear Regression • Biased estimated effects of subject-specific features (covariates) if the measurement error in age-at-onset is 
correlated with the features.

Logistic Regression • Highly sensitive to response error (i.e., misclassification). Ignoring misclassification leads to estimated model 
parameters being severely biased and highly variable.

Survival Models • Evidence of bias but exact effects need to be explored, especially for genetic mixture models where genetic 
information is not always available.
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