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Abstract

Purpose of review——Calcific aortic stenosis (CAVS) is the most common form of valvular 

heart disease in developed countries, increasing in prevalence with the aging population. Surgical 

or transcatheter aortic valve replacement is the only treatment available for CAVS. However, these 

interventions are typically reserved for severe symptomatic AS. The purpose of this review is to 

summarize the recent literature in uncovering the underlying pathophysiology of CAVS in the 

setting of lipoprotein (a) [Lp(a)} and emerging therapies targeting Lp(a) which may help halt 

disease progression in CAVS.

Recent findings——Pathophysiologic, epidemiological, and genetic studies over the past 

two decades have provided strong evidence that Lp(a) is an important mediator of calcific 

aortic valvular disease (CAVD). Studies suggest that Lp(a) is a key carrier of pro-calcifying 

oxidized phospholipids (OxPL). The metabolism of OxPL results in a pro-inflammatory state 

and subsequent valvular thickening and mineralization through pro-osteogenic signaling. The 

identification of Lp(a) as a causal mediator of CAVD has allowed for opportunities for emerging 

therapeutic agents which may slow the progression of CAVD (Figure 1).

Summary——This review summarizes the current knowledge on the association of Lp(a) 

with CAVD and ongoing studies of potential Lp(a)-lowering therapies. Based on the rate-

limiting and causal role of Lp(a) in progression of CAVS, these therapies may represent novel 

pharmacotherapies in AS and inform the developing role of Lp(a) in the clinical management of 

CAVD.
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Introduction

Calcific aortic valve disease (CAVD), including calcific aortic valve stenosis (CAVS), is the 

most prevalent form of valvular heart disease in the Western World and is the leading cause 
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of valve-related mortality in the United States1,2. CAVS affects nearly 3% of the population 

greater than 65 years of age with projections that the prevalence of CAVS is expected to 

triple in the next 40 years. CAVD is marked by thickening of the aortic valve leaflets with 

resultant progressive stenosis of the aortic valve. CAVD is an insidious disorder as the early 

stages of CAVD are predominantly asymptomatic. However, the eventual development of 

restricted aortic valve leaflet mobility ultimately leads to significant left ventricular outflow 

obstruction and subsequent symptoms of angina, heart failure, and syncope. Among those 

individuals who develop severe CAVS, the 2-year survival rate without surgical intervention 

approaches 50%3. At present, surgical or transcatheter aortic valve replacement (AVR) is 

the only treatment available for severe symptomatic CAVS. The number of individuals 

requiring surgical or transcatheter aortic valve replacement (AVR) is expected to double by 

20504,5. Given the high cost and significant periprocedural and long-term morbidity and 

mortality associated with these procedures, there is a need for a better understanding of the 

pathogenesis of CAVD and for the development of effective pharmacologic therapies.

Pathogenesis of CAVS

Because its incidence increases with age, CAVD was traditionally considered a passive 

and degenerative disease caused by continuous wear and tear of the aortic valve leaflets. 

However, it is now well established that that CAVD is actually a multifactorial phenomenon 

characterized by active inflammation followed by highly regulated fibro-calcific remodeling 

of the valve6,7.

The pathogenesis of CAVD can be divided into two distinct phases: an early initiation 

phase marked by valvular endothelial injury, lipid deposition, and inflammation, and a later 

propagation phase driven by pro-calcific and pro-osteogenic factors8. The initiation phase 

is similar to the development of atherosclerosis, with both conditions sharing similar key 

risk factors of age, male sex, dyslipidemia, metabolic syndrome, hypertension, metabolic 

syndrome, diabetes mellitus9. This early stage is triggered by endothelial injury to the outer 

layer of valve endothelial cells (VECs) due to mechanical shear stress. Impaired integrity 

and activation of VECs ensues and allows for the infiltration of the same lipids implicated 

in atherosclerosis, in particular low density protein [LDL] and lipoprotein(a) [Lp(a)]10–12. 

Progressive endothelial injury and oxidation of these lipids stimulate an inflammatory 

response driven by macrophages, mast cells, and T cells which release pro-inflammatory 

cytokines, such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α.

This inflammatory milieu induces the normally quiescent valvular interstitial cells (VICs) 

to undergo osteogenic differentiation during the propagation phase of CAVD. These 

activated VICs gain a myofibroblast-like phenotype and lay down a disorganized collagen 

matrix and release other bone-related proteins, such as bone morphogenetic protein 2 

(BMP2) and Runt-related transcription factor 2 (RUNX2). These osteogenic markers lead to 

release of calcium- and phosphate-rich extracellular vesicles which aggregate and provide 

a disorganized scaffold upon which progressive dystrophic calcification of the aortic 

valve can develop13,14. Apoptosis of VICs also results in microcalcifications at sites of 

endothelial injury and lipid deposition15,16. Cell death and release of apoptotic bodies 

facilitates the formation of hydroxyapatite crystals which form nucleation sites for further 
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calcium deposition. Hydroxyapatite deposition prompts further pro-inflammatory responses 

from macrophages, creating a positive feedback loop of calcification and inflammation13. 

The fibrotic remodeling, dystrophic calcification, and biomineralization of the valvular 

extracellular matrix during this propagation phase ultimately results in progressive fibrosis, 

thickening, and dysfunction of the aortic valve leaflets. Therefore, the self-perpetuating 

cycle of calcification and valvular injury is an important driver of disease progression in 

CAVD.

Lp(a) is a risk factor for CAVS

The pathogenesis of CAVS demonstrates an important link between lipid deposition, 

inflammation, and calcification. An improved understanding of the biology of CAVS has 

highlighted potential therapeutic targets to slow the progression of CAVD and possibly avoid 

or delay the need for valve replacement. In particular, the emergence of epidemiological and 

genetic studies over the past two decades has identified elevated plasma Lp(a) levels as an 

important mediator of CAVS and a predictor for faster CAVS disease progression.

Lp(a) is a low-density-like-lipoprotein-like particle which is covalently bound to an 

apolipoprotein(a) [apo(a)] tail, encoded by the LPA gene. Apo(a) is comprised of 10 unique 

subtypes of kringle 4 (KIV) domains, followed by a kringle 5-like (KV) domains, and an 

inactive protease domain. Of these KIV subtypes, only KIV2 is present at different copy 

numbers ranging from 1 to more than 40 on each allele. Only one copy of KIV1 and 

KIV3–10 are present, but the number of KIV2 repeats determines the apo(a) isoform size as 

well as the variability in plasma Lp(a) concentration between individuals21. In general, there 

is an inverse relationship between the number of KIV2 copies in apo(a) and plasma Lp(a) 

concentrations.

Elevated Lp(a) is highly prevalent, affecting at least 20% of the global population with 

likely an even higher incidence among individuals with atherosclerosis and CAVD17. A 

strong association between Lp(a) and CAVS was first described in 1995 by Gotoh et al. 

Amongst 748 men and women in a rural Japan, the prevalence of aortic valvular sclerosis on 

echocardiography was nearly threefold higher among individuals with Lp(a) levels greater 

than 30 mg/L compared with individuals who had lower Lp(a) levels, independent of other 

risk factors18.

Lp(a) levels have high heritability with an autosomal co-dominant pattern22. The study 

of Lp(a) genetics has been instrumental in establishing potential causality for Lp(a) 

in calcific AS. In 2013, the CHARGE (Cohorts for Heart and Aging Research in 

Genomic Epidemiology Consortium) Consortium group published a landmark genome-wide 

association study which showed that the rs10455872 LPA single-nucleotide polymorphism 

is associated with CAVD. In addition, LPA genotype is also associated with increased 

incidence of aortic valve calcification and need for aortic valve replacement across multiple 

diverse cohorts and racial/ethnic groups19. No similar genome-wide associations have been 

noted in mitral valve calcification, highlighting the distinct specificity of this association 

with aortic valvular disease. Multiple studies, including the Copenhagen City Heart Study 

and the Copenhagen General Population Study, have corroborated these key findings, 
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showing that LPA genotypes predicted elevated Lp(a) levels, and that elevated Lp(a) levels 

>90 mg/dL was associated with a 3-fold increased risk of AS20. These genetic studies 

have complemented prior observational studies in providing strong evidence of Lp(a) as a 

genetically determined and likely important causal risk factor for calcific AS.

Lp(a) mediates calcification in CAVS

At present, molecular studies have shown that Lp(a), not LDL, is the preferential 

lipoprotein carrier of oxidized phospholipids (OxPL). Lp(a) can infiltrate denuded valvular 

endothelium, accumulate in the valve, and subsequently deliver its cargo of OxPL24. 

OxPL transported by Lp(a) acts as a substrate for lipoprotein-associated phospholipase 

A2 (PLA-2), secreted largely by macrophages, to generate lysophophatidylcholine (LPC). 

LPC is a highly reactive metabolite with pro-osteogenic properties present in mineralized 

aortic valves. Autotaxin (ATX), a lysophopholipase D enzyme transported into the valvular 

endothelium by Lp(a), uses LPC as a substrate for the generation of lysophosphatidic acid 

(LPA) which has been shown to promote the microcalcification of the aortic valve through 

activation of NF-kB21. This induces the upregulation of genes involved in osteogenic 

differentiation including IL-6, BMP2, and RUNX222. ATX transported by Lp(a) can 

additionally induce ATX expression by VICs in a feed forward cycle. More recent research 

has additionally demonstrated that the protein apolipoprotein C-III (apoC-III) binds to Lp(a) 

to form ApoCIII-Lp(a) complexes which associate with progression of calcific aortic valve 

stenosis and are found in proximity to calcified regions of stenotic aortic valves23–25.

There are also ongoing animal studies to help further understand the mechanistic role of 

Lp(a) in CAVS. In an atherogenic mouse model (Ldlr−/−E06-scFv) that expressed a natural 

E06-derived antibody which binds to OxPL and thereby inhibits its pro-inflammatory 

properties, echocardiographic evaluation showed significant attenuation of transaortic mean 

gradients and histology showed decreased calcium content of the aortic valve when 

compared to Ldlr−/− mice26. In a transgenic mouse model of CAVD (Ldlr−/−/Apob100/100) 

fed a diet high in lysophosphatidic acid (the enzymatic product of ATX), findings 

demonstrated overexpression of ATX and lysophosphatidic acid-mediated promotion and 

acceleration of CAVS23. Though a Lp(a) mouse model does not yet exist, these current 

animal studies provide evidence for the central role of Lp(a)-associated OxPL and ATX in 

the progression of CAVD.

The findings from these in vitro and animal studies have been borne out in clinical 

investigations as well. In recent years, 18F-sodium fluoride (NaF) uptake on positron 

emission tomography computed tomography (PET/CT) has emerged as an important 

measure of micro-calcification predictive of CAVS progression. Studies have shown that 

individuals with elevated Lp(a) > 75 nmol/L or > 35 mg/dL develop increased aortic 

valve micro-calcifications on 18F-NaF PET/CT imaging; these micro-calcifications are 

predictive of developing CAVD, manifesting before the development of clinically significant 

CAVS28,29. Compared with persons with Lp(a) < 35 mg/dL, those with elevated Lp(a) 

> 35 mg/dL additionally experienced increased progression on serial valvular computed 

tomography calcium score and faster hemodynamic progression on serial echocardiography 

based on peak transaortic velocity when compared with persons with Lp(a) levels < 35 
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mg/dL. Moreover, individuals with elevated OxPL-apoB levels, the predominant contributor 

to OxPL content of Lp(a) and reflective of the biological activity of Lp(a), also had 

increased valvular 18F-NaF uptake29. In a secondary analysis of the ASTRONOMER study, 

patients with preexisting mild to moderate CAVS with elevated Lp(a) levels in the top tertile 

exhibited faster disease progression of CAVD with a linear relationship between Lp(a) levels 

and the annual rate of peak transaortic velocity29. More importantly, elevated Lp(a) levels 

were associated with increased risk for aortic valve replacement or cardiovascular death in 

the ASTRONOMER, SALTIRE, Ring of Fire, and SAFEHEART studies29,31,32. Overall, 

these basic, translational and clinical studies support the important roles that Lp(a) and its 

associated OxPL play in the development of CAVS.

Emerging Lp(a) lowering therapies

The current data present important clinical implications regarding the monitoring and 

management of patients with CAVD. First, for patients with severe asymptomatic CAVS, 

Lp(a) and OxPL-apoB might serve as biomarkers to help guide timing of valve intervention 

and timing of imaging surveillance. Second, in the absence of any pharmacologic treatments 

for CAVD, Lp(a)-lowering therapeutics are an attractive strategy to halt the progression of 

CAVD.

Several existing lipid-lowering therapies and their potential in attenuating Lp(a) levels and 

CAVD have been studied. Statins have been widely investigated in CAVS with several 

clinical trials showing that statins are not only unable to reduce progression or induce 

regression of CAVS in patients with mild to moderate disease, but actually also increase 

Lp(a) levels by ~20%33–36. The mechanism by which this occurs is not understood but is felt 

to be attributed to increased apo(a) expression.

Niacin therapy lowers Lp(a) by ~ 20% to 30%37–39. Despite studies showing favorable 

reduction in Lp(a) with niacin treatment, niacin is not included in current guidelines due 

to the lack of clinical benefit in patients with atherosclerotic cardiovascular disease and 

increased risk of serious adverse events39. However, niacin therapy in patients with early 

CAVD and high Lp(a) ≥ 50 mg/dL is under ongoing investigation in the Early Aortic Valve 

Lipoprotein(a) Lowering (EAVaLL) randomized trial40.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors can similarly lower Lp(a) 

levels by ~20–30% though the mechanism is currently unclear41,42. Nevertheless, there 

is growing evidence that PCSK9 may be involved in CAVD. In one prospective study, 

increased plasma PCSK9 levels were a predictor of CAVD; however, unlike Lp(a), PCSK9 

levels positively correlated with the presence of CAVD, but not its severity43. From a large 

cohort of Danish patients, PCSK9 loss of function mutation R46L was associated with lower 

levels of Lp(a) as well as reduced risk of CAVS44. One study of a PCSK9 knockout mouse 

model has shown that PCSK9 deficient mice had lower aortic valve calcification compared 

to wildtype mice45. In vitro data from this study additionally showed that PCSK9 is highly 

expressed in calcified aortic valves and that aortic valve calcification might be caused 

by VIC-related PCSK9 expression. Sub-analyses of cardiovascular outcomes of studies of 

evolocumab (FOURIER trial) and alirocumab (ODYSSEY OUTCOMES) showed that the 
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greatest absolute Lp(a) reductions were observed in those patients in the high quartile of 

baseline Lp(a) values. These patients additionally derived greater cardiovascular benefit 

from PCSK9 inhibitor treatment. An exploratory analysis of PCSK9 inhibition and aortic 

stenosis in the FOURIER trial revealed Lp(a) concentration was associated with future AS 

events of new or worsening CAVS or aortic valve replacement. More interestingly, this study 

showed that long-term therapy with evolocumab beyond 1 year may reduce AS events46. 

However, this post hoc analysis only encompassed a small number of patients and AS 

events, and similarly to the ODYSSEY OUTCOMES trial, the FOURIER trial was not 

designed to evaluate the effect of PCSK9 inhibitors on CAVD or the impact of Lp(a) on 

this disease. Furthermore, the modest reduction in Lp(a) levels brought about by niacin or 

PCSK9 inhibitor treatment may be inadequate to provide a clinically meaningful impact on 

the pathogenesis of CAVD47,48.

Two pivotal clinical trials investigating novel Lp(a)-lowering therapies are currently 

underway. The HORIZON phase 3 study is investigating the benefit of Lp(a)-lowering 

with pelacarsen (also termed IONIS-APO(a)-LRx, AKCEA-APO(a)-LRx, and TQJ230) on 

major cardiovascular outcomes of cardiovascular death, non-fatal myocardial infarction, 

non-fatal stroke, and urgent coronary re-vascularization requiring hospitalization among 

individuals with established cardiovascular disease and elevated Lp(a) levels. Pelacarsen 

is a highly potent hepatocyte-directed antisense oligonucleotide targeting the LPA gene 

messenger RNA, inhibiting its transcription to apolipoprotein(a)49. Phase 2 study data 

showed that Pelacarsen safely and dose-dependently decreases Lp(a) and its associated 

OxPL levels by up to 80%; approximately 98% of patients treated with the highest-dose 

regimen achieved Lp(a) levels below 125 nmol/L (~50 mg/dL), the established threshold 

for Lp(a)-driven cardiovascular disease for individuals already on statin therapy50–52. A 

separate phase 2 randomized study is currently being conducted to evaluate the efficacy, 

safety, and tolerability of olpasiran (also known as AMG 890) in individuals with elevated 

levels of Lp(a). Olpasiran is a small interfering RNA (siRNA) molecule targeting hepatic 

expression of apolipoprotein(a). Phase 1 study outcomes showed that 90% reduction in 

Lp(a) levels could be observed with olpasiran treatment. Although no pre-specified CAVD 

endpoints have been assessed as part of trial designs for both pelacarsen and olpasiran, these 

investigations represent landmark trials In the Lp(a) field and may ultimately lead to novel 

therapeutics for the management of CAVD.

Conclusions

Although Lp(a) has been accepted as an important independent risk factor for both 

cardiovascular disease and CAVD, there are challenges to integration of Lp(a) levels 

into clinical decision making. One obstacle is that the measurement of Lp(a) is not yet 

standardized. The most common method for measuring Lp(a) are immunoassays which 

utilize polyclonal antibodies to target the apo(a) molecule. However, the large heterogeneity 

in apo(a) size between, as well as within individuals because of the heterozygosity of the 

apo(a) gene, can lead to inaccurate determination of Lp(a) plasma concentration. Because 

these polyclonal antibodies cross-react with the multiple KIV2 repeats, these assays can 

result in an overestimation of Lp(a) plasma concentrations in individuals with large isoforms 

and underestimation of Lp(a) levels in those with small isoforms53,54. For this reason, there 
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may be a benefit in switching from the most commonly used total mass assays which report 

Lp(a) levels in mg/dL to measuring Lp(a) concentration in nmol/L17.

In addition, an important challenge in using Lp(a) as a biomarker to identify patients at 

higher risk for atherosclerotic cardiovascular disease (ASCVD) and CAVD is the lack of 

consensus on the target level of Lp(a). Based on the available studies, the National Lipid 

Association suggests using a universal cut point of ≥ 100 nmol/L, which approximates the 

80th percentile in the Caucasian United States populations55. However, the 2019 American 

College of Cardiology (ACC)/American Heart Association (AHA) Cholesterol Guidelines 

recommend using Lp(a) concentration ≥ 125 nmol/L (> 50 mg/dL)56. These guidelines are 

likely to change as future studies take into account epidemiological differences based on 

risk, ethnicity, and comorbidities to determine the optimal cut-off levels.

Finally, integrating assessment of Lp(a) into current clinical care is not yet common practice. 

Measuring Lp(a) may be reasonable in patients at high risk for ASCVD, those with a family 

history of premature ASCVD, and for reclassification purposes in patients at borderline 

risk for ASCVD. However, current European and ACC/AHA recommendations offer less 

guidance in the assessment of Lp(a) among patients with known CAVD, with or without 

concurrent ASCVD56,57. Additionally, it remains unclear how Lp(a) might be used to 

identify those individuals at greater risk for CAVD and whether such information may guide 

timing of valvular intervention and imaging surveillance. Ultimately, clinical trials will be 

required to determine if new Lp(a)-lowering agents can slow the progression of CAVD. Such 

trials will require careful design with respect to enrolling patients who have elevated Lp(a) 

and aortic valve disease. However, it will also be important to identify patients who do not 

yet have severe disease, where the disease may still be modifiable. While there will be much 

more to learn, it is thought-provoking to know that Lp(a)-lowering agents may prove to be 

the first medical therapy that can modify the progression of CAVD.
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Key Points:

• Lp(a) is associated with increased severity and increased progression of 

CAVD.

• Lp(a) is a key mediator of calcific aortic stenosis via its delivery of OxPL to 

aortic valvular interstitial cells.

• There are no approved therapies to lower Lp(a), but several agents are being 

evaluated in clinical trials.

• Niacin and PCSK9 inhibitors can lower Lp(a), but the resulting modest 

reductions in Lp(a) may be insufficient to halt progression of CAVD.

• Future studies will be required to determine whether emerging RNA-targeted 

therapeutics to lower Lp(a) may impact the progression of CAVD.
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Figure 1. 
Lipoprotein (a) mediates the progression of calcific aortic valvular disease. Upon endothelial 

damage, lipoprotein(a) and oxidized phospholipids (OxPL) accumulate within the valvular 

tissue, driving a feed-forward cycle of inflammation, calcification, and fibrosis. This 

ultimately results in calcified aortic valve stenosis. Currently, there are no approved medical 

therapies for aortic stenosis. However, emerging therapies to target Lp(a), including PCSK9 

inhibitors and RNA-based therapeutics, may halt disease progression in aortic stenosis.
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