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Abstract

The ability of the Gram-negative outer membrane (OM) to act as a permeability barrier has 

long been appreciated, but recent studies have uncovered a more expansive and versatile role 

for the OM in cellular physiology and viability. Due to recent developments in microfluidics 

and microscopy, the structural, rheological, and mechanical properties of the OM are becoming 

apparent across multiple scales. In this review, we discuss recent experimental and computational 

studies that have revealed key molecular factors and interactions that give rise to the spatial 

organization, limited diffusivity, and stress-bearing capacity of the OM. These physical properties 

suggest broad connections between cellular structure and physiology, and we explore future 

prospects for further elucidation of the implications of OM construction on cellular fitness and 

survival.

Introduction

The architecture and makeup of the bacterial cell envelope have long been topics of 

intense interest, in part due to the importance of the envelope for viability, virulence, 

and mechanical integrity. Unlike Gram-positive bacteria, Gram-negative bacteria have 

two highly distinct membranes that delimit an aqueous cellular compartment called the 

periplasm1 (Figure 1A). The peptidoglycan (PG) cell wall, which determines cell shape2, 

resides in this extra-cytoplasmic compartment, as does a variety of proteins. Surrounding 

the cell wall is the outer membrane (OM), a hallmark of Gram-negative species. The 

OM is an atypical biological membrane: while it is a lipid bilayer, it is asymmetric, with 

phospholipids (PLs) in the inner leaflet and a glycolipid known as lipopolysaccharide (LPS) 

in the outer leaflet3. The OM also contains two major classes of proteins. Nearly all of 

the transmembrane proteins assume a β-barrel fold and are commonly referred to as outer 

membrane proteins (OMPs)1. The OM additionally contains lipoproteins, which are mostly 
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soluble but have a lipid moiety at the amino terminus that enables their embedding in 

the OM4. Unlike typical biological membranes, which are impermeable to protons, the 

OM is freely permeable to small, water-soluble molecules like sugars and amino acids5. 

These molecules diffuse through the OM via channels formed by a major class of OMPs 

called porins5. Also unlike typical membranes, the OM is resistant to detergents and other 

hydrophobic toxins. The strong lateral interactions between LPS molecules, together with 

their saturated acyl chains, stabilize the OM, greatly hindering the passage of hydrophobic 

molecules5. These biochemical properties hint at the mechanical importance of the OM, yet 

many of its structural properties remain mysterious. Only recently have studies started to 

probe the magnitude, molecular determinants, and tuneability of OM physical properties.

The OM is thought to be essential for viability in most Gram-negative bacteria1. Due to 

its adjacency with the extracellular milieu, the OM serves as the location of a substantial 

fraction of environmental sensors6-9 and as an anchor point for adhesive organelles10. The 

OM acts as a platform for interacting with host immune systems11-13, as well as with 

neighboring bacterial cells through surface contact14 and vesicles15. Moreover, the OM is 

an important permeability barrier providing Gram-negative bacteria resistance to large and 

hydrophobic antibiotics that are effective against Gram-positive bacteria with conserved 

targets5,16-18. Indeed, multi-drug resistant Gram-negative bacteria currently pose a serious 

threat to human health19,20, and the inability to overcome OM barrier function has, in part, 

hampered antibiotic discovery efforts21,22 aimed at avoiding a possible return to the time 

when infectious diseases were more feared than cancer23. The OM is also a barrier to 

large molecules, for example by sterically hindering antibodies and phages from binding to 

surface targets24-28. Although clearly useful, this barrier function does not explain why the 

OM is essential. In Escherichia coli for example, there are only a few enzymes present in the 

OM, and none of these enzymes performs an essential function. Indeed, the only essential 

proteins in the OM are ones necessary for building the OM1.

Besides the presence or absence of an OM, another major difference between Gram-negative 

and Gram-positive bacteria is the thickness of the PG cell wall, which is a monolayer in at 

least several Gram-negative model organisms29 and multi-layered (often tens of nanometers 

thick30,31) in Gram-positive organisms. The classical picture of the Gram-negative bacterial 

envelope has assigned responsibilities for stress-bearing to the cell wall and barrier functions 

to the OM. However, the two structures are physically connected: across the entire surface 

by proteins such as OmpA32,33, at the division site by the Tol/Pal complex34,35, and 

during cell wall synthesis by the LpoA/B proteins that bind to the wall synthesis enzymes 

PBP1A/B36,37. In certain enteric bacteria such as E. coli, the cell wall and the OM are 

also coupled covalently by Braun’s lipoprotein38. Moreover, in recent years, accumulating 

evidence has suggested that the essential function of the OM may be mechanical39-42, 

contributing physical strength to compensate for the thin cell wall. Indeed, the crosslinking 

of LPS molecules by divalent cations43 has been suggested as a mechanism of mechanical 

stabilization44. Moreover, although antibiotics targeting cell-wall biogenesis are effective 

against Gram-negative bacteria, they can often survive at least temporarily without a cell 

wall45,46, with certain mutations enabling stable, wall-less proliferation47. In this review, we 

will focus on the emerging physical and mechanical properties of the OM and the ways this 

unique membrane contributes strength to improve bacterial fitness.
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Molecular components of the OM

The OM is made up of PLs, LPS, and proteins3,48-50, whose localization patterns and 

interactions determine the basic chemical and physical properties of this structure. The 

abundances of OMPs and lipoproteins51 as well as LPS offer insights into OM function. For 

decades, OM research has focused on bilayer asymmetry and the biochemical functions of 

the molecular components16,17,48,49,52-58. Now, advances in imaging and force spectroscopy 

are improving our understanding of the molecular organization and physical properties of 

the OM at higher spatial and temporal resolution (Figure 1B).

The LPS that occupies the outer leaflet3 consists of three moieties: the hydrophobic lipid 

A, a conserved oligosaccharide core, and a variable polysaccharide called the O-antigen59. 

The negatively charged LPS molecules are neutralized and bridged (often referred to as 

“cross-linked”) by divalent cations such as Mg2+. At roughly 1 million molecules per 

cell53, LPS makes up a substantial fraction of the OM and hence has the potential to be 

a major contributor to maintaining structural integrity of the OM. LPS localization to the 

OM outer leaflet was first determined in Salmonella3 and is now thought to generally 

apply to Gram-negative bacteria. Some antibacterial agents specifically target LPS: LPS 

molecules can be stripped out of the OM by the divalent cation chelator EDTA52, and are 

bound stoichiometrically by the cationic cyclic lipopeptide polymyxin B55,60. By examining 

the ability of uncharged, hydrophilic molecules to penetrate the OM16, it was found that 

disruption of the negative charge of LPS substantially increased permeability, suggesting a 

central role for LPS in OM barrier function55,61.

OMPs are transmembrane β-barrels that also have important structural and functional 

implications for the OM. AFM revealed that OMPs cover ~70% of the cell surface62. 

Many studies have revealed diverse and critical roles played by OMPs, including signaling, 

nutrient import, virulence, and OM biogenesis34,37,63,64. In addition to these biological 

functions, the high abundance of OMPs, at roughly 500,000 per E. coli cell51, suggests a 

role in maintaining the physical properties of the OM. Indeed, AFM measurements revealed 

OMPs packed into islands rather than existing as single proteins that diffuse freely in 

the membrane, a sign of strong interactions that restrict mobility62,65,66 (Figure 2A,B). 

Coarse-grained molecular dynamics simulations suggested that specific interaction surfaces 

between OMPs are key to island formation67.

Lipoproteins, which are anchored in the membrane with a lipid moiety, are another 

important class of protein in the OM with over 1 million per E. coli cell51. As 

noted above, in certain enteric bacteria such as E. coli, the most abundant is Braun’s 

lipoprotein (Lpp), whose C-terminus is covalently bound to the PG layer, providing coupling 

between the OM and the cell wall38 (Figure 1A). Lipoproteins are involved in various 

pathways including capsular synthesis regulation7, colonization, immune system evasion, 

peptidoglycan synthesis36,37, OMP biogenesis, and LPS transport68,69. The extent to which 

lipoproteins affect OM organization is largely unknown, although evidence of their transfer 

between Myxococcus xanthus cells suggests that they are highly mobile14. Taken together, 

every component of the OM has the potential to impact its physical properties.
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Molecular interactions between LPS and OM proteins

In the OM, proteins and LPS interact in multiple ways. Insertion of LPS into the outer leaflet 

requires the Lpt transport proteins63,69. Recent evidence increasingly supports a physical 

picture of the outer leaflet made up of LPS and porins as a partially ordered structure 

with strong lateral interactions at the molecular scale (Figure 2A). In X-ray reflectivity and 

grazing incidence X-ray diffraction measurements, LPS monolayers at water-air interfaces 

showed lateral ordering highly distinct from phospholipid membranes, and this organization 

could be perturbed by the ionic strength of the aqueous phase; Ca2+ ions increased the 

rigidity of the monolayer by cross-linking LPS molecules43. Conversely, treatment with 

EDTA, which chelates divalent cations, induces release of LPS from the OM52. Atomic 

force microscopy (AFM) measurements on living cells showed that OM porins distributed 

among LPS molecules formed a densely packed, net-like structure that diffused slowly62,66. 

Mutagenesis and structural studies (X-ray, neutron scattering) together revealed specific 

interactions between LPS and porins that stabilize the ordered network of LPS molecules 

and maintain permeability64. Molecular dynamics simulations have provided further support 

for strong interactions among LPS molecules and between LPS and proteins70-73, and have 

suggested that the LPS environment can affect the accessibility of certain small molecules to 

the passive transport porin OmpF74, as well as access to surface epitopes by antibodies28 and 

phage26,75,76.

Physical structure and properties of the OM

The dynamics of and interactions between molecules in the OM lead to a variety 

of structural characteristics and physical properties, including limiting the diffusion of 

molecules within the OM and producing spatial heterogeneity. Thus, molecular composition, 

structure, and dynamics can generate physical behaviors at the cellular scale. Recent 

studies integrating experimental and computational approaches are beginning to reveal 

the mechanisms relating these properties to molecular-scale organization and envelope 

mechanics, and to connect them to cellular fitness and survival.

The lipids and proteins within a bilayer such as the bacterial inner membrane typically 

diffuse quickly, with fluorescence recovery after photobleaching (FRAP) occurring within 

seconds77. However, the unusual asymmetric bilayer structure of the OM can give rise to 

distinct diffusive properties, altering the motion of constituent molecules and hence their 

spatial distribution. FRAP experiments and pulse-chase labeling with a general OM label, 

fluorescent succinimidyl ester (flSE), suggested that LPS and some proteins in the OM are 

largely immobile while other molecules can diffuse relatively quickly78,79, suggesting that 

the OM behaves more like a gel (a semi-solid with dilute crosslinks) than a fluid (Figure 

2A). Proteins with limited mobility that are inserted locally must rely on the heterogeneity of 

OM growth and on cell division to cover the entire OM (Figure 2B). In addition to proteins, 

the limited motility of LPS molecules may impact the diffusivity of the OM as a whole given 

their high abundance and lateral interactions79.

By contrast to the homogenizing tendency of rapid diffusion, low diffusivity has the 

potential to produce spatial heterogeneity at the cellular scale by limiting exploration of 

individual molecules. Indeed, pulse-chase labeling of the abundant OM protein LamB in 
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E. coli cells revealed the insertion of large clusters along the cylindrical region, not at the 

poles, that were essentially immobile80. Local interactions of LPS and proteins, together 

with expansion of the OM during cell growth are predicted to result in a spatial pattern 

wherein newly inserted clusters near mid-cell push older clusters toward the poles80 (Figure 

2C). Pulse-chase flSE labeling showed that localization of OM components at the poles 

is more stable than along the cylindrical region78. A separate study demonstrated that 

synthesis of clusters of OMPs that include the β-barrel assembly machine (BAM) is biased 

away from the poles, with clusters migrating to the poles due to growth81 (Figure 2C). 

Heterogeneity of the OM is accompanied by heterogeneous growth of the PG82,83, with 

bursts of similar sizes84. While E. coli has been the predominant model for studying 

OM synthesis and properties, evidence from many other species such as Agrobacterium 
tumefaciens85, Shigella flexneri86,87, and Salmonella Typhimurium17 indicates that the OM 

may be spatially heterogeneous across Gram-negative bacteria.

Given the asymmetric structure of the OM, its molecular organization may play a critical 

role in its biochemical functions. Interestingly, Lpp was found to occupy distinct subcellular 

compartments in which molecules were either surface-exposed or periplasmic and PG-

bound88. This transition between bound and unbound states is reversible, and detachment 

from the PG has been proposed to be beneficial under certain stress conditions89,90. It 

remains unclear why free-form Lpp is spatially distinct from its PG-bound counterparts, 

and whether alteration of the balance between the two states alters OM organization and/or 

mechanics.

Despite continuing knowledge gaps, recent studies have highlighted the impact of OM 

physical organization and properties on cellular physiology and interactions with the 

environment. For instance, binding of phages to the OM and subsequent motion before 

internalization is impacted by the heterogeneous distribution of its receptors91. Moreover, 

the physical organization of molecules within the OM can contribute to its structural 

integrity and mechanical strength. Characterization of the rheological properties of an 

in vitro monolayer showed that LPS undergoes a viscous-to-elastic transition upon 

compression44. This finding suggests that the molecular interaction between LPS molecules 

provides an important basis for the viscosity, stiffness, and/or strength of the OM. 

Similarly, it has been speculated that protein interactions can contribute to OM mechanical 

integrity92 and biosynthesis93. In addition, Lpp defines the periplasmic width94, and AFM 

measurements showed that mutants with disrupted Lpp crosslinking to the PG or increased 

Lpp length have weaker cell envelopes95. In some species lacking Lpp, β-barrel proteins 

were found to take on the role of covalently linking the OM to the cell wall, potentially also 

providing mechanical coupling96,97. Taken together, OM integrity and mechanics are likely 

intrinsically tied to the assembly and movement of its molecular components.

Evidence for the OM as a mechanical structure

Historically, the cell wall has been assumed to be the sole agent responsible for the 

task of maintaining mechanical integrity. However, over the past few decades, a growing 

appreciation for the mechanical role of the OM has emerged, driven in large part by 

advances in experimental methodologies. Studies of perturbations that lead to cell lysis 
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revealed that Gram-negative bacterial cells can survive temporarily when the cell wall 

is disrupted or degraded, suggesting a role of the OM in maintaining cell integrity. For 

example, when phages induce breakdown of the wall, cells round up rapidly but persist 

in a viable state for up to an hour before lysis98. Upon vancomycin treatment of E. coli 
mutants with a permeable OM, the cytoplasm bulges through holes in the cell wall, but 

nevertheless lysis does not occur for tens of minutes99. In a similar study of bulging, 

cells treated with both β-lactam antibiotics and EDTA to disrupt OM integrity lysed 

more rapidly than during β-lactam treatment alone, implicating the OM in mechanical 

integrity41. Under certain conditions, spheroplasts (cell wall-deficient cells) can even survive 

indefinitely without a wall45,47,100-102. Importantly, Mg2+ is often required for generation of 

spheroplasts, suggesting that in the absence of the cell wall the OM must be stabilized by 

LPS crosslinking in order for cells to survive100.

However, direct evidence for a mechanical role of the OM had been lacking until recently. 

Spurred by the advent of microfluidics, which allows for the tracking of changes to single-

cell morphology during perturbations, a recent study subjected E. coli cells to hyperosmotic 

shock (Figure 3A). The shock caused cells to decrease in length, consistent with the removal 

of turgor-mediated stress on the cell envelope. Under the hypothesis that the cell wall bears 

most (if not all) stress, in the plasmolyzed state after hyperosmotic shock the cell wall would 

be stress-free. However, after cells were subsequently treated with detergent to remove the 

IM and OM, a further reduction in length of up to 40% occurred40. This second contraction 

indicated that the cell wall was still under stretching forces after hyperosmotic shock, and 

that removal of the membranes allowed the cell wall to relax to its true rest length. To 

test whether the OM was the element contributing to cell-wall stretching, cells were treated 

before and during hyperosmotic shock with EDTA to cause rapid removal of LPS from the 

OM52. Now, there was significantly larger contraction after hyperosmotic shock, while the 

rest length of the cell wall after detergent treatment remained the same as without EDTA 

treatment. These two contractions (post-shock and post-detergent) provided key input to a 

biophysical model predicting that the relative stiffness of the OM is comparable to that of 

the PG cell wall40. This conclusion is supported by molecular dynamics simulations of a 

model of the OM as an asymmetric bilayer with a mixture of E. coli PLs in the inner leaflet 

and LPS in the outer leaflet103.

Several other complementary experimental approaches support the prediction of high 

stiffness of the OM. In a microfluidic device in which cells are placed in narrow channels to 

grow filamentously into a region subjected to tunable flow pressure, cells deflect under fixed 

hydrodynamic force104, and deflection was increased by treatment with EDTA (Figure 3B); 

fitting the data to a biophysical model of thin-shell bending enabled an estimate that Young’s 

modulus (Box 1) decreased ~3-fold40. AFM measurements of EDTA-treated cells, in which 

cells are subjected to local indentation in contrast to the longitudinal stretching induced by 

turgor pressure (Figure 3C), further supported the mechanical contribution of the OM40.

In addition to EDTA treatment, a number of factors can tune OM stiffness (Figure 3D). 

Underscoring the importance of LPS properties, deleting the LPS O-antigen from an E. 
coli gut isolate dramatically reduced OM stiffness, and the OM of V. cholerae O139 

was comparatively less stiff, consistent with a lack of LPS multivalency in this species40. 
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Deletion of several abundant OM proteins, including OmpA, Pal, and Lpp, also reduced 

stiffness40. Interestingly, as mentioned above, all three of these proteins have roles in linking 

the PG and OM32-35,38,88. In the case of Lpp, which is the only protein covalently linked 

to the PG, its deletion, disruption of its crosslinking to PG, or modification of its length 

reduced cell stiffness as measured by AFM95. It remains to be seen whether the role of 

these proteins in OM mechanics is direct, or a consequence of modified OM composition, 

particularly PL and LPS levels, which can be highly responsive to the deletion of OMPs54. 

Consistent with this idea, the mutant allele lptD4213, which suppresses transport of LPS 

to the OM, increases PL content at the expense of LPS105 and decreases OM stiffness40. 

However, the inner membrane protein YhdP, which modulates anterograde PL flow and 

affects biosynthesis of the enterobacterial common antigen106, decreases OM stiffness 

without affecting LPS levels107.

The physiological importance of OM stiffness

The structural importance of the cell wall is made clear by the deleterious effects of 

chemical inhibition of its biogenesis. Treatment with β-lactam antibiotics, which inhibit 

penicillin binding proteins involved in PG synthesis, leads to swelling (increase in cell 

width)108 or bulging99,109, and eventually cell lysis at high concentrations. Nonetheless, 

cells can be propagated in a wall-less state, as so-called “L-forms”45, which survive 

via mechanical stabilization by the OM41 (Figure 3E). As with spheroplast generation, 

successful L-form propagation relies on the addition of Mg2+ to the medium100, likely 

due to the importance of LPS cross-linking in the absence of the wall, and proliferation 

has been postulated to rely on membrane blebbing and tubulation47, implicating membrane 

composition as an important factor in mechanical stability. Mutants with a mechanically 

weakened OM have dramatically lower spheroplast yields40,107. In fact, during the process 

of spheroplast generation, lysis of lptD4213 cells occurred as the cytoplasm started to escape 

from the cell wall40, the time at which the OM would be required to take up the stress. 

Similarly, after degradation of the cell wall during phage infection, disruption of the OM 

was necessary to enable virus release110,111. Thus, it is likely that the burden of mechanical 

integrity falls on the OM when the cell wall is compromised or removed.

Nonetheless, during steady-state growth, the E. coli OM is synthesized in a state such that 

the area of the OM does not change after plasmolysis and cell wall digestion40. Thus, OM 

area in a turgid state is the same as in the absence of turgor, indicating that the OM does not 

bear stress in this state. However, in environments such as the gastrointestinal tract and soil, 

cells are constantly subject to fluctuating osmolality108,112,113, in which the OM is likely 

to be relied upon for stress-bearing upon perturbation to avoid excessive compression or 

extension of the cell wall and IM (Figure 3F).

Modification of LPS, for example through addition of amino-arabinose or 

phosphoethanolamine114, can provide protection against AMPs and antibiotics115,116; cells 

likely have to balance the cost of these modifications on mechanical stability with the need 

to protect from molecules that can kill them. Osmotic oscillations led to increased lysis and 

greater amplitude of length change in situations with a compromised OM40, indicating that 

OM stiffness may be critical for survival in fluctuating environments.
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In addition, bacterial membrane composition can be modulated by environmental cues such 

as culture conditions and temperature117-120, which will likely induce changes in physical 

properties121. For instance, the relative abundance of unsaturated or branched lipids in the 

IM can cause drastic changes in membrane viscosity122, and similar effects may occur in 

the OM123, given that the lipid A component of LPS can contain unsaturated and branched 

acyl chains under certain conditions124-127. Thus, it is likely that cells can tune the physical 

properties of the OM by adjusting its molecular composition, and thereby adapt to different 

growth stages, conditions, and environmental assaults.

Addressing knowledge gaps

From its structural and mechanical properties, it is clear that the OM can act as a versatile 

layer that provides both protection against chemicals and also resistance to turgor pressure 

and other mechanical loads. How general is a stiff OM across Gram-negative species, and 

across growth conditions? OM mechanical properties were similar across E. coli strains 

and in Pseudomonas aeruginosa as well as in minimal medium40, hinting at conservation 

across species and environments. Nonetheless, the decreased potential for crosslinking in 

V. cholerae was predictive of the comparatively low stiffness of its OM, suggesting that 

LPS may be the most informative signature of OM mechanics. Regardless, it will be 

important to understand the feedback mechanisms that regulate the fractions of LPS and 

OMPs in the OM, which may impact whether the OM behaves as a linear elastic material 

or one that shows strain stiffening like peptidoglycan39,103 (Box 1). It may be the case 

that cells can more easily tune the mechanical stiffness of the OM compared with that 

of the cell wall, since the OM harbors more components and is partially fluid. Certain 

environmental conditions, such as growth in a biofilm, may emphasize the importance 

of stiffness tunability. To pin down the structural role of the OM in other (particularly 

non-enteric) Gram-negative bacteria, key experiments such as determining the level of 

asymmetry, degree of PLs in the outer leaflet, and the chemical nature of the LPS will be 

highly informative.

How are OM mechanical properties related to other physical parameters, such as growth 

rate, cell shape, OM fluidity, and OM transport? For instance, in stationary phase, when 

cells are depleted of nutrients and as a result activate stress responses, the OM is more 

resistant to SDS than in log phase128 and it might be advantageous to construct a stiffer 

OM. Another possibility is a trade-off between the fluidity of the OM and its stiffness, based 

on the assumption that solid-like structures will be more rigid. One intriguing possibility 

is that perturbations known to disrupt physical properties such as fluidity also change OM 

mechanics; exploring such a potential coupling will be critical for determining the extent 

to which each property can be independently tuned. While cells with a less stiff OM are 

more sensitive to osmotic fluctuations, it remains to be determined what environmental 

mechanical forces have shaped the selective environment for OM properties. It is also 

possible that tradeoffs exists between the parallel functions of the OM as a load-bearing 

structure and a chemical barrier, in which modifications that enhance protection against 

AMPs or antibiotics114 may compromise OM stiffness.
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Many aspects of OM physical properties remain unknown. From the compositional 

perspective, a large mystery is how PLs are transported from the IM to the OM. A 

recent study showed that the inner membrane protein YhdP modulates the rate of a high-

flux diffusive anterograde PL flow pathway in E. coli107, but YhdP is non-essential so 

other mechanisms must also exist for PL transport. Although potentially an artifact of 

sample fixation for electron microscopy129, Bayer’s junctions are hypothesized connections 

between the IM and OM130 that, if they do exist, would allow for lipid transport via 

hemifusions. There may also be protein bridges for PLs like there are for LPS69,131-133. 

How are PLs linked to the physical properties of the OM? Although unproven, the natural 

hypothesis is that increasing PL concentration would make the OM less stiff based on 

the flexibility of PL vesicles, consistent with the finding that the FM4-64 OM-specific 

lipophilic stain disrupts OM stiffness40 (Figure 3D) as does lptD4213, which increases 

PL concentration by decreasing LPS concentration105. PLs may also be connected to the 

rheology/fluidity of the membrane, thereby affecting the localization of proteins within 

the OM. The cytoplasmic factors that dictate the pattern of OM protein insertion134 and 

localization have yet to be fully uncovered, but it is possible that the elongation machinery 

responsible for cell wall insertion also dictates OM insertion. Regardless of insertion, the 

relative lack of fluidity in the OM means that memory of the insertion pattern is maintained 

for long intervals.

From a mechanical perspective, a major knowledge gap is the magnitude of turgor pressure 

across organisms. There have not been any direct measurements of turgor in bacteria; in 

E. coli, the magnitude of turgor pressure was estimated indirectly from blebbing cells39. 

In the green algae Chara corallina, which are extremely large compared to a bacterium, 

turgor has been measured and controlled by piercing the cytoplasm with a needle135; there 

is some hope of a similar strategy being successful with bacteria using open AFM tips136. 

Without information about turgor, particularly regulation of turgor under conditions in which 

the cell wall is compromised, the distribution of stresses across the cell envelope is hard to 

discern. Moreover, it remains unclear whether turgor pressure is predominantly acting on 

the IM or the OM. One study provided evidence for the latter137, consistent with the idea 

that the IM would rupture at high turgor, although Gram-positive bacteria can maintain high 

turgor in the absence of an OM. Curiously, the cell wall can itself bear turgor after detergent 

treatment removes the membranes40; this ability may be due to the wall being clogged with 

cytoplasmic components, and hence behaving as a semipermeable membrane. The molecular 

mechanisms of OM construction itself (i.e., OMP and LPS insertion) are still not completely 

resolved, but will have to account for building this structure under mechanical pressure.

While the OM is specific to Gram-negative species, it remains possible (perhaps even 

likely) that elements beyond the PG provide mechanical/structural support in Gram-positive 

bacteria. One possibility is the teichoic acids, which are essential for shape determination 

in B. subtilis138 and may serve in a crosslinking capacity by binding divalent cations139. 

Consistent with this notion, sudden removal of Mg2+ from the extracellular medium caused 

B. subtilis cells to suddenly expand, suggesting that the cell envelope rapidly weakened140. 

Moreover, there are many other candidate structures that may contribute to cell mechanics. 

In response to cell-wall damage, E. coli cells produce a capsule that could be structurally 

important when the cell is mechanically compromised6,7. Similarly, gut commensals such 
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as Bacteroides species produce capsular polysaccharide layers in response to different 

environmental cues. These layers can be extremely thick (>1 μm)141, and hence have 

potential for altering the physical properties of cells. Other Gram-negative bacteria, such as 

Caulobacter crescentus, have highly ordered S-layers surrounding the OM142-144. In fact, it 

seems likely that many structural layers contribute mechanically (it is even possible that the 

IM also plays a mechanical role). If so, then it is likely that they all have similar stiffnesses 

as the OM and cell wall because otherwise the stiffest layer would dominate mechanical 

responses.

It remains unresolved whether the OM is truly essential. No mutants of Gram-negative 

species have been identified that completely lack the OM, although the composition can 

be changed quite dramatically (e.g., removal of LPS) and still support growth. Removing 

the OM would likely also remove many periplasmic proteins, which could have serious 

consequences. Does perturbing the OM impact survival in different environments, for 

instance the transition between rich and poor nutrients? Ultimately, it may be that the role of 

the OM becomes most clear during survival of cell wall-deficient states.

Future prospects

Future studies will benefit from the recent expansion in experimental methods to probe cell 

mechanics, including direct methods such as AFM and indirect methods such as the degree 

of growth in a gel of known stiffness145,146, neutron reflectometry147, and microfluidic 

perturbations104. In addition, manipulation methods such as optical traps that can be used 

to pull tethers from the OM could provide information on OM viscoelasticity, particularly 

whether such tethers retract. Helping to interpret such experiments will be an enhanced 

understanding of cellular and single-molecule properties, such as the mechanics and folding 

of β-barrels.

Recent discoveries that highlight the physical properties of the OM and its mechanical 

importance complement the rich history of genetic and biochemical investigation into 

this versatile and complex structure, stimulating reflection on the evolution of cellular 

membranes in general. Physical stress clearly shapes bacterial physiology in profound ways, 

and mechanical factors were likely strong selective forces early on in the evolution of single-

cell organisms. Thus, identifying the key determinants of OM physical properties and their 

association with other aspects of cellular physiology will provide a deeper understanding of 

microbial growth and fitness.
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Box 1:

Key concepts relevant to the mechanics of a bacterial cell

The envelope of a bacterium is constantly subjected to mechanical perturbations such 

as turgor pressure. Understanding the magnitudes of these forces and the deformations 

that they cause provides insights into physical factors that dictate cellular function and 

survival. For solid objects, the simplest relationship between forces and deformation 

is linear elasticity, wherein the ratio between stress (force per unit area, σ) and strain 

(fractional change in size, ε) is a constant. This ratio characterizes the material’s stiffness 

and is known as Young’s modulus (E), such that σ=Eε. A one-dimensional analog of 

Young’s modulus is the spring constant k in the well-known Hooke’s law F=kx (Box 

Figure A).

To account for the three-dimensional nature of the stress-bearing cell envelope and the 

enclosed cytoplasm, a bacterial cell can be modeled as a thin shell under internal fluid 

pressure. For E. coli, the shell is rod-shaped, with length L several times larger than 

the cross-sectional radius r, and both are at least an order of magnitude larger than the 

thickness of the envelope d. In this case, along the cylindrical portion the stresses in the 

axial and circumferential directions are approximately σz = pr
2d  and σθ = pr

d , respectively, 

where p is turgor pressure (Box Figure B). If we assume linear elasticity, the axial strain, 

which is the length extension ΔL relative to the rest length L0 when no forces are acting 

on the shell, is pr
2dE .

In addition to axial stress, rod-shaped objects can be subjected to other modes of 

deformation such as bending and indentation (Box Figure C). Bending of E. coli cells 

has been studied in microfluidic devices to reveal the coupling between the envelope 

strain and cell growth104. Indentation is typically studied via AFM using a nanoscale tip, 

through which Young’s modulus and other mechanical parameters of the cell surface can 

be inferred in combination with mechanical modeling39.

Although linear elasticity serves as a reasonable approximation for static loads and small 

strains, the true mechanical nature of cellular components can be more complicated 

and largely remains an open question. Generally, materials deviate from linear elasticity 

as the size of the deformation increases. Molecular dynamics simulations103 and AFM 

measurements39 have suggested that the cell wall stiffens under high tension, whereas the 

OM becomes softer103. Moreover, due to the fluid contents of the cytoplasm and specific 

aspects of membrane rheology, cells can exhibit viscoelasticity in which the strain is 

time-dependent148. As a result, much work remains to fully elucidate the mechanical 

properties of the bacterial cell envelope.
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Box Figure: The mechanics of cylindrical thin shells.
A) For a one-dimensional spring with spring constant k, the force required to extend the 

spring by an amount ΔL is F = kΔL. For a three-dimensional material, Young’s modulus 

E is the analog of the spring constant, and is the ratio of the stress σ to the fractional 

extension ε.

B) The cell envelope of a rod-shaped bacterial cell with cross-sectional radius r can 

be modeled as a thin shell of thickness d (which is much smaller than r) under turgor 

pressure p. Along the cylindrical portion the stresses in the axial and circumferential 

directions are approximately σz = pr
2d  and σθ = pr

d .
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C) Bending in a microfluidic chamber (Figure 3B) and AFM indentation (Figure 3C) 

explore other modes of deformation such as bending and indentation, respectively.
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Figure 1: The Gram-negative outer membrane has a diverse makeup and a wide variety of 
physical and mechanical properties.
A) The cytoplasm of all bacterial cells is surrounded by an inner membrane (IM) composed 

of phospholipids and inner membrane proteins (IMPs), which is enclosed by the cell wall 

(CW), a macromolecular network of peptidoglycan (PG) that single-layered in E. coli29. 

In Gram-negative bacteria, the cell wall resides in the periplasm, a ~15-nm thick aqueous 

compartment enclosed by the inner and outer membranes. The outer membrane (OM) is 

asymmetric, composed of phospholipids in the inner leaflet and lipopolysaccharides (LPS), 

along with outer membrane proteins (OMPs) such as porins and lipoproteins such as Lpp, 

which links the OM and PG.

Sun et al. Page 22

Nat Rev Microbiol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B) The OM (red) can exhibit variable composition, spatial heterogeneity, solid- or fluid-

like rheology (diffusive dynamics), and the ability to bear mechanical stresses of similar 

magnitude to the cell wall (green). As a result, the chemical, physical, and mechanical 

properties of the OM can have broad impacts on bacterial physiology.
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Figure 2: Outer membrane rheology and spatial organization are highly distinct from that of the 
PG or IM.
A) While the PG behaves as a relatively immobile solid due to its highly crosslinked nature, 

and the IM behaves as a liquid with rapid diffusion of lipids, the OM exhibits limited 

diffusivity. LPS molecules (purple) and OMPs (red) appear largely immobile, although there 

is some evidence of diffusive motion in the OM79. Green circles represent proteins with 

relatively high diffusivity.

B) At the nanoscale, LPS molecules and OMPs exist in small clusters. At the cellular scale, 

the density of fluorescently labeled OMPs along the cylindrical portion of the cell is diluted 

by growth, while the density at the poles remains high.
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C) At the mesoscale, islands (represented by irregular shapes) including proteins such as 

the BAM complex expand and spread apart due to insertion of new materials along the 

cylindrical portion of the cell. After division, clusters at the old pole remain in one daughter 

cell, while clusters at the new pole have been trapped there by cytokinesis.
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Figure 3: Probing the magnitude and impact of OM stiffness.
A) In a microfluidic flow cell, exponentially growing E. coli cells are under mechanical 

stress due to turgor pressure, which is born predominantly by the PG rather than the OM. 

Cells shrink suddenly when exposed to a hyperosmotic shock due to water efflux, decreasing 

the overall stress on the cell envelope. In this shrunken state, the cell wall remains partially 

extended as the OM experiences compression. Removal of the OM by detergent or EDTA 

treatment allows the cell wall to fully relax to its rest length.

B) Growth of E. coli cells initially embedded within a narrow channel leads to exposure of 

part of the cell body to fluid flow, whose hydrodynamic force can be tuned. EDTA-treated 
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cells deflect more than untreated cells for a given flow strength40, highlighting the strength 

of the OM.

C) AFM measurements directly confirm the loss of cell stiffness by EDTA treatment. 

EDTA-treated cells indented more than untreated cells for the same amount of applied force; 

several outer membrane mutants also exhibited more indentation40.

D) In addition to EDTA treatment, OM stiffness can be compromised by deletion of various 

OM proteins, intercalation of the OM-specific dye FM4-64, or LPS modification such as 

deletion of the O-antigen.

E) E. coli cells adopt a wall-less L-form or wall-deficient spheroplast state when exposed 

to phage or cell wall-targeting antibiotics, in which the OM bears stress to avoid envelope 

rupture.

F) Cells with compromised OM stiffness are more susceptible to death during osmotic-shock 

oscillations.
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