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Abstract

Introduction: Mesenchymal stromal cells (MSCs; AKA mesenchymal stem cells) stimulate 

healing and reduce inflammation. Promising therapeutic responses are seen in many late-phase 

clinical trials, but others have not satisfied their primary endpoints, making translation of MSCs 

into clinical practice difficult. These inconsistencies may be related to the route of MSC delivery, 

lack of product optimization, or varying background therapies received in clinical trials over time.

Areas covered: Here we discuss the different routes of MSC delivery, highlighting the proposed 

mechanism(s) of therapeutic action as well as potential safety concerns. PubMed search criteria 

used: MSC plus: local administration; routes of administration; delivery methods; mechanism of 

action; therapy in different diseases.

Expert Opinion: Direct injection of MSCs using a controlled local delivery approach appears 

to have benefits in certain disease states, but further studies are required to make definitive 

conclusions regarding the superiority of one delivery method over another.
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1. Introduction

MSCs are multipotent stromal/stem cells widely distributed in the body. They are a 

heterogeneous population that was first discovered in the bone marrow (BM-MSCs)1, but 

later, they were obtained from various adult tissues, such as adipose tissues (AD-MSCs)2, 

placenta (p-MSCs)3, dental pulp (DP-MSCs)4 and umbilical cord (Wharton’s Jelly-MSC) 

or amniotic fluid5. They are characterized by their ability to differentiate into three distinct 

lineages: osteoblasts, chondrocytes, and adipocytes; their expression of a specific set of 

cluster of differentiation (CD) markers: e.g., CD73, CD105, and CD90; the absence of other 
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such markers, e.g., CD34, and their ability to adhere to plastic and form colony-forming 

unit fibroblasts (CFU-Fs) when maintained under standard culture conditions6. Attachment 

to plastic is an important characteristic of MSCs and facilitates their isolation. MSCs are 

not a homogenous population and the tissue source, such as adipose tissue, bone marrow 

or umbilical cord, introduces (subtle) differences in gene expression7 which may predispose 

these cells to having tissue specific therapeutic properties7. Additional factors that affect 

therapeutic potency include donor-related variation such as the health status (morbidities), 

genetics, sex, and age8, cell population, and timing of MSC administration. Furthermore, 

the route of delivery appears to affect therapeutic efficacy, particularly with respect to heart 

disease9. Therefore, as treatment with MSCs becomes more widely studied and potentially 

clinically available, the route of administration and the mechanism of action must be 

considered and optimized.

2. Routes of administration

The choice of delivery route appears to be one of the most critical factors influencing 

the distribution, retention, survival, and efficacy of cell therapy. A gold standard has not 

been established and further study is needed. For current cell therapies, routes include 

local administration directly into tissues and organs, and systemic delivery via intra-arterial, 

intravenous (IV), and intraperitoneal (IP) injection, although there is very limited data 

regarding this last route. These methods can be roughly classified into two groups: systemic 

delivery and local delivery (Figure 1, illustrates the systemic and local routes of MSC 

administration into the heart).

Systemic delivery is a well-documented10 and minimally invasive approach. Upon 

intravenous delivery, cells travel through the systemic circulation reaching target sites 

(e.g., infarcted myocardium, inflamed joint), where they receive local signals from injured, 

inflamed tissue11, or cancerous tissues. This ‘homing capacity’, suggests that MSCs could 

serve as a cellular drug delivery system for multiple applications12. Luger and colleagues13 

demonstrated that despite low myocardial engraftment, IV-administered MSCs improved 

cardiac function in both acute myocardial infarction and ischemic cardiomyopathy, 

outcomes modulated in part by systemic anti-inflammatory effects. Another advantage of 

IV administration is that cells are delivered into a nutrient- and oxygen-rich environment and 

following extravasation, MSCs remain in close proximity to the vasculature14. Despite the 

benefits and feasibility of systemic IV delivery, such as donor cell accumulation at the site 

of damage, there is a potential for cells to be trapped within the liver, lungs, and/or spleen15. 

The adherent nature of MSCs favors formation of a cell mass when injected via the tail vein 

in pre-clinical studies16, which could explain why cells applied intravenously have a higher 

risk of capture within capillary-like lung tissue17. Cells with diameters up to 20–50 μm, 

remain within the systemic vasculature, where there is a risk producing vascular occlusion18, 

particularly considering that systemic administration often requires that the cells be diluted, 

and multiple cell infusions performed. IV administration of 0.5×106 cells/kg body weight 

was sufficient to cause a myocardial infarction (MI) in mice, even in a previously healthy 

vasculature19, an important consideration since patients with end-stage HF may require a 

higher dose of cells and longer repair time, which may further induce a severe systemic 
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immune response20. Therefore, IV administration is a better suited approach for early-stage 

heart injury20.

Intra-arterial (IA) delivery may prove the most efficacious method in some treatment 

indications. IA delivery of MSCs allows for infusion of cells within the local vascular 

system of the target organ resulting in more cells reaching the target tissue without the 

physical risks of direct implantation and the pitfalls of IV administration, in particular the 

trapping of cells within the lung microvasculature21. However, IA delivery of MSCs into the 

cerebral microvasculature as a treatment for stroke, may prove harmful, since it entails the 

potential risk of cerebral infarcts, caused by emboli of cells22 (reviewed in23). Factors such 

as vascular access, cell size, cell dosage and delivery speed must be considered, especially 

when delivering cells into coronary or cerebral arteries24, 25. IA cell delivery has also been 

utilized in other pathologies including, but not limited to, intra-carotid delivery in stroke, 

intra-renal delivery for renovascular disease, and intra-hepatic delivery for cirrhosis26, 27.

There are beneficial effects for intraperitoneal (IP) injection of MSCs, although the 

fate, benefits and limitations of this method have not been well investigated28, 29. IP 

injection produces a slower rate of cell migration from the peritoneal cavity, which could 

avoid the potentially lethal rapid embolization of the lung vasculature30, allowing for the 

administration of more cells. IP injected MSC have comparable or even more profound 

effects in preclinical models of multiple diseases31 compared to IV administration. The 

beneficial effects of MSCs in these and other disease models are linked to their ability 

to modify both the innate and acquired immune systems. Bazhanov et al. 2016 showed 

that IP injected hMSCs rapidly formed aggregates with mouse macrophages and B220+ 

lymphocytes and these aggregates attach to the mesentery, omentum, and other sites in 

the peritoneal cavity. In contrast, only small numbers of cells migrate into the systemic 

circulation28 from where they can engraft into multiple distal organs.

Local administration of MSCs into target tissues or into the vicinity of the injury site has 

important advantages, including rapid and localized reaction32. Cells can be administered 

into a precise, targeted location, increasing the chance of engraftment (associated with tissue 

regeneration)33 and prolonging their therapeutic potential (direct paracrine support)34. Local 

injection to the injury site in conjunction with biomaterials/scaffolds may decrease the risk 

of lung or cardiac infarction17. Cells migrating from a scaffold tend to migrate individually, 

making them less likely to aggregate in the lung17. However, local administration also 

involves risks, such as cells inducing apoptosis when administered at high density35. 

A “washout” effect is highlighted in many local cell delivery routes, in particular, 

intramyocardial injection11, 36. During invasive surgery, needles or catheters can cause 

mechanical damage to cardiac tissue, opening blood vessels and leaving needle tracks in 

the myocardium creating a space through which cells in suspension can travel11. Additional 

properties for local administration are discussed in detail below.

3. Mechanisms of action after local delivery

Due to the significant clinical relevance of the application of MSCs for treating tissue 

damage, there is an urgent need to better characterize the mechanism of action of MSCs 
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after local injection. Several possible mechanisms by which MSCs exert their beneficial 

effects have been proposed. Despite early evidence of direct differentiation of MSCs and 

cell replacement, recent studies strongly suggest that their most significant mechanisms of 

action can be attributed to their ability to, secrete paracrine factors37 including extracellular 

vesicles (EVs)38 and cytokines39, transfer mitochondria to nearby cells40 (Figure 2), 

migrate41 and modify the immune response (immunomodulation)42.

3.1. Paracrine factors

MSCs release a plethora of biologically active factors (e.g., cytokines, chemokines, 

hormones, growth factors, and miRNAs), which have profound effects on local cellular 

dynamics. This multitude of paracrine factors forms part of a complex network that serves 

to protect injured tissue and encourage endogenous repair/regenerative mechanisms37 and 

immune-mediated phagocytosis43, which can lead to long-term beneficial effects.

The secretome is the repertoire of factors secreted by MSCs and can impact the activities of 

other cells in the local microenvironment. Up to 80% of the therapeutic effect of adult MSCs 

may occur through such paracrine-mediated actions, and proteins secreted by MSCs have 

been documented to be antimicrobial, antifibrotic, and pro-regenerative, exerting effects on 

processes such as angiogenesis, proliferation, differentiation, immune modulation, wound 

healing, bone regeneration, and kidney and cardiac repair44. While MSCs from different 

sources share a substantial degree of similarity, there are variations in marker expression 

profile and secretomes45. In vitro, AT-MSCs secrete higher amounts of angiogenic and 

anti-apoptotic growth factors, such as hepatocyte growth factor (HGF) and VEGF, as well 

as IL-6, whereas BM-MSCs secrete higher amounts of the cell migration-related chemokine, 

stromal cell-derived factor (SDF)-1α46. Wharton’s jelly-MSCs secrete higher levels of 

immune-signaling molecules and neurotrophic factors, such as brain-derived neurotrophic 

factor (BDNF), compared to BM-MSCs, suggesting a greater beneficial role for Wharton 

jelly-MSCs in neurodegenerative diseases47.

These secreted, biologically active molecules, including nucleic acids, proteins and lipids, 

are (primarily) transported to their targets within MSC-derived EVs (≤1000 nm in diameter) 

and exosomes (EVs ≤200 nm in diameter), and can retain the biological activity of the 

parental MSCs, producing similar therapeutic effects across different animals models48. The 

exchange of EVs, macromolecular complexes and exosomes with target cells49 releases a 

wide range of functional proteins, mRNAs, and microRNAs (miRNAs) capable of protecting 

the target tissue from ischemic injury by promoting neovascularization, cell proliferation 

and preventing apoptosis50. Moreover, EVs can mediate the transfer of mitochondrial 

and non-mitochondrial cargos, contributing to improved intracellular energetics51. Ongoing 

studies are examining the efficacy of MSC-derived exosomes and EVs as novel “cell-free” 

approaches to recapitulate MSC activity without the need to administer cells, an approach 

that obviates the unique challenges and considerations associated with cell administration52. 

One of the potential offshoots of research in cell-based therapy is the development of 

drug-free or surgical-free options recapitulating the secretome; this is under development 

in many indications, including chronic pain and severe injuries53. Gupta et al. described 

a cell-free stem cell-derived extract (CCM) formulation containing GFs, CKs, and EVs, 
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including a high density of exosomes54, that appears effective for enhancing the rate of cell 

proliferation and inducing stem cell migration54.

Local, rather than systemic, transplantation of MSCs is associated with greater paracrine 

potency in the production of trophic factors55. These paracrine signals are generally 

transmitted over only short distances, thereby producing local effects56 and the crosstalk 

between the local microenvironment of injured host tissues and MSCs activates MSC 

production of cytoprotective paracrine factors. Therefore, the proximity of donor cells to 

the injury site is essential for paracrine-protective effects57. However, MSCs can also elicit 

responses at a distance using a paracrine mechanism.

In preclinical and clinical trials, local injection of MSCs into the border zone of the heart 

(between infarcted and viable cardiac tissue) results in a powerful anti-fibrotic effect, 

reduces tissue injury, and augments viable and perfused tissue49, 58. The improvement in 

contractile cardiac muscle results predominantly from enhanced endogenous regenerative 

mechanisms. Since relatively few MSCs engraft at the site of injury relative to the 

degree of functional recovery, a paracrine mechanism appears to be the primary driver 

of this therapeutic effect. Additionally, endogenous precursor cells and myocyte mitosis 

is upregulated following MSC treatment59. Cell therapy may activate endogenous cardiac 

repair mechanisms by inactivation of both the retinoblastoma and CDKN2a pathways60.

Mechanistically, MSC-derived EVs are enriched for transcriptionally active-signal 

transducer and activator of transcription (STAT) 3, which, among other effects, controls, 

angiogenesis by regulating VEGF expression61. Moreover, proangiogenic factors from 

BM-MSC-derived EVs that induce endothelial cell migration through extracellular signal-

regulated kinase (ERK)/Akt signaling revealed the presence of high levels of extracellular 

matrix metalloproteinase inducer (EMMPRIN), an important factor for endothelial 

activation, in these vesicles62. Single cell analysis of infarcted hearts63 profiled the 

expression of twenty-one paracrine factors produced by locally transplanted MSCs, provides 

in vivo evidence that MSCs exert a paracrine effect on surrounding cardiomyocytes to help 

improve cardiac function after infarction. Additional favorable outcomes including enhanced 

engraftment and capillary density and reduced fibrosis were observed in infarcted rats 

following local injection of cardiac stem cells pre-treated with MSC-derived exosomes50. 

Intramyocardial injection of 1.0 × 108 M-EVs can improve cardiac function in infarcted 

mice51. A recent study showed that mitochondria-rich extracellular vesicles (M-EVs) 

collected from induced pluripotent stem cell-derived cardiomyocyte (iCM)-conditioned 

medium following intramyocardial injection can restore intracellular bioenergetics and 

contractile properties51.

3.2. Cell-to-cell contact

MSCs are distinct from other cell therapies because of their cell-to-cell interactions, 

therapeutic effects, and a so-called “hit-and-run” mechanism. Cell-to-cell contact or 

heterocellular coupling64, occurs through the formation of gap junctions or tunneling 

nanotubes with adjacent or nearby cells, respectively. Gap junctions are comprised of 

six connexin molecules and form a channel between adjacent cells through which small 

molecules, ≤1 kDa, can travel. Tunneling nanotubes allow the transfer of larger molecules 

Bagno et al. Page 5

Expert Opin Biol Ther. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and even cell organelles, such as mitochondria between nearby cells65 (Figure 3). Both 

forms of communication require that the MSCs be in close proximity to the target cell 

and allows for the transfer of small molecules, e.g., microRNA (miRNA), peptides and 

organelles, such as mitochondria, from MSCs to host cells. Accumulating data implicates 

mitochondrial donation from MSCs as another critical component of their therapeutic 

efficacy. The local microenvironment of an injured cell releases physiological cues that 

trigger transfer of mitochondria66. The regulation of mitochondrial transport from MSCs 

to other cells has been attributed to MSC intrinsic expression of MIRO1, a mitochondrial 

Rho GTPase167. Moreover, the efficiency of this transfer is enhanced by the formation 

of tunneling nanotubes (TNTs) via activation of the TNF-α/NF-κB-signaling pathway. 

iPSC-MSCs have high intrinsic MIRO1 and are highly responsive to the pro-inflammatory 

cytokine TNF-α, boosting mitochondrial transfer potency compared to BM-MSCs68. In an 

in vivo model of myocardial infarction, mitochondria released from local damaged cells 

activate anti-apoptotic signals in MSCs69. There is bidirectional mitochondrial transfer 

between MSCs and endogenous cells40. Mitochondria from other cells can be engulfed 

and degraded within MSCs, leading to induction of cytoprotective enzyme HO-1, and 

stimulation of mitochondrial biogenesis. This activity triggers enhanced mitochondrial 

donation from MSCs69. Additionally, in an ex vivo model of ischemic heart disease, BM-

MSCs rescued damaged cardiomyocytes through TNT-mediated mitochondrial transfer70. 

Mitochondrial membrane potential and function were elevated in the cardiomyocytes and 

apoptosis was reduced70.

3.3. Immunomodulation

MSCs possess broad immunomodulation capabilities and are capable of influencing both 

adaptive and innate immune responses71. Current evidence suggests that MSCs exert 

variable immunomodulatory effects on the same types of immune cell depending upon 

the local microenvironment or disease status72. MSCs are extensively described as immune-

privileged cells because of their lack of cell-surface histocompatibility complex (HLA) 

class II molecules and the presence of T-cell costimulatory molecules73. This property 

allows MSCs to evade immune detection and enables their use as an allogeneic therapy 

without concurrent immunosuppression74, 75. Additionally, MSCs, via their paracrine 

effects and release of EVs, interact with and inhibit the local and systemic immune 

system76. Modulation of the immune system occurs even while MSCs are engulfed by 

antigen-presenting cells (APCs)76. The subsequent interaction can result in a chain of anti-

inflammatory activities and downstream beneficial therapeutic outcomes. The recognition 

and removal of MSCs by the host immune system is likely the greatest limitation on the 

duration and efficacy of many MSC-mediated therapeutic effects76.

Following the local administration of MSCs in a murine myocardial infarction model, the 

expression of TNF-α, IL-1 and IL-6 and the apoptosis of myocardial cells is significantly 

reduced, leading to significant improvement of cardiac function77. In a rat model of MI, 

MSCs reduced the level of CD68-positive inflammatory cells and monocyte chemotactic 

protein-1 (MCP-1) in the myocardium, thereby improving cardiac function78. TSG-6, 

a key anti-inflammatory protein secreted by MSCs, has been proposed as a surrogate 

biomarker predicting the therapeutic efficacy of and anti-inflammatory mediators secreted 
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by MSCs79. Hamidian and co-workers demonstrated that IM delivery increases MSC 

dwell-time, resulting in sustained modulation of the inflammatory milieu. TSG-6 was 

released at the site of MSC delivery, while neutrophil infiltration was abrogated, and 

inflammation reduced at the contralateral site80. Nitric oxide (NO) is another factor that 

inhibits T-cell proliferation and NO produced by MSCs is implicated in contributing to 

T-cell suppression81. Downregulating the production of suppressor of cytokine signaling 

(SOCS) 1 in MSCs increased NO production and enhanced the immunosuppressive capacity 

of MSCs81. Chen et al. demonstrated that over-expression of eNOS/NOS3 by MSCs injected 

into the myocardium of rats with MI, enhances cardiac repair82. Additionally, iNOS activity 

is required for the anti-fibrotic therapeutic properties of MSC83.

Allogeneic MSCs appear safe and effective for the treatment of heart disease84, and their 

potent immunomodulatory properties have led to their widespread testing in immunologic 

disorders ranging from multiple sclerosis to aging frailty85, 86. However, the severity of 

the inflammatory environment determines the immunoregulatory effect of MSCs. It appears 

that the inflammatory microenvironment associated with acute MI inhibits the ability of 

MSCs to promote repair of the injured myocardium87. Severe inflammation causes MSCs 

to suppress the immune response, whereas weak inflammation leads to enhancement of the 

immune reaction. MSC1 and MSC2 designate the pro-inflammatory and anti-inflammatory 

phenotypes of MSCs, respectively88. In the absence of pro-inflammatory cytokines, 

the activation of TLR4 can promote differentiation of MSCs into a MSC1 phenotype. 

Conversely, differentiation into the MSC2 phenotype can be induced by the delivery of 

anti-inflammatory signals to MSCs through TLR388. A randomized, double-blind clinical 

trial evaluating the efficacy of human umbilical cord-derived mesenchymal stem cells (hUC-

MSCs) for the treatment of lupus nephritis (LN) was abandoned after hUC-MSCs produced 

no additional beneficial effects over and above standard immunosuppression89. However, 

this failure appears to be disease-specific, since the hUC-MSC immunosuppressive effect 

has been clearly demonstrated in other inflammatory immune-mediated diseases90.

Zha et al.91 utilized CRISPR/Cas9 to target the MHC class I molecule, β2 microglobulin 

(B2M), to generate “less immunogenic” iPSC-derived MSC (iPSC-MSC) lines for allogenic 

transplantation. B2M-knockout (KO) iPSC-MSCs escape immune response-mediated killing 

by peripheral blood-derived monocytes (PBMCs) more efficiently than control cells. The 

loss of B2M did not alter the innate immunosuppressive feature of MSCs. Overexpressing 

IL-10- in MSCs using the dCas9-activation mediator system, suppressed immune cell 

accumulation and pro-inflammatory response in a diabetes-associated myocardial infarction 

model92.

3.4. Migration (Homing)

“Homing” is the ability of MSCs to respond to the sustained delivery of trophic signals and 

selectively traffic toward the site of injury. Site-specific homing requires either recruitment 

of local MSCs or transplantation of exogenous cells in close proximity to the target area. 

Directed migration follows activation and polarization of MSCs, during which a front pole 

is formed that guides interstitial locomotion by sensing a chemokine gradient released by 

injured or inflamed tissue. Migration is terminated after reaching the target site93. Once 
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MSCs have homed, specific receptors or ligands expressed by the damaged tissues facilitate 

MSC trafficking adhesion and infiltration. The mechanisms used by MSCs to migrate and 

home to tissues have not been fully elucidated. It is generally assumed that circulating 

MSCs initially contact endothelium by tethering and rolling, resulting in a deceleration 

of the cells, activation of G-protein-coupled receptors, followed by integrin-mediated 

activation-dependent arrest. The cells must then transmigrate through the endothelium and 

the underlying basement membrane and through the interstitium to the site of injury. This 

latter step is guided by chemotactic signals released in response to tissue damage15, 41.

3.5. Improving local administration of MSCs

Multiple factors can contribute to poor retention following local administration, including 

the hostile environment that MSCs encounter at the disease site, causing cell death and poor 

engraftment into the tissue94. Priming of MSCs in vitro is a simple approach to improving 

retention and therapeutic efficacy following local administration. For example, hypoxic 

priming up-regulates expression of prosurvival factors such as Hif-1, which can contribute 

to MSC adaptation to the typically hypoxic disease site. Consequently, hypoxia-primed 

MSCs exhibit ~40% less cell death on day 3 after intramyocardial injection compared 

with non-primed MSCs in a rat model of MI, resulting in improved vascularization in the 

infarcted myocardium and greater therapeutic efficacy95. However, the effect of priming 

may not be preserved upon cryopreservation/thawing.

Using biomaterials to encapsulate MSCs is another promising strategy to overcome the 

challenges associated with local administration. Hydrogel is one of the most common 

biomaterials used to encapsulate MSCs and enhance their survival for several weeks 

following administration, but the bulk size of hydrogel is only suitable for local not 

systemic administration. For example, in a separate rat MI model, immunohistology 

studies showed that MSC survival was sustained for up to 16 days following delivery of 

HGF-overexpressing MSCs within a synthetic peptide-based hydrogel compared to native 

MSCs, which did not survive past day 2. This engineered MSC therapy demonstrated 

superior reduction in scar formation, accelerated angiogenesis and increased ventricular wall 

thickness compared with native MSCs96. Microgels are another bioengineering solution 

to enhance the residence time and survival of MSCs. However, the microgel may form a 

physical barrier that masks receptors on MSCs important for homing to disease sites, a 

problem that may be addressed by using additional homing ligands within the microgel97. 

Another innovative biomaterial is the cardiac patch98, which increases cell retention and 

improves cardiac function. Cardiac patches have also been used for dual stem cell therapy to 

treat MI98.

As described above, CRISPR/Cas9-mediated gene knockdown in MSCs has proved effective 

in treating diseases such as myocardial infarction99. The converse, targeted gene knock-

in, where a gene is inserted into the genome via homologous recombination, resulting 

in overexpression of the protein, can also be beneficial. Tilokee et al. demonstrated 

that paracrine engineering of human cardiac stem cells to overexpress SDF-1α enhances 

recruitment of endogenous stem cells, promotes myocyte/vessel formation, and salvages 

reversibly damaged myocardium to enhance cardiac repair in a mouse model of MI100. 
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These and other cell pre-conditioning and genetic modifications are promising options for 

augmenting MSC- and other stem cell-based therapies101 and represent viable approaches 

for improving treatment for a wide variety of diseases.

3.6. Safety and tumorgenicity

While MSCs exert positive outcomes in numerous diseases, there are a few concerns 

regarding their tumorigenic potential that must be addressed. The possibility of tumorigenic 

transformations in MSCs is minimal compared to other stem cell sources such as 

pluripotent stem cells (iPSCs and embryonic stem cells), and while spontaneous malignant 

transformations of human MSCs, and the injection of these transformed cells has led 

to the development of tumors in mice102. MSCs can also home to tumor sites and 

contribute to tumor growth and progression because of their immunosuppressive properties. 

In a preclinical model of breast cancer, MSCs injected directly into a site containing a 

pre-existing tumor can promote metastasis, possibly through the induction of epithelial-to-

mesenchymal transition (EMT) of the primary tumor cells103. Clinically, there are no reports 

of tumors in patients originating from administered MSCs, demonstrating that following 

current Good Manufacturing Practices (GMP) by closely monitoring and minimizing the 

time in culture needed for in vitro expansion and karyotyping cells to detect cytogenic 

aberrations before the cells are released, is crucial for eliminating any malignant potential of 

MSCs104.

The utilization of MSCs as delivery vehicles for different types of anticancer therapy has 

been an emerging concept pursued by several research groups105, 106. Briefly, the “suicide 

gene” strategy foresees the insertion of a gene that enables selective targeting of the 

transfected cells by the subsequent administration of an otherwise nontoxic drug. When 

this drug is administered after MSCs home to a tumor, the conversion/uptake of the then 

toxic drug, kills not only MSCs but also the surrounding tumor and stromal cells107. These 

suicide genes can encode either an enzyme by Gene-directed enzyme-producing therapy 

(GDEPT) or the sodium/iodide symporter, NIS. The next challenge is to understand better 

the interactions between MSCs and cancer cells in order to improve the clinical safety of 

these MSC-based therapeutic approaches.

4. Efficacy and safety of the local administration of MSCs for specific 

diseases

As of 2018, the delivery of MSCs in registered clinical trials was split nearly evenly 

between systemic and local delivery, with the majority of late-phase clinical trials using 

local delivery108, e.g., via intrathecal, intralesional and endocardial routes, for the treatment 

of back pain, perianal fistulas and chronic heart failure, respectively97. The direct in-situ 
administration of MSCs represents a more controlled delivery approach to directly access 

the local injury, generally resulting in better therapeutic responses9. For example, a meta-

analysis of preclinical MSC studies in ischemic stroke models showed that administering 

MSCs to the damaged site is more effective at improving the neurological severity score 

than intra-arterial or intravascular MSC injections109, although direct injection, intra-arterial 

and intra-venous, consistently also demonstrated significant improvement in outcomes109.
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4.1. Cardiovascular efficacy

Local injection of MSCs into the cardiovascular system produces positive outcomes. In 

general, intracoronary and intramyocardial (epicardial and transendocardial) injections are 

the two most widely used methods of delivery of cellular therapies in cardiovascular 

disease110. Intracoronary injections deliver cells into one of the major coronary arteries (left 

anterior descending, left circumflex, or right coronary arteries). This administration route is 

less invasive than intramyocardial injection, which typically involves surgical intervention 

or endocardial access, and some studies have reported intracoronary and intramyocardial 

injections to be equally effective110. A meta-analysis of both preclinical and clinical studies 

of MSC therapy in acute myocardial infarction concluded that transendocardial stem cell 

injection (TESI) exhibits the greatest infarct size reduction and left ventricle ejection 

fraction (LVEF) increase. In contrast, intracoronary delivery demonstrated no improvement9.

In the heart, TESI seems to be the favored method for the local administration of MSCs 

with a minimally invasive, catheter-based route of delivery, where cells are injected directly 

into the myocardium through the endocardium9. Swine studies using TESI as the delivery 

route revealed both a reduction in infarct scar and improvement of LVEF111, 112. TESI 

also improved LVEF in acute myocardial infarction (AMI) clinical trials113. Nevertheless, 

there are still clinical challenges associated with local administration that impede therapeutic 

efficacy, mostly due to insufficient retention and survival of transplanted MSCs at the 

administration site.

4.2. Neurologic efficacy

MSCs have attracted much attention for their potential to treat neurologic disorders114. In 

the context of neuronal damage, a local injection of MSCs to the lesion site in a rat stroke 

model improved coordinated function, inhibited scar tissue formation and cell apoptosis, and 

stimulated angiogenesis114.

Neurorestorative and neuroprotective effects as a tissue repair property of MSCs, are 

characterized primarily by two mechanisms of action: (1) neurogenic differentiation 

and cell replacement, and (2) secretion of neurotrophic factors. MSCs can significantly 

alleviate ischemic injury, and the rescue arises from the differentiation of transplanted 

cells into neurons and astrocytes115. In contrast, the paracrine effects of MSCs on nerve 

regeneration occurs via the secretion of neurotrophic factors116. The inoculation of cortical 

neurons with (exogenous) MSC-derived exosomes boosts their growth-promoting and target 

activation effects117, while MSC-conditioned medium enhances Schwann cell viability and 

proliferation via increases in nerve growth factor (NGF) and brain-derived neurotrophic 

factor (BDNF) expression116.

In Alzheimer’s disease, MSC-derived exosomes play a potential role in promoting neurite 

outgrowth, suggesting the possibility of their clinical use118. Recent findings indicate that 

hMSC-derived EVs protect hippocampal neurons via blocking oxidative stress and synapse 

damage following exposure to amyloid-beta oligomers (AβOs)119. The neuroprotection 

mechanism of MSC-derived EVs is related to their cargo. Those carrying antioxidant 

enzymes, such as catalase120, can be neuroprotective. Exosomes derived from hypoxia-
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preconditioned MSCs significantly enhance expression of the synaptic proteins Synapsin 

1 and PSD95121, proteins that help to maintain normal synaptic function. Moreover, MSC-

derived exosomes can also transfer miRs that promote the recovery of neural function, such 

as miR-133b, into astrocytes and neurons122.

4.3. Orthopedic efficacy

In recent years, local intra-articular injection of MSCs promotes the regeneration and repair 

of cartilage tissue and alleviates the degeneration caused by osteoarthritis (OA). Zhou 

et al.123 found that local intra-articular injection of adipose-derived MSCs (AD-MSCs) 

effectively alleviate OA in rat models by reducing the secretion of pro-inflammatory 

cytokines through induction of autophagy. Toghraie et al.124 reported that a single dose of 

1 × 106/mL AD-MSCs injected into the joint cavity in a OA rabbit model significantly 

repaired and improved cartilage tissue 8 weeks post-OA. A phase I/II trial indicated 

that BM-MSCs injected into the knee of patients with OA was associated with cartilage 

biomarker expression, reduced synovial inflammation, pain and symptom mitigation, 

without any serious adverse events125. Another proof-of-concept phase I/II clinical trial 

showed that intra-articular injection of 1.0 × 108 AD-MSCs into OA knees improved 

function and reduced pain in the knee joint and reduced cartilage defects by regeneration of 

hyaline-like articular cartilage without causing adverse events126.

The local injection of BM- or AD-MSCs significantly improved bone healing. Despite 

differences in molecular cues between BM- and AD-MSCs, both cell types induced 

comparable amounts and properties of bone formation127. Bone marrow aspirates directly 

injected into the fracture site successfully repaired 53 of 60 unconsolidated fractures, and 

the local injection of osteoblasts also accelerated bone repair in long bone fractures128. A 

single local administration of MSCs in a rat distraction osteogenesis model accelerated early 

bone consolidation coincident with the serum level SDF-1 and the ratio of circulating MSCs 

reaching the highest level at the lengthening phase129.

MSCs may also stimulate cartilage regeneration by their interaction with synovial 

macrophages, leading to a reduction in proinflammatory cytokines such as IL1β. Indeed, 

MSCs administered into an OA knee joint contact synovial macrophages130, and were able 

to induce polarization toward M2 cells, which promote tissue repair131. In agreement with 

these findings, Satué et al. also found evidence that intraarticular-injected MSCs decrease 

the inflammatory response caused by cartilage injury and promote cartilage regeneration132.

MSCs can not only differentiate into tendon cells (tenocytes), but also modulate 

inflammation and tissue healing133. Several clinical trials investigating the use of 

MSCs for tendon healing are ongoing (NCT03688308, NCT01788683, NCT02484950, 

NCT03449082, NCT03279796, NCT03752827, NCT03454737)133. Six patients suffering 

from chronic epicondylitis were treated with local allogenic AD-MSCs injections. After 52 

weeks, the visual analogic scale (VAS) and the modified Mayo Clinic Performance Index 

(mMCPI) were decreased by 52%, and increased by 26.6%, respectively, and on ultrasound 

examination, a reduction in defect areas was observed134. Subjects with rotator cuff tears 

(RCT) who did not respond to physical therapy for at least 6 weeks were randomly assigned 

to receive a single local injection of, on average, 11.4 × 106 autologous adipose-derived 
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regenerative cells UA-ADRCs or corticosteroid injections. ADMSCs were safe and led to 

improved shoulder function without adverse effects at 12-month follow-up135.

4.4. Dermatologic efficacy

In dermatology, topically applied MSCs elicit improved outcomes, wound healing, and 

skin graft survival due to burns, diabetes and other chronic diseases136. Preclinical data 

demonstrate that local injection of BM-MSCs into an incisional full-thickness wound 

significantly shortens the healing time while stimulating angiogenesis, re-epithelialization 

and granulation136. Preclinical and early human trials demonstrate accelerated wound 

healing of diabetic ulcers following BM-MSCs application136. A fibrin polymer spray 

system to apply MSCs improved wound closure rates in a preclinical model as well 

as in patients with chronic non-healing lower extremity wounds137. For local skin 

wounds, human (h)AD-MSC-exosomes markedly shortened healing time and enhanced re-

epithelialization138. However, hAD-MSC-exosomes alone are inadequate for the treatment 

of extensive burns and scalds139. Combining topical and intravenous injection of hAD-

MSCs and hAD-MSC-exosomes offers the additional benefit of promoting wound 

healing, accelerating re-epithelialization, reducing scar widths, and enhancing angiogenesis 

and collagen synthesis138. Possible mechanisms by which AD-MSCs promote wound 

healing include reduction of inflammation, induction of angiogenesis, promotion of 

keratinocyte and fibroblast growth, and reduction of tissue scarring140. AD-MSCs may 

reduce inflammation by inducing conversion of M1 macrophages, associated with chronic 

wounds, into the anti-inflammatory and wound healing M2 phenotype141. Inhibition of 

extracellular matrix (ECM) degradation by AD-MSCs occurs through increased binding of 

matrix metalloproteinases (MMPs) and secretion of tissue inhibitors of metalloproteinases 

(TIMPs)142.

A single injection of 5 × 106 allogeneic WJ-MSCs into selected alopecia areata (AA) 

foci, produced an average of 67% hair regrowth at the sites where cell suspension was 

administered 6 months after treatment in all patients. This therapy was safe and had no side 

effects143. Patients affected by androgenetic alopecia (AGA) have also been treated with 

human follicular stem cells (HFSCs) obtained by centrifugation of scalp punch biopsies. 

Twenty-three weeks after the last treatment with HFSCs a 29%±5% increase in mean hair 

density in the treated area over baseline values, whereas there was only a 1% increase in hair 

density for the placebo-treated area144. Other studies have established a role of autologous 

human hair follicle mesenchymal stem cells (HF-MSCs) for therapeutic hair regrowth. A 

placebo-controlled, randomized, evaluator-blinded, half-head group study to compare hair 

regrowth with micrograft-containing HF-MSCs vs. placebo was reported145. After 58 weeks, 

27 patients displayed an increased hair count and density within the targeted area, of 18.0 

hairs per 0.65 cm2 and 23.3 hairs per cm2, respectively, compared with baseline, while the 

control area displayed a mean decrease of 1.1 hairs per 0.65 cm2 and 0.7 hairs per cm2145, 

respectively. Srifa et al.146 performed site-specific mutagenesis and integration of exogenous 

DNA in BM-, AT-, and UC-derived hMSCs using an optimized Cas9-AAV6-based genome 

editing tool platform generating cells that worked as transient therapeutic agents within the 

wound bed of db/db mice146.
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4.5 Gastroenterology efficacy

MSC treatment has recently been approved by the European Medicines Agency (EMA) for 

the treatment for perianal fistulizing Crohn’s disease. Darvadstrocel, composed of MSCs, is 

safe and effective for inducing fistula healing when the cells are injected into both internal 

and external openings, as well as inside the fistula tracks147.

5. Situations where systemic delivery of MSCs is the best choice

Human diseases and disorders such as frailty and COVID-19, where the most detrimental 

symptoms are mediated by increased activity of the immune system, are some of the 

best candidates for IV administration of MSCs. This approach results in numerous MSCs 

accumulating in the lungs, but also distributed throughout the body and other organs, such as 

the spleen, within 24–48 hours30.

IV infusion of MSCs for frailty has been tested in Phase I85 and Phase II148 clinical 

trials. Frailty, a primarily geriatric syndrome that increases in incidence with advancing 

age, is characterized by multiple systemic conditions including sarcopenia, inflammation, 

and diminution of physical performance, often culminating in an inability to perform 

activities of daily living149. These small, early-stage studies demonstrated that administering 

allogeneic MSCs obtained from healthy young adults to frail older adults is safe and 

potentially efficacious. Cell treatment ameliorated signs and symptoms of frailty, producing 

improvements in physical activity, quality of life, cognitive status, and inflammatory 

markers150. Compared to autologous MSCs from these frail individuals, allogeneic cells 

are thought to be more therapeutic since they are not burdened by patient co-morbidities. 

Administering MSCs obtained from young, healthy adults to frail patients, improved the 

functions of multiple organs, including lung, heart, and the immune system151–153.

The recent (ongoing) COVID-19 pandemic has negatively impacted public health on a 

global scale and is associated with an extremely high mortality rate. There has been an 

urgent need for an effective therapy to treat COVID-19 patients. A primary cause of death 

in patients infected with SARS-CoV-2, (the virus that causes COVID-19) is acute respiratory 

distress syndrome (ARDS), an inflammatory condition caused primarily by an overactive 

immune response154. MSCs, with their immune-moderating properties, as well as their 

regenerative potential and antimicrobial properties, were assessed for their efficacy against 

the effects of COVID-19155. IV administration of allogeneic human MSCs proved successful 

in reducing mortality and other effects related to SARS-CoV-2 infections155. To date, there 

are ~70 clinical trials registered on clinicaltrials.gov designed to evaluate the use of MSCs 

in COVID-19 patients. However, most of these trials are either incomplete or the outcomes 

are not published156. In one case report, the triple IV infusion of UC-MSCs into a critically 

ill COVID-19 patient was well tolerated and resulted in reduced serum C-reactive protein 

(CRP), normalized white blood cell counts, and alleviated the effects of pneumonia157. 

In a 51-year-old male patient with multi-organ involvement due to SARS-CoV-2 infection 

and who experienced cardiac arrest, MSCs were systemically transplanted four times plus 

once intrathecally. Following the first MSC administration, the values of AST, ALT, LDH, 

CK, pro-BNP, ferritin, triglyceride, fibrinogen, ammonia, and myoglobin began decreasing. 

After the second injection, CRP reached normal values. This patient also exhibited very low 
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ejection fraction (EF; 25%) that responded to the systematic administration of MSCs; with 

EF increasing to 60%. The authors concluded that the MSCs had a therapeutic effect on the 

heart. After the fourth MSC dose, the patient’s heart functions returned to normal158.

Leng et al.159, showed that 7 SARS-CoV-2 positive patients, with COVID-19 pneumonia 

(study group), exhibited significantly improved pulmonary functional activity after an 

intravenous administration of clinical-grade MSCs. Compared to the placebo-treated 

controls, patients in the MSC-treated group experienced normalization of immune cell 

populations, reduced serum TNF-α, and increased IL-10159. The results of this work suggest 

the possibility of using autologous or allogeneic adipose stem cells (ASCs) administered 

either intravenously or directly through a ventilation mask (aerosol)160–162. Tao et al.156 

reported a single COVID-19 critical patient treated with MSCs and lung transplantation. 

This patient was admitted with the diagnosis of COVID-19, ARDS, type-2 diabetes, diabetic 

nephropathy, renal insufficiency, and hypertension. His situation continued to worsen and 

became life-threatening, even after receiving various traditional treatment options, including 

antiviral therapy and extracorporeal membrane oxygenation. The patient then received five 

intravenous infusions of MSCs. Lymphocytes increased and renal function improved, static 

pulmonary compliance increased significantly, and the PaO2/FiO2 ratio stabilized. All these 

improvements delayed the severe deterioration of the patient’s condition, gaining valuable 

time needed to find a suitable lung donor and receive a lung transplant156.

In a patient with severe SARS-CoV-2-induced pneumonia, administration of Wharton’s 

Jelly-derived MSCs resulted in resolution of fever and shortness of breath within two days 

and a significant reduction in ground-glass opacity and pneumonia infiltration after six days. 

Functional improvement of this patient was associated with an increased number of T cell 

and a reduction in inflammatory mediators such as CRP, IL-6, and TNF-α163.

Together, the data from these reports suggest that the systemic administration of MSCs 

to patients with severe manifestations of SARS-CoV-2 infection is beneficial and resolves 

disease symptoms.

6. Expert Opinion

As the growth of MSC based clinical trials advances, it is vitally important to remember 

historical safety concerns, recognize modern clinical risks, and use methodology and 

delivery consistent with the intended mechanism of action to produce the most effective, 

safe, economically viable and ethical therapeutic approaches. Knowledge gaps remain in 

the understanding of mechanism(s) underlying efficacy of MSCs, which could be unique in 

different tissues. We must determine if MSCs from different tissues are more therapeutic for 

distinct diseases or if allogeneic MSCs are more therapeutic than autologous MSCs in all or 

only specific diseases. Given the plasticity and the paracrine-mediated immunomodulatory 

activity of MSCs, they are increasingly being studied for their effectiveness in a variety of 

clinical settings, presenting promising outcomes.

We discussed critical aspects of the effective and safe delivery of MSCs in the context of 

preclinical and clinical studies by focusing on the mechanism of action when these cells are 
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administered via local injection. This route of administration appears to be more efficacious 

than delivering cells through the circulation for most diseases. However, bioengineered 

patches containing MSCs are also useful, albeit requiring more invasive surgical procedures, 

and systemic delivery may be optimal for certain diseases, such as frailty and COVID-19. 

Therefore, determining the best route(s) of MSC administration is an ongoing, disease-

specific process.

One of the biggest challenges facing MSC-based therapy is the optimization of cell 

expansion to avoid development of aneuploidy in vitro, which has potential to promote 

cancer development or progression in vivo. For the future, it is imperative to understand 

how MSCs communicate with tumor cells and within the tumor stroma. Interestingly, an 

exciting new area of investigations is focused upon the cell secretome rather than the 

cells themselves. As discussed above, recent studies suggest that a large proportion of the 

damage repair can be attributed to a paracrine mechanism including EVs and exosomes, 

membrane-bound vesicles that are released by the cells. MSC-derived EVs and exosomes 

have gained significant interest in regenerative medicine due to their ability to promote 

tissue homeostasis and angiogenesis and inhibit inflammation, thereby stimulating recovery 

in a variety of diseases. Additionally, unlike cell therapy, EVs and exosomes eliminate 

the risk of aneuploidy and reduce immune rejection following allogeneic administration. 

Therefore, EV therapy is being considered as an alternative to MSC therapy and may prove 

to be the next generation cellular therapeutic for many diseases.

Despite promising pre-clinical data with EVs and exosomes, several challenges impede 

the translation of this therapy into clinics, including improved characterization methods 

for documented reproducibility, large-scale production, isolation and processing of clinical-

grade, FDA compliant exosome products. Traditional EV production techniques are often 

limited in their clinical translation due to the need for repeated and lengthy manufacturing 

protocols and time-consuming characterization of each product lot. Furthermore, the need 

for repetitive lot productions of cell products often leads to greater batch-to-batch variability 

and the need for even more replicates and testing time.

Future studies must focus on the role and mechanism(s) of the MSC secretome. Are these 

effects mediated exclusively through paracrine signaling, or must some of these materials 

be transferred by direct cell-cell contact? We must elucidate the molecular mechanisms that 

function in specific organs/tissues/diseases to guide the choice of the delivery strategy in 

order to optimize treatment of each disease.
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Article Highlights:

• It is essential to determine the delivery route and dosing of cell therapy for 

optimal clinical translation, given the important influences on the distribution, 

retention, and survival of the administered cells.

• Local administration of mesenchymal stromal cells (MSCs) into target tissues 

has important advantages, including rapid and localized reaction. Cells can 

be administered into a precise, targeted location, increasing the chance of 

engraftment and/or local paracrine activity, which has the potential to prolong 

and/or enhance therapeutic potential.

• The mechanism of action of MSCs can be attributed to secretion of 

paracrine factors, including extracellular vesicles and cytokines, transfer of 

mitochondria to nearby cells via hetero-cellular coupling, and modification of 

immune responses.

• Local, rather than systemic, transplantation of MSCs influences the paracrine 

potency in the production of trophic factors. Certain paracrine signals are 

transmitted over short distances, thereby producing local effects, and the 

crosstalk between the local microenvironment of injured host tissues and 

MSCs activates MSC production of cytoprotective paracrine factors.

• Biomaterials, cell pre-conditioning, priming and genetic modifications 

represent promising approaches for improving local administration of MSCs 

in the treatment of a wide variety of diseases.

• Local injections of MSCs have been tested for specific diseases including 

those affecting the cardiovascular, neurologic, orthopedic, dermatologic and 

gastroenterologic systems.

• Systemic MSC infusions have been tested in numerous settings including 

but not limited to aging frailty, Alzheimer’s disease, COVID-19, idiopathic 

pulmonary fibrosis, and congestive heart failure.
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Figure 1. Systemic (Sys) and local (Loc) routes of MSC administration into the heart.
(A) intravenous (IV) infusion of mesenchymal stem cells (MSCs; peripheral IV not shown) 

(Sys). (B) administration of MSCs through transendocardial injection (TESI) (Loc). (C) 

direct epicardial injection of MSCs (Loc). (D) delivery of MSCs via intracoronary infusion 

(Sys). Reproduced with permission from Golpanian et al74.
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Figure 2. MSCs’ mechanism of action.
(A) Intracellular localization of multivesicular elements and their fusion with the plasma 

membrane in a sheep reticulocyte. 1. & 2. Inside these MVEs, which have a diameter 

of 200–400 nm, are small round bodies with an average diameter of 30–50 nm. 3. 

Fusion of multivesicular elements with the plasma membrane and release of round bodies. 

The figure shows exocytosis into the medium of small dense bodies (exosomes)164. (B) 

Electron microscopy of intercellular tunneling nanotubes (shown by black arrowheads) and 

mitochondria transfer from MSC to cardiomyocytes analyzed in fluorescence microscopy. 1. 

& 2. Two communicating cells, mesenchymal stem cell (MSC) and cardiomyocyte (CM); 

big arrow points to muscle fiber bundles; small arrow points to a funnel-shaped initiation/

termination of the nanotube. 3. Small diameter branching nanotubes (arrowhead). 4. One 

nanotube with variable diameter and another with granular content are shown by big and 

small arrowheads correspondingly. Bar, 1 μm for A; 0.5 μm. 5. In majority of cells, mono-

colored fluorescing mitochondria are dominating. 6. In some cardiomyocytes (arrowheads), 

green-fluorescent mitochondria derived from MSCs are present. MSCs are stained with 

Mitotracker Green FM (green fluorescence), while cardiomyocytes with Mitotracker Red 

(red fluorescence)165. (C) The release of vesicles of different sizes is demonstrated. In 7. 

a larger vesicle is budding from the cell membrane, while in 8. a pool of smaller vesicles 

is released. 9. MSC-EVs are visualized by transmission electron microscopy, showing the 

characteristic double membrane structure. Arrows indicate larger vesicles, compatible with 

microvesicles, whereas arrow heads indicate smaller vesicles, compatible with exosomes166.
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Figure 3. Mechanisms by which Mesenchymal Stromal Cell (MSC) attenuate inflammation and 
injury.
Microvesicles (MVs), membrane-bound vesicles that are released by many types of cell, 

including MSCs, are considered important mediators of cell-to-cell communication. MVs 

serve as vehicles for transferring proteins, peptides, messenger RNA and microRNA 

(miRNA) to alter gene expression, proliferation and differentiation of the recipient cells. 

Tunneling nanotubes (TNTs) are long, ultrathin structures with diameters ranging from 50 

to 200 nm and a length that allows organelle transfer between two spatially separated cells. 

TNTs contain cytoskeletal elements such as actin and microtubules, depending on the cell 

type. Myosin is a fundamental protein required for organelle transfer, a process requiring 

high rates of ATP consumption. MSC-derived exosomes play crucial roles in intercellular 

communications and contain cytokines and growth factors, signaling lipids, mRNAs and 

regulatory miRNAs that are released into target cells by receptors, endocytosis, and fusion 

with plasma membrane. Figure created using BioRender.com
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