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Abstract 

Objective:  We aimed to screen out biomarkers for atrial fibrillation (AF) based on machine learning methods and 
evaluate the degree of immune infiltration in AF patients in detail.

Methods:  Two datasets (GSE41177 and GSE79768) related to AF were downloaded from Gene expression omni‑
bus (GEO) database and merged for further analysis. Differentially expressed genes (DEGs) were screened out using 
“limma” package in R software. Candidate biomarkers for AF were identified using machine learning methods of the 
LASSO regression algorithm and SVM-RFE algorithm. Receiver operating characteristic (ROC) curve was employed 
to assess the diagnostic effectiveness of biomarkers, which was further validated in another independent validation 
dataset of GSE14975. Moreover, we used CIBERSORT to study the proportion of infiltrating immune cells in each sam‑
ple, and the Spearman method was used to explore the correlation between biomarkers and immune cells.

Results:  129 DEGs were identified, and CYBB, CXCR2, and S100A4 were identified as key biomarkers of AF using LASSO 
regression and SVM-RFE algorithm. Both in the training dataset and the validation dataset, CYBB, CXCR2, and S100A4 
showed favorable diagnostic effectiveness. Immune infiltration analysis indicated that, compared with sinus rhythm 
(SR), the atrial samples of patients with AF contained a higher T cells gamma delta, neutrophils and mast cells resting, 
whereas T cells follicular helper were relatively lower. Correlation analysis demonstrated that CYBB, CXCR2, and S100A4 
were significantly correlated with the infiltrating immune cells.

Conclusions:  In conclusion, this study suggested that CYBB, CXCR2, and S100A4 are key biomarkers of AF correlated 
with infiltrating immune cells, and infiltrating immune cells play pivotal roles in AF.
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Introduction
As the most common arrhythmia in clinic, patients with 
atrial fibrillation (AF) have high mortality and morbid-
ity. It is reported that about 1–2% of the population are 

troubled by AF, which contributes to heart failure and 
cardiogenic embolism [1]. AF could be divided into 
permanent AF, persistent AF (pAF), long standing 
pAF and paroxysmal AF based on its duration. Patients 
with hypertension, obesity, and diabetes etc. frequently 
develop AF, however, the molecular mechanisms under-
lying the development of AF remain unclear yet [2]. 
Inflammatory response plays an important role in the 
occurrence and development of AF. Studies have shown 
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that TNF-α, CRP and IL -6 are significantly increased 
in atrial tissues of AF patients and related to outcomes 
of AF patients [3–5]. Moreover, studies demonstrated 
the anti-inflammatory therapies can significantly reduce 
AF episodes [6, 7]. In recent years, the role of immune 
cells infiltration in the inflammatory response of patients 
with AF has been widely concerned. Yamashita et al. con-
firmed that, in human AF, adhesion and recruitment of 
macrophages in heart endocardium promoted inflam-
matory responses [8]. Similarly, Hohmann et al. demon-
strated that the number of CD3-positive T cells in left 
atrial appendageal are significantly increased in patients 
with AF [9]. However, the more accurate association 
between infiltrating immune cells and AF still needs to 
further study.

Medicine is one of the early applications of artificial 
intelligence (AI), which is gradually changing the way 
many diseases are diagnosed and treated [10]. Machine 
learning is an important part of artificial intelligence that 
using algorithms to identify expression patterns of data-
sets. Machine learning has already been employed in 
prediction of myocardial infarction, pathological iden-
tification and surgical improvement [11]. Moreover, 
machine learning is also a research hotspot and cutting-
edge technology in the field of arrhythmia diagnosis and 
treatment. Han et  al. used machine learning algorithms 
to incorporate clinical signatures of AF patients, and 
their work provides prognostic value for risk stratifica-
tion in stroke beyond CHA2DS2-VASc [12]. The diag-
nosis of atrial fibrillation requires electrocardiogram 
(ECG) test, but some asymptomatic patients are often 
difficult to find. Raghunath et al. collected 12 lead ECGs 
of 430,000 patients and predicted new onset atrial fibril-
lation within 1 year based on deep neural network. It was 
found that the accuracy of the algorithm reached 0.85 
[13]. To the best of our knowledge, we firstly conducted 
a bioinformatics analysis to screen out key differentially 
expressed genes (DEGs) in AF as biomarkers based on 
machine learning algorithms. The CIBERSORT algo-
rithm has been adopted to evaluate infiltrating immune 
cells based on gene expression profiles in various dis-
eases [14–17]. We also performed a detailed analysis of 
immune cells infiltration in patients with AF using CIB-
ERSORT algorithm.

Materials and methods
Microarray data
The workflow of this analysis is shown in Fig.  1. Three 
datasets related to AF (GSE41177, GSE79768 and 
GSE14975) were downloaded from Gene Expression 
Omnibus (GEO) database [18] via “GEO query” pack-
age [19]. The above three datasets were all based on 
GPL570 platform. GSE41177 contained 19 left atrial 

tissue samples from 3 SR individuals and 16 AF patients 
[20]; GSE79768 consisted of 13 left atrial tissue samples 
from 7 AF patients and 6 SR individuals [21]; GSE14975 
contained 10 left atrial tissue samples from 5 SR individ-
uals and 5 AF patients [22]. The detailed characteristics 
of GSE41177, GSE79768 and GSE14975 is provided in 
Additional file 2: Table S1.

Data processing and DEGs screening
R software was employed to create gene expression matri-
ces of GSE41177, GSE79768 and GSE14975. Log2-trans-
formation and background correction were performed 
on the expression profiles by the “limma” package [23]. 
Furthermore, “SVA” package was used for batch effects 
adjustment between the GSE41177 and GSE79768 [24]. 
GSE41177 and GSE79768 were merged for further analy-
sis, and the GSE14795 was used as the validation cohort. 
“pheatmap” package and “ggplot2” package was adopted 
to create to “heatmap” and “volcano plot” of DEGs.

Enrichment analysis
To understand the function of DEGs in AF patients, 
the “clusterProfler” package was used to perform GO 
and KEGG pathway analysis [25]. Gene set enrichment 
analysis (GSEA) was also employed to identify pathways 
enriched in AF patients and SR individuals, respectively. 
“c2.cp.kegg.v7.0.symbols.gmt” from MSigDB database 
was adopted as the reference dataset [26].

Identification of key DEGs as biomarkers in AF using 
machine learning methods
Machine learning methods were adopted to screen out 
key DEGs as biomarkers in AF. LASSO algorithm, a 
regression analysis, often utilized to improve prediction 
accuracy. It belongs to linear regression model family 
and uses the default ten-fold cross validation. In recent 
years, LASSO regression analysis has been widely used in 
researches to screen out diagnostic or prognostic factors 
[27]. Jubair et al. found a meaningful way to identify sub-
type‑specific biomarkers for the breast cancer survivabil-
ity using LASSO regression analysis [28]. Ma et  al. also 
identified key genes in blood of patients with interver-
tebral disc degeneration (IDD) as important biomark-
ers based on LASSO regression analysis [29]. To screen 
out key genes correlated with AF, “glmnet” package was 
used to perform LASSO regression algorithm. SVM-RFE 
is another machine learning algorithm, which has been 
widely used for classification and regression analysis. 
SVM-RFE model has nonlinear discrimination character-
istics, which allows the results to be compared after mod-
eling different numbers of variables, so as to screen the 
best combination of variables. Based on SVM-RFE algo-
rithm, Zhang et  al. screened ten discriminant features, 
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which provided a fast and effective diagnostic standard 
for Kashin–Beck disease [30]. We also used “e107” pack-
age to carry out SVM-RFE algorithm and identify key 
genes in occurrence and development of AF with dis-
criminative power [31].

Diagnostic value of key DEGs as biomarkers in AF
Receiver operating characteristic (ROC) curve was 
established based on the meta-data cohort merged by 
GSE41177 and GSE79768 to evaluate the predictive value 
of biomarkers. We used the area under curve (AUC) 
value to determine the diagnostic effectiveness in dis-
criminating AF from SR patients. Then, an independent 
dataset (GSE14975) was adopted to further validate the 
diagnostic effectiveness of biomarkers.

Evaluation of infiltrating immune cells
CIBERSORT algorithm was employed to evaluate infil-
trating immune cells in patients with AF [17]. A large 
number of studies have used CIBERSORT to explore 
the function of immune cells in various diseases, 

including osteoarthritis [14], high-grade serous ovar-
ian cancer [15] and breast ductal and lobular carci-
noma [16]. Proportions of infiltrating immune cells 
were visualized in R software using “ggplot2” package 
and “pheatmap” package. Correlation heatmap was cre-
ated by “corrplot” package to visualize the correlation 
of infiltrating immune cells. The difference of immune 
cells infiltration between atrial tissue samples from AF 
patients and SR individuals were showed in the violin 
plot using the “vioplot” package. Then, “ggplot2” pack-
age was also adopted to perform principal components 
analysis (PCA) based on immune cells infiltration and 
draw a two dimensional PCA plot.

Correlation analysis of biomarkers and infiltrating immune 
cells
We used “Spearman” method to explore the correlation 
between biomarkers and immune infiltration, and then 
we used the “ggplot2” package to visualize results.

Fig. 1  Workflow of data preparation, processing and analysis. GEO, Gene Expression Omnibus; DEGs, differentially expressed genes; AF, atrial 
fibrillation; SR, sinus rhythm; GSEA, gene set enrichment analysis
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Results
Identification of DEGs in AF
Left atrial tissues from 23 AF patients and 9 normal 
individuals of GSE41177 and GSE79768 were analyzed. 
PCA plot clearly indicated that the batch effect between 
GSE41177 and GSE79768 was successfully removed 
(Fig.  2c). In the meta-data cohort merged by GSE41177 
and GSE79768, 129 DEGs were identified using the 
“limma” package, including 71 upregulated genes and 58 
downregulated genes (Fig. 2a, b).

Functional correlation analysis
We performed functional enrichment analysis of 
DEGs between AF and SR patients based on GO and 
KEGG databases (Fig.  3a). The biological processes 
were enriched in neutrophil activation involved in 
immune response, neutrophil mediated immunity, neu-
trophil degranulation, neutrophil activation and cell 
cellular defense response. The relationship between 

biological processes terms and each DEG was shown 
in Fig.  3c. The enriched cellular components were 
mainly involved in collagen-containing extracellular 
matrix, secretory granule lumen, cytoplasmic vesi-
cle lumen, vesicle lumen and NADPH oxidase com-
plex. The molecular functions were mainly enriched 
in RAGE receptor binding, Toll-like receptor binding, 
calcium-dependent protein binding, superoxide-gener-
ating NADPH oxidase activity and long-chain fatty and 
binding oxidoreductase activity. KEGG pathway analy-
sis shows that the osteoclast differentiation, staphylo-
coccus aureus infection, leukocyte trans-endothelial 
migration, tight junction and cell adhesion molecules 
were mostly enriched (Fig. 3b). Moreover, GSEA results 
showed that Hedgehog singling pathway and linoleic 
acid metabolism were mainly enriched in SR (Fig. 4a). 
The receptor signaling pathway, cell adhesion mol-
ecules cams, cytokine-cytokine receptor interaction, 
leukocyte trans-endothelial migration and natural killer 

Fig. 2  Identification of DEGs between AF and SR atrial tissue samples. a Heatmap visualization of the top 100 DEGs between AF and SR atrial tissue 
samples. b Volcano plot visualization of DEGs between AF and SR atrial tissue samples. c PCA plot of AF and SR atrial tissue samples after removing 
batch effect between GSE41177 and GSE79768. AF, atrial fibrillation; SR, sinus rhythm; DEGs, differentially expressed genes
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cell mediated cytotoxicity were mainly enriched in AF 
(Fig. 4b).

Identification key DEGs as biomarkers of AF based 
on machine learning algorithms
We used two different machine learning algorithms to 
screen key DEGs as biomarkers of AF. 9 key DEGs were 
identified using LASSO algorithm in the present study 
(Fig. 5a). Moreover, 40 DEGs was identified as biomark-
ers based on SVM-RFE algorithm (Fig.  5b). The three 
overlapping DEGs (CXCR2, CYBB and S100A4) were 
ultimately selected (Fig. 5c).

Diagnostic effectiveness of biomarkers in AF
Our results of ROC curves indicated that these three bio-
markers screened out by machine learning algorithms 
also have a favorable diagnostic value in the meta-data 
cohort merged by GSE41177 and GSE79768, with an 
AUC of 0.942 (95% CI 0.845–1.000) in CYBB, AUC of 

0.961 (95% CI 0.870–1.000) in CXCR2, and AUC of 0.932 
(95% CI 0.768–1.000) in S100A4 (Fig.  6a–c).Moreover, 
the diagnostic effectiveness of key DEGs was further vali-
dated in another independent dataset (GSE14795) with 
an AUC of 0.880 (95% CI 0.600–1.000) in CYBB, AUC of 
0.760 (95% CI 0.400–1.000) in CXCR2, and AUC of 0.840 
(95% CI 0.520–0.912) in S100A4 (Fig. 6d–f).

Immune infiltration analysis
Based on CIBERSORT, we evaluated immune cells infil-
tration in patients with AF and normal individuals. Fig-
ure 7a, b illustrate the proportion of immune cells from 
9 SR left atrial tissue samples and 23 AF left atrial tissue 
samples. As shown in Fig.  7c, compared with SR, left 
atrial tissue samples from AF patients contained higher 
neutrophils, mast cells resting and T cells gamma delta, 
whereas lower T cells follicular helper. Correlation anal-
ysis showed that dendritic cells activated and NK cells 
resting had the most intense positive relationship with 

Fig. 3  Enrichment analysis of DEGs between AF and SR atrial tissue samples via GO and KEGG database. a Gene ontology enrichment analysis of 
DEGs. b KEGG enrichment analysis of DEGs. c Cord diagram shows the relationship between key DEGs and most enriched biological processes. AF, 
atrial fibrillation; SR, sinus rhythm; DEGs, differentially expressed genes
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Fig. 4  GSEA enrichment analysis of DEGs between AF and SR atrial tissue samples. a GSEA enrichment analysis results in SR patients. b GSEA 
enrichment analysis results in AF patients. AF, atrial fibrillation; SR, sinus rhythm; GSEA, gene set enrichment analysis; DEGs, differentially expressed 
genes
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r = 0.62, B cells naïve and B cells memory had the most 
obvious negative correlation with r = − 0.51 (Fig.  7d). 
PCA diagram revealed a distinct group bias and proved 
that the degree of immune cells infiltration is differ-
ent between AF patients and SR individuals (Additional 
file 1: Fig. S1).

Correlation analysis between CXCR2, CYBB and S100A4 
and infiltrating immune cells
In correlation analysis, we demonstrated that CYBB 
was positively correlated with T cells gamma delta 
(r = 0.28, P = 0.029) and negatively correlated with T 
cells CD8 (r =  − 0.41, P = 0.021), T cells follicular helper 

Fig. 5  Identification of biomarker candidates for AF based on machine learning algorithms. a Biomarkers selection via LASSO algorithm. b 
Biomarkers selection via SVM-RFE algorithm. c Venn plot of the overlapping genes identified by the LASSO algorithm and SVM-RFE algorithm. AF, 
atrial fibrillation; LASSO, least absolute shrinkage and selection operator model; SVM-RFE, support vector machine-recursive feature elimination 
model
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(r =  − 0.52, P = 0.002) (Fig. 8a–d). CXCR2 was positively 
correlated with T cells gamma delta (r = 0.43, P = 0.014), 
neutrophils (r = 0.75, P < 0.001) and negatively cor-
related with macrophages M2 (r =  − 0.53, P = 0.002) 
(Fig. 8e–h). S100A4 was positively correlated with plasma 
cells (r = 0.45, P = 0.01) and mast cells resting (r = 0.42, 
P = 0.017) (Fig. 8i–k).

Discussion
AF is one of the most prevalent arrhythmias, however, 
the specific molecular mechanisms of AF still remain 
unclear. Despite the great improvement has been gained 
in the field of diagnosis and treatment, AF remains a 
leading cause of mortality and disability [32]. Drugs for 
rate control, oral anticoagulants for stroke prevention, 
antiarrhythmic drug and catheter ablation for conver-
sion are main treatments for AF patients [33]. But the 
efficacy and safety of these treatment measures are still 
not well understood. Meanwhile, many asymptomatic 
patients, especially patients with paroxysmal AF, are dif-
ficult to find. This is the first study to identify biomarkers 

of AF associated with immune cells infiltration. Two gene 
expression datasets from GEO database were merged 
and conducted an integrated analysis. 129 DEGs were 
detected using “limma” package. Enrichment analysis 
showed that these 129 DEGs were significantly corre-
lated with immune and inflammatory responses. The 
relationship between inflammatory response and AF 
has been widely studied in the past decades and vari-
ous regular anti-inflammatory biomarkers were found 
be related to AF. It has been reported that patients with 
AF had increased IL-6, IL-8 and TNF-α, meanwhile, 
these inflammatory markers can also predict the out-
come of AF ablation [34–38]. High-sensitive C-reactive 
protein (hsCRP) is also associated with increased risk of 
AF recurrence following successful electrical cardiover-
sion and catheter ablation [39]. In addition, accumulating 
studies have demonstrated that the increase of TGFβ1 
in AF patients promote atrial fibrosis, which plays a piv-
otal role in atrial structural remodeling in AF [40, 41]. 
Additionally, the critical role of various immune cells 
in the pathogenesis of AF has attracted more and more 

Fig. 6  Evaluation of the diagnostic effectiveness of the three biomarkers. a–c ROC curve of CYBB, CXCR2 and S100A4 in the metadata cohort 
merged by GSE41177 and GSE79768; d–f ROC curve of CYBB, CXCR2 and S100A4 in another independent validation dataset of GSE14795. ROC, 
receiver operating characteristic
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attention, including infiltrating in the atrium and secret-
ing several chemokines and cytokines to regulate the 
microenvironment of the heart [42]. Our GSEA results 
are also in general agreement with the previous findings 
that immune cells infiltration participates in the patho-
genesis of AF [8, 9]. Medicine is the earliest application 
field of AI. In the past few decades, AI technology, espe-
cially machine learning, has made great progress in the 
diagnosis and treatment of a variety of diseases, includ-
ing cardiovascular diseases, nervous system diseases 
and genetic diseases [43]. Therefore, for the first time, 
we sought to screen out key DEGs between AF and SR 
patients as biomarkers based on machine learning meth-
ods and explore its relationship with immune cells infil-
tration in AF. Overlapping the results from two machine 
learning algorithms, CYBB, CXCR2 and S100A4 were 
identified as key DEGs and biomarkers of AF.

CYBB, also known as NOX2, has been implicated in 
oxidative stress in various cardiovascular diseases [44]. 
Pignatelli et  al. reported that serum NOX2 can be used 
as one of the important indicators to predict vascular 
embolism events in [45]. In animal model, numerous 
studies have demonstrated that inhibition of NOX2-
mediated production of reactive oxygen species (ROS) 
prevents atrial remodeling [46, 47]. In addition, atrial 

electrical remodeling can also be alleviated by inhibiting 
NOX2 and oxidative stress [47, 48]. In human AF, NOX2 
has also been demonstrated to participate in the atrial 
structural remodeling and electrophysiological remod-
eling, and up-regulation of NOX2 is associated with an 
enhanced risk of AF [49, 50].

The chemokine receptor CXCR2, encoding by 
CXCR2, belongs to chemokine receptors family, medi-
ates cellular migration of immune cells [51]. The 
expression level of CXCR2 is tightly regulated dur-
ing infection and inflammation. It is worth noting that 
CXCR2 is key stimulant of immune cells infiltration 
and recruitment, especially of neutrophils. Our results 
of evaluation of 22 subtypes immune cells infiltration 
showed that neutrophils are significantly elevated in 
AF patients compared with SR [52]. It is also reported 
that CXCR2 was involved in atrial monocytes infiltra-
tion, which accelerates atrial fibrosis and promotes 
atrial remodeling. Therefore, blocking CXCR2 may 
serve as a new therapeutic strategy for AF patients [53]. 
Moreover, CXCR2 is also a crucial regulator of hyper-
tension. In spontaneously hypertensive rats, Zhang 
et al. identified that inhibition of CXCR2 could prevent 
the occurrence of hypertension-induced AF [53]. In 
angiotensin II-induced cardiac atrial fibrillation animal 

Fig. 7  Evaluation and visualization of immune cells infiltration in AF and SR atrial tissue samples. a The proportion of infiltrating immune cells in 
AF and SR atrial tissue samples. b Heatmap of infiltrating immune cells in AF and SR atrial tissue samples. c The difference of 22 subpopulations of 
immune cells between AF and SR atrial tissue samples. d Correlation heatmap shows the correlation between 22 immune cell subpopulations. AF, 
atrial fibrillation; SR, sinus rhythm
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model, CXCR2 has also been proved to participate in 
immune cells infiltration and mediates cardiac hyper-
trophy and remodeling through regulation of monocyte 
[54].

S100A4, also known as fibroblast specific protein 1 
(FSP1), is involved in various biological processes includ-
ing cell survival, cell motility, and cell differentiation. 
Numerous studies have already revealed roles of S100A4 
in cancer progression, particularly the ability of enhanc-
ing metastasis. S100A4 has also been linked to vari-
ous diseases besides tumor, such as cardiac fibrosis and 
hypertrophy, kidney fibrosis and pulmonary disease. 
All of these diseases involve the inflammatory pro-
cesses and rely heavily on tissue remodeling [55]. Studies 
revealed that S100A4 expressed in normal human heart 
and increased in hypertrophic left ventricles [56–58]. In 
addition, S100A4 is a key regulator of endothelial mes-
enchymal transformation (EMT), which is related to 
immune cells infiltration, making epithelial cells present 
mesenchymal cell phenotype and ultimately resulting 
in enhanced migration ability, enhanced anti apoptosis 
ability and production of a large number of extracellular 
matrix components. Recently, studies demonstrated that 
EMT occurs in the atrium of AF patients and contribute 
to fibroblast accumulation. Meanwhile, S100A4 also had 

significant correlations with left atrial dimension in AF 
patients [59].

We used CIBERSORT to evaluate the degree of infil-
trating immune cells in the present study. We found 
reduced infiltration of T cells follicular helper, as well 
as increased neutrophils, mast cells resting and T cells 
gamma delta in AF. Neutrophils represent activated non-
specific inflammation and have been found as markers of 
inflammation in various diseases. Correlation between 
inflammatory markers and cardiovascular diseases has 
been studied widely and the relationship between neu-
trophils and cardiovascular diseases has been confirmed 
in the past. It is reported that the level of neutrophils is 
an independent predictor for the prognosis of acute coro-
nary syndrome [60]. Recently, accumulating studies have 
also reported that increased neutrophil/lymphocyte ratio 
is related to the increased risk of AF occurrence [61, 62]. 
Mast cells, tissue-specific innate immune cells, present in 
virtually all body tissues including the heart. Numerous 
inflammatory mediators secreted by mast cells includ-
ing IL-1β, IL-6 and TGF-β1 participate in atrial struc-
tural remodeling and development of AF [63]. Liao et al. 
reported that the mast cells stabilization is associated 
with reduced atrial fibrosis and reduce AF incidence in 
animal model [64]. T follicular helper cells has also been 

Fig. 8  Correlations between CYBB, CXCR2, S100A4 and infiltrating immune cells in AF. a–d Correlation between CYBB and infiltrating immune cells in 
AF. e–h Correlation between CXCR2 and infiltrating immune cells in AF. i–k Correlation between S100A4 and infiltrating immune cells in AF. AF, atrial 
fibrillation
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reported to function in AF by secreting IL-21 and ulti-
mately promoting B cell proliferation and differentiation, 
which might be activated by Toll-like receptor 2 (TLR2) 
and TLR4 [65, 66]. We also studied the correlation 
between CYBB, CXCR2, S100A4 and infiltrating immune 
cells. Based on the correlation analysis results, CYBB, 
CXCR2 and S100A4 appear to play key roles in regulation 
of immune cells infiltration.

However, a limitation of the present study should be 
noted. The occurrence and development of atrial fibril-
lation is a complex and dynamic process, and its patho-
genesis includes atrial electrical remodeling, atrial 
structural remodeling and autonomic nervous dysfunc-
tion. Although a total of 42 participants were included, 
the input data might still be insufficient to identify and 
validate key genes in the atrial fibrillation development. 
Moreover, the 42 participants included in the study came 
from various regions with different diet, physical activ-
ity, genetic variation, susceptibility to cardiovascular dis-
eases, and so on. All of these factors may have an impact 
on atrial fibrillation. Therefore, the diagnostic efficacy of 
CYBB, CXCR2, and S100A4 in different populations and 
its role in the occurrence of atrial fibrillation still need 
more external validation.

Conclusions
We found that CYBB, CXCR2 and S100A4 may be key 
biomarkers of AF based on machine learning meth-
ods. The immune cells infiltration of patients with AF 
was measured in detail. Moreover, correlations between 
CYBB, CXCR2 and S100A4 and immune cells may play 
an important role in AF. Further researches for the spe-
cific molecular mechanism of these biomarkers and 
immune cells are required to study.
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