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A B S T R A C T   

This article reviews energy management schemes for smart homes integrated with renewable energy resources in 
the context of the COVID-19 pandemic. The incorporation of distributed renewable energy system has initiated 
an acute transition from the traditional centralized energy management system to independent demand 
responsive energy systems. Renewable energy-based Smart Home Energy Management Systems (SHEMSs) play a 
vital role in the residential sector with the increased and dynamic electricity demand during the COVID-19 
pandemic to enhance the efficacy, sustainability, economical benefits, and energy conservation for a distribu
tion system. In this regard, the reviews of various energy management schemes for smart homes appliances and 
associated challenges has been presented. Different energy scheduling controller techniques have also been 
analyzed and compared in the COVID-19 framework by reviewing several cases from the literature. The utili
zation and benefits of renewable-based SHEMS have also been discussed. In addition, both micro and macro-level 
socio-economic implications of COVID-19 on SHEMSs are discussed. A conclusion has been drawn given the 
strengths and limitations of different energy scheduling controllers and optimization techniques in the context of 
the COVID-19 pandemic. It is observed that renewable-energy-based SHEMS with improved multi-objective 
meta-heuristic optimization algorithms employing artificial intelligence are better suited to deal with the dy
namic residential energy demand in the pandemic. It is hoped that this review, as a fundamental platform, will 
facilitate the researchers aiming to investigate the performance of energy management and demand response 
schemes for further improvement, especially during the pandemic.   

Introduction 

In the pandemic era, most countries are focusing on developing 
modern smart city infrastructures to meet the increased residential en
ergy and user-comfort demands as most of the work is shifted online. 
Besides, the concept of smart homes offers enormous environmental, 
social, and economical benefits. Demand-side electricity consumption 
management plays a vital role in enhancing the home consumer’s sus
tainability, reliability, and power conservation. It efficiently deals with 
the dynamically changing energy usage pattern caused by varying 
consumers’ preferences during the pandemic [1,2]. Furthermore, recent 
development in the field of information and communication technology, 
like advanced sensors, bi-directional communication, advanced 

metering infrastructure (AMI), energy storage systems (ESS), smart ap
pliances, home area network (HAN), etc., established the infrastructure 
and technical basis for the smart home energy management system 
(SHEMS) [3]. 

Considering smart homes’ socio-economic and environmental ben
efits, SHEMS have become an integral part of the smart grid in many 
countries. This system helps the consumer optimize their electricity 
usage, decrease electricity demand during the peak load time, maximize 
consumer satisfaction level, enhance the reliability and effectiveness of 
the power grid [4]. The SHEMS enables the scheduling of home appli
ances according to the demand response program (DRP). Moreover, it is 
also helpful in decreasing the cost of generation, transmission, and 
distribution to fulfill the future demand for electricity by encouraging 
distributed energy generation [5]. Rising global CO2 emissions and 
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energy security concerns promote penetration of distributed genera
tions, such as solar energy, wind turbines, plug-in electric vehicle 
(PEVs), etc., into grid-connected active distribution networks [6,7]. In 
addition to rapid advancement in alternative energy technologies, 
advanced power electronics, energy storage systems, and renewable 
resources planted in the residential area can be included in SHEMS to 
enhance the efficacy of smart home power utilization and conservation 
[8]. Therefore, these advancements drive a transition of traditional 
centralized infrastructure systems towards virtual SHEMS and inde
pendent, responsive demand with the wide geographical regions of en
ergy storage resources and renewable energy across smart power 
systems [9,10]. Moreover, modernization of the conventional electrical 
system through digitalization towards a grid-wide smart energy system 
provides several possibilities, for instance, optimal coordination of 
diverse energy resources and enabling peer-to-peer electricity trading, 
improving energy efficiency, and bringing incentives to all energy 
stakeholders [11]. 

According to the time-dependent electricity price, the DRP promotes 
electricity consumers to alter their traditional power consumption 
pattern [12]. It also provides attractive incentives to encourage the end- 
user to decrease power consumption when electricity prices are high 
[13]. The bidirectional flow of information between end-users and en
ergy suppliers in the smart grid encourages the SHEMS users to 
contribute to DRP for energy conservation and management. Moreover, 
SHEMS users can shift their load to the off-peak hours automatically or 
manually based on the real-time electricity prices available in the smart 
meter to minimize their electricity cost [14]. In general, appliances in 
the smart home which rely on the thermostat, such as electric water 
heaters, air conditioners, and refrigerators, are commonly the reason for 
high electricity consumption [15]. 

Recently, the reduction in energy supply and increased residential 
load demand during the COVID-19 pandemic have made the use of 
SHEMS more attractive to both the power utilities and consumers [16]. 
As a consequence of the pandemic, an estimated 80% of workplaces 
worldwide were partially or completely halted, leading to a projected 
recession of ca. 0.3% [17]. These extraordinary circumstances impact 

everyday life across most current societies, triggering social readjust
ment of everyday activities. The pandemic has substantially affected the 
energy and power provision system, all the way from generation to 
utilization [18-21]. Due to dynamic living conditions, modified energy 
usage patterns have influenced people’s attitudes and readiness to adopt 
and pay for renewables-based SHEMS [22]. It is worth mentioning that 
experts have frequently warned about the susceptibility of societies to 
pandemics, partially aggravated by climatic changes [23-27]. Thus, with 
consumers’ approval, the SHEMS can play a vital role in achieving op
timum scheduling and cooperation between different smart appliances 
with renewable resources. 

Some previous studies have reviewed energy management systems 
and the impact of the COVID-19 pandemic on energy usage patterns. In 
[28], a comprehensive analysis of SHEMS infrastructures emphasizes 
integrating sustainable energy resources, for instance, geothermal, 
biomass, wind, and solar energies, in SHEMS is presented. Shareef et al. 
emphasized the load scheduling controllers utilizing artificial intelli
gence [29]. Moreover, heuristic optimization techniques were often 
used to schedule home appliances. In [30], deliberated upon research 
works correlated with the SHEMS for various cases, i.e., different cli
matic factors, devices, and controllers. In a previous work [22], the 
correlation between social-psychological and demographic factors and 
consumers’ willingness to pay (WTP) for SHEMS during the new living 
dynamics of the COVID-19 pandemic was explored. Jiang et al. reviewed 
the repercussions and challenges of the COVID-19 pandemic, empha
sizing environmental impacts on energy demand and consumption [31]. 
In [32], the study focused on the long and short-term impacts of COVID- 
19 on household energy usage. 

Nevertheless, due to changed living dynamics and behaviors during 
the COVID-19 pandemic, it is not reasonable to discuss SHEMS and DRP 
in smart homes separately from a pandemic perspective. Therefore, a 
need for a detailed review article, putting together the SHEMS and DR 
optimization affected by the pandemic, was observed. Therefore, the 
major contributions of this study are to present an extensive review of 
the current development and progression of research works on renew
able and stored energy sources based on SHEMS, as well as the 

Nomenclature 

Abbreviations 
ABC a bee colony 
ACO ant colony optimization 
AMI advanced metering infrastructure 
ANFIS adaptive neural fuzzy inference system 
ANN artificial neural network 
BFAO bacterial foraging optimization 
BPSO binary particle swarm optimization 
COVID-19 coronavirus disease of 2019 
CPP critical peak pricing 
DDESS dynamic distributed energy storage strategy 
DER distributed energy resources 
DLC direct load control 
DR demand response 
DRP demand response program 
DSM demand-side management 
EA evolutionary algorithm 
EACA energy aware clustering algorithm 
EMS energy management strategy 
ESS energy storage systems 
EV electric vehicle 
FLC fuzzy logic control 
GA genetic algorithms 
GAMS general algebraic modeling system 

GS graph search 
HAN home area network 
HESS hybrid energy storage system 
ICA imperialist competitive algorithm 
LSA lightning search algorithm 
MILP mixed-integer linear programming 
MINLP mixed integer nonlinear programming 
MOPSO multi-objective particle swarm optimization 
NN Neural Network 
NS non-shift-able 
NSGA non-dominated sorting genetic Algorithm 
PAR peak to average ratio 
PEV plug-in electric vehicle 
PHAS problem of home appliance scheduling 
PHEV plug-in hybrid electric vehicle 
PSO particle swarm optimization 
PV photovoltaic 
RER renewable energy resources 
RTP real-time pricing 
SHEMS smart home energy management system 
SHS solar home system 
SWH solar water heater 
TOU time of use 
UC unit commitment 
V2G vehicle-to-grid 
WDO wind-driven optimization  
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optimization of SHEMS and DRP integrated with the impact of the 
COVID-19 pandemic. To the authors’ knowledge, no specific article has 
brought together and discussed these aspects until now. This study is 
organized in the following manner. First, a brief overview of SHEMS is 
presented with its functionalities and architecture. The communication 
and networking technologies used for SHEMS are discussed next. Then, 
the various control schemes for the scheduling of smart appliances in 
advanced SHEMS are analyzed. Subsequently, the techniques for using 
renewable resources, including solar, wind biomass, and geothermal, 
are discussed. Different energy scheduling schemes for the optimal 
operation of SHEMS are further investigated. This study also discusses 
the micro and macro-level multidimensional impact of the pandemic on 
living dynamics, power systems, and climatic changes while elaborating 
the effectiveness of renewable-based SHEMS in such situations. Lastly, 
the concluding remarks are drawn after discussing challenges associated 
with SHEMS. 

Overview of smart home energy management systems 

AMI enabled effective bi-directional communication between power 
generation units and end-users [33]. It has paved the way for efficient 
economic-incentive-based energy management via shifting electricity 
load during peak time according to the variation in energy cost. 

The economic incentives can be of various sorts, for instance, energy 
cost-cuttings, improvement in household appliance scheduling or utili
zation, and efficient power-saving [34]. In a nutshell, SHEMS enables 
efficient monitoring and management of energy production, storage, 
and utilization in smart homes [35,36]. Moreover, in modern smart 
homes, commercial communication devices such as computers or 

mobile phones, apart from mere monitoring and collection of real-time 
power usage information, can also be used to control home appliances 
remotely [37]. 

In general, a SHEMS comprises a smart controller with a user inter
face, schedulable and non-schedulable appliances, smart meter, 
distributed energy resources (DERs), communication network, and 
hybrid energy storage system (HESS). An overview of such SHEMS is 
illustrated in Fig. 1. A communication network provides a reliable way 
for different modules to communicate and coordinate [38]. The smart 
controller is the brain of the SHEMS, which enables the monitoring and 
regulation of different modules. A smart panel collects real-time energy 
usage information from all sorts of home appliances user preferences. It 
provides a user interface for the optimal scheduling of appliances with 
efficient demand dispatch [39]. A smart meter is used for effective 
communication between power utilities and the smart home. With 
technology advancement, an electric vehicle (EV) can now serve both as 
a schedulable load and delivers energy to the domestic household ap
pliances at the time of emergency through vehicle-to-grid (V2G) tech
nology [40]. Solar power is often used as a residential on-site sustainable 
source of energy which is perfectly incorporated in a SHEMS, enabling a 
reduced reliance of the smart home on the power grid. However, 
intermittency (diurnal/seasonal) and uncertainty are often associated 
with solar power, leading to a dependency on energy storage units to 
ensure desired power quality and overall provision reliability [41,42]. 

Modern SHEMS can efficiently manage and control household 
equipment, DERs, and HESS to save electricity costs and meet demand 
response [7]. In principle, key functionalities of a SHEMS can be divided 
into four categories [36,43]:. 

Information monitoring and archiving provide an overview of 

Fig. 1. Architecture of home energy management system.  
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real-time energy usage data and the energy status of devices to the 
consumer. It stores all the essential data related to energy consumption, 
consumer preferences, DERs, HESS, forecasting load patterns, and local 
energy generation. 

Energy Management combines various core functions of SHEMS to 
achieve optimal residential energy consumption. It enables end-user to 
define equipment priorities, schedule loads, and manage DERs and 
HESS. 

Automation and control involve advanced functions that can be 
performed locally or remotely. For example, local control is imple
mented directly on household appliances. In contrast, consumption 
patterns can be controlled remotely via hand-held devices, such as 
laptops and mobile phones, by end-users and third parties. 

Fault detection and alert function is an important feature of 
SHEMS due to its automatized nature. It detects faults and abnormalities 
via a sensing network. It conveys the fault location to the SHEMS center 
in an alert. 

Based on the functionalities mentioned above, the energy of smart 
homes can be managed by optimal scheduling of appliances, integrating 
renewable resources in smart homes, and creating a balance between 
demand and supply. 

Communication and networking technologies for SHEMS 

Communication network technologies can be categorized into wired 
and wireless depending on the transmission mode. Over the years, 
several different technologies have been envisioned and utilized for 
SHEMS [36,40,41,43]. Table 1 summarizes various potential commu
nication technologies for SHEMS. The ideas of remote accessing, 
scheduling and energy saving of home appliances were realized at the 
home front by utilizing smart meters and power line communication 
[36]. To facilitate various network-related activities of in-house devices, 
a novel SHEMS based on a combination of ZigBee and IEEE 802.15.4 
was proposed in [35]. The ability of a communication device with 
embedded Bluetooth was utilized to design a smart home network based 
entirely on Bluetooth technology [36,44,45]. Some studies used a 
human–machine interface system for SHEMS [45]. Numerous other 
studies have been conducted on communication and networking tech
nologies in SHEMS. 

Considering the wide range of communication and networking 
technologies available for SHEMS, a few decisive factors for selecting 
suitable technology are complexity, security, reliability, implementation 
cost, and power consumption. Wireless technologies are preferred over 
wired in a majority of the SHEMS, owing to their flexibility and low-cost 
and fast installation. The ZigBee is one of the wireless communication 
technologies which is rapidly proliferated in the latest trends. 

Considering the challenges and economical aspects of the COVID-19 
pandemic, it has established itself as one of the most suitable commu
nication technologies for SHEMS, offering low power consumption, high 
security, adequate data rate and range, low implementation cost and 
high durability [46,47]. 

Appliance scheduling based energy management schemes for a 
smart home 

Energy management schemes based on appliance scheduling can be 
of two types: demand response-based appliance scheduling and model- 
based appliance scheduling. In both scheduling types, appliances, con
sumers, and utilities can participate in demand-side energy manage
ment. This section reviews the energy management schemes that deal 
with the residential demand-side energy management. 

Model-based appliance scheduling schemes for SHEMS 

It is quite challenging to formulate a smart home model that con
siders all appliances in SHEMS because each device has distinctive 
features. Apart from the usual challenges of architecture and commu
nication related to the spontaneous addition of new hybrid loads, for 
example, identifying returning PEVs, an obvious obstacle to developing 
an efficient SHEMS is the modeling and control of numerous appliances 
[48]. In controlling energy usage, another primary consideration is 
consumer comfort which is directly related to the living behavior of the 
domestic end-user [49]. Consumer discomfort is caused by the degra
dation of the quality of services owing to the provision of power. The 
diversity of end-users makes the discomfort a time-varying problem. 

A possible improvement in scheduling efficacy can be achieved, ac
cording to [50], by considering uncertainty during the development of 
multiobjective models for intelligent load scheduling. An open-loop 
control system, known as model predictive control, is one of the most 
commonly used approaches for error forecasting, which reduces un
wanted dynamic characteristics of the system during determining the 
desired solution [51]. 

Substantial economic benefits and demand flexibility can be ach
ieved using DRPs [52,53]. Several research works have proposed opti
mizing and realizing scheduling strategies for domestic end-users in 
smart homes [51,54-58]. Since EV is a special type of equipment that can 
be used dynamically as load and storage (V2G technology), some studies 
have also considered its mobility routine to design efficient energy 
scheduling tools in the context of a domestic society [55,59]. In [56,60], 
automatic power scheduling schemes, including cost forecasting, were 
presented to minimize the energy cost in instantaneous pricing tariff 
scenarios. Information provided by a house gateway was utilized to 

Table 1 
A comparitive analysis of communication and networking technologies for SHEMS.  

Communication mode Technology Speed Transmission Range Global usage Power consumption 

Wireless WiFi (IEEE 802.11) 10–100+ Mbps 100 m Extremely high high 
6LowPAN (IEEE 802.15.4) 20 kbps (868 MHz) 10 – 100 m Medium low 

40 kbps (915 MHz) 
250 kbps (2.4 GHz)  

ZigBee (IEEE 802.15.4) 250 kbps (2.4 GHz) 10 – 100 m Widely low 
40 kbps (915 MHz) 
20 kbps (868 MHz) 

Bluetooth (IEEE 802.15.1) 1–3 Mbps 1 – 10 m widely medium 
EnOcean (EnOcean standard) 120 kbps 300 m Not widely Extremely low 
ONE-NET (Open-source) 38.4–230 kbps 500 m (outdoors) Not widely low 

60 – 70 m (indoors) 
Z-Wave 40 kbps 30 m Widely low 

Wired ITU G.hn (G.hn) Up to 1.02 Gbps <200 m Not widely — 
X10 (X10 standard) 50–60 kbps 300 m Medium — 
Ethernet (IEEE 802.3) 10–1000 Mbps 100 m Extremely high — 
Insteon (X10 standard) 1.2 kbps 3000 m Medium — 
HomePlug (IEEE P1901) 14–200 Mbps 300 m Medium —  
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create a centralized model of the smart controller to enable the auto
matic operation of home appliances in the most cost-beneficial manner 
[61]. Whereas, in [62], the authors proposed a novel SHEMS model 
which integrates renewable energy resources (RER) and ESS to reduce 
the cost of electricity and peak to average ratio (PAR), emphasizing on 
utilization of electricity from the main grid and selling electricity. Sto
chastic optimization technique to solve the scheduling problem in 
SHEMS was developed in [63]. The proposed solution provides a home 
appliance schedule of operating periods, electricity sales, purchase pe
riods, and charging/discharging cycle of ESS and EVs. 

Stochastically effective uncertainty-aware load scheduling models 
were reported in [57,58]. The uncertainties can arise from various as
pects, including demand variation, intermittent DER generation, and 
dynamic energy cost. Smart home with a reliable two-way communi
cation network was used to schedule domestic loads and DER genera
tions according to residential demand response by using distributed 
control algorithms [64,65]. The primary focus of control models for 
home equipment in SHEMS is usually reduced domestic electricity usage 
[66]. Furthermore, control of both traditional and climate-responsive 
architectures utilizes artificial intelligence techniques. Different mod
ules and loads of a modern smart home are controlled by smart con
trollers employing evolutionary algorithms and neuro-fuzzy systems to 
achieve so-called computational intelligence [67]. M. Beaudin et al. 
reviewed different modeling techniques and respective challenges, 
involving prognosis unpredictability, demand response modeling, multi- 
objective modeling, computational constraints, and modeling end-user 
comfort, together with their effect on operation capabilities SHEMS 
[68]. 

The advent of smart grids and increasing energy cost-conscious 

consumers opened new frontiers for SHEMS in demand response mar
kets. SHEMS is an effective demand response system that schedules and 
restricts domestic equipment utilization to enhance domestic energy 
generation and efficacy in consumers’ interests. Various factors, 
including electricity price, ecological aspects, consumption pattern, and 
end-user comfort, are considered for determining an optimum usage and 
generation schedule [66]. 

Demand response-based appliance scheduling schemes for SHEMS 

The pre-existing solutions to meet the rising and dynamic demand for 
electricity creates additional generation capacity in the energy genera
tion sector. These solutions generally exhibit lower flexibility, high 
overall cost, low efficiency, resource wastage, and non-sustainability. 
However, certain energy management strategies can change the en
ergy load shape on the demand side. Depending on the type of consumer, 
DRPs can be sub-categorized into residential, industrial, and commercial 
DRPs [10]. As this work is primarily focused on residential load man
agement, the emphasis of this study is kept on residential DRPs. Since 
residential load is characterized by daily peak load, end-user prefer
ences, and seasonal variations, energy providers have to adjust their 
energy capacity accordingly to accommodate the intermittent high load 
demands of the residential sector. Traditional methods of increasing 
generation capacity bring huge costs to the supply side [69]. Thus, de
mand response has significant importance in residential energy man
agement. The DRP, which is classified among the primary form of 
demand-side management (DSM), can alter user behavior of electricity 
expenditure through an incentive-based mechanism as well as a price- 
based scheme. The functions of DRP in power system operation and 

Fig. 2. Role of DRP in power system and planning.  
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planning, in time horizon, are shown in Fig. 2. 

Incentive-based demand response schemes 
DRPs based on incentive involve variations in consumers’ power 

usage patterns upon operator’s request. It comprises direct load control 
(DLC), interruptible programs, demand bidding, and emergency pro
grams. Some relevant research studies include a multi-criteria scheme 
for scheduling a DRP based on short-term incentives to determine 
optimal financial incentives per hour. Such schemes can minimize the 
momentary economic harm and prevent subsequent capacity charges for 
an energy provider. Malletens Venkaramanan et al., in [70], analyzed 
the effect of incentives on renewable energy management systems 
(REMS) containing plug-in hybrid electric vehicles (PHEV), where the 
author concluded that incentives and rebates might persuade the owner 
of PHEV to participate in the DRP. With the help of DRP, consumers can 
control their residential load and reduce electricity costs. Babar et al. 
[71] minimized consumers’ discomfort using an incentive DRP, 
employing demand reduction bidding. The author further proposed an 
algorithm that reduces demand within the existing generation capacity. 
A DR scheme based on the cost and user comfort for DSM was discussed 
in [72]. Their study showed various kinds of domestic equipment, 
distributed energy resources, and energy-storing devices to minimize 
the consumers’ discomfort and the energy cost. Furthermore, an effi
cient DSM system to reduce consumers’ energy cost and peak hour usage 
was developed by [73]. However, since these optimizations may affect 
user discomfort because the equipment is not activated at a user-desired 
time, this work aims to develop a DSM system where user discomfort is 
not compromised. 

Jindal et al. [74] presented a demand response management scheme. 
Their objective function was also for load minimization, demand peaks 
reduction, and energy cost reduction. Their presented mechanism to 
achieve the objective was premised on evaluating the data consumed by 
the user like preference index; equipment preference is an imperative 
component of user comfort. In [75], the author emphasized efficient 
electricity usage. SHEMS was used to reduce energy cost, PAR, and 
maintain user comfort in his work. The algorithm presented by the 
author was formulated to make a relationship of equipment in prefer
ence sequence according to end-user satisfaction. 

Household equipment was characterized based upon interruptible 
defer-able and non-defer-able features of equipment [76]. An infinite 
preference was allocated to non-defer-able appliances for this charac
terization. In contrast, static preference based upon user choices was 
allocated to defer-able equipment. Another research work was carried 
out by [77] to examine the scheduling task of household equipment 
supported on rational features by considering user priorities. The pri
mary focus of the research was to reduce the weighted summation of 
energy prices. 

One of the decisive factors for the end-users is the level of provided 
economic benefits. These levels are closely related to the generation cost 
of electricity. In incentive-based DRPs, demand-side load management 
influences consumers’ electricity consumption patterns. Hence the 
development of an efficient incentive system is of the highest signifi
cance. Moreover, consumers’ response in various geographical locations 
is different for the identical privilege level. Therefore, developing a 
suitable incentive mechanism according to consumer types is necessary. 

Price-based demand response schemes 
Some studies in the literature analyzed the influence of price-based 

mechanisms on optimum load scheduling of the demand side. A DRP 
based on price can be defined as “a change in consumer energy usage 
pattern based on different electricity pricing mechanisms.” These price 
schemes include the time of use (TOU), critical peak pricing rate (CPP), 
and real-time pricing (RTP). 

In literature, Amini et al. [78] proposed a system for managing en
ergy to reduce the electricity cost of a single home under RTP, TOU, CPP, 
and flat tariff schemes. Mix integer programming was used to formulate 

a problem, which considered consumer preferences and specifications of 
appliances. Derakhshan et al. [79] presented a DRP scheme for the 
residential sector under TOU, RTP, and CPP without considering tariff 
pricing. Results revealed that overall cost could be minimized by this 
DRP scheme [79]. Authors in [80] mainly focused on the user priority 
constraints to minimize energy cost. However, in [81], the applicability 
of SHEMS was studied to manage different categories of energy sources 
to restrain user discomfort and energy cost minimization. A cost func
tion method encompassing user discomfort, generation, and billing cost 
was proposed in [82] to balance user priorities and energy price. The 
respective cost function utilized an energy managing technique based on 
game theory. This approach combined energy managing techniques 
with establishing equilibrium and the least compromise on user prior
ities. The main objective function of this approach was to reduce PAR, 
energy usage, energy cost, and everyday expense in a smart home. 

A decision assist setup for industrial application was proposed by 
[83], which could be utilized to permit or deny DRP. This system was 
based on the methodology that a significant portion of the energy is 
allocated to appliances with higher preference (provided the setup 
permits DRP). In contrast, loads with low priority are restricted. Another 
pre-emptive preference-based approach was developed to investigate 
appliance scheduling [84]. In this approach, equipment was segregated 
into three categories; shift-able, non-shift-able (NS), and interruptible 
non-shift-able equipment. The NS loads were assigned the highest pri
ority. However, the user comfort level was not measurable for this 
respective instance. The primary focus of this approach was to minimize 
peak load and energy cost. 

T. Mbungu et al. proposed a robust energy management/coordina
tion scheme by implementing a real-time electricity pricing-based dy
namic distributed energy storage strategy (DDESS). The smart switching 
system of the proposed model curtails the total energy consumption 
from the main grid, resulting in a 61%-157% reduction in the total en
ergy to pay the utility grid [85]. An effective switching scheme for a 
dynamic energy management system was designed to regulate various 
microgrid components connected to the main grid by utilizing a real- 
time electricity pricing-based DRP scheme to provide energy cost and 
energy-saving [86]. Finally, Haider et al. [87] presented an adaptive 
consumption pricing scheme based on a novel DRP. The proposed 
strategy encouraged customers to micro-manage their energy expendi
ture and left the macro-management of energy consumption and pre
diction provision of load requirements to the utility grid. Results showed 
that 73% of participant consumers could reduce their energy bills. 
Moreover, in the pandemic, when most of the work is from home, the 
load in the residential sector has increased drastically, significantly 
increasing the importance of energy bill reduction. 

Renewable energy resources for smart homes 

Unprecedented global environmental issues and problems have 
caused a rapid increase in global energy demand. To cope with this 
increasing energy demand, some new energy sources have been devel
oped, which have started a new era of renewable resources. In 2019, the 
available renewable energy capacity provided an estimated 27.3% of the 
world’s electricity production [88,89]. It is worth mentioning here that 
the global crisis caused by the COVID-19 pandemic has not affected the 
apparent tendencies of RER in the energy sector [90]. 

Renewable energy finds its utilization in different sectors, as shown 
in Fig. 3. The largest portion of renewable energy consumption is in 
residential, commercial, and public sectors, making 42.4% of the overall 
consumption. On the other hand, electricity and heat generation 
consume 39% of renewable energy [89]. Rapid advancements in smart 
grid technologies and renewable resources have significantly improved 
smart home energy consumption [44]. The worldwide measures to 
decarbonize housings by net zero carbon/net-zero energy buildings also 
foster the uptake of green RER in the field. It highlights the prospects of 
the research in renewable energy utilization in SHEMS. 
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Types of renewable energy resources used in SHEMS 

Modern residences benefit from various sustainable energies like; 
biomass, wind, solar, geothermal, and HESS. Among currently available 
renewable energy resources, the energy produced by solar is more 
abundant, imperishable, and green energy than other sorts of sustain
able energy sources [91]. There are several ways to benefit from solar 
energy, e.g., solar cooling, solar PV, solar water heater (SWH), and solar 
drying. When it comes to solar energy utilization for heating water for 
domestic use, Cyprus is a global forerunner with a per capita utilization 
of 93.5%. In Cyprus, an estimated 53% of hotels and 92% of households 
employ such systems, installing about 937,363 m2, almost 1 m2 per 
person [92]. Solar PV is prevalent among residences with adequate 
annual sunshine [93]. It can easily be incorporated into modern houses 
because of its easy installation and maintenance. As a result, it enables 
more energy at residents’ disposal, which can be used in various ways. In 
this regard, SHEMS is typically furnished alongside a HESS and thus 
enables the energy storage for emergency and future usage [94,95]. 
Germany has been the global leader in domestic solar electricity pro
duction for the past 15 years due to its “100,000 roofs solar electricity 
program”. Due to this program, German citizens owned 1.7 million solar 
PV systems in 2017 [96]. 

The wind is a clean, sustainable, cost-effective energy source that is 
often preferred over other resources to tackle burning environmental 
issues [97]. In the past two decades, global wind electricity production 
has grown by a factor of about 75 [98]. Over 127 countries produced 
1419 billion kWh of wind energy in 2019 [99 90]. In smart homes, due 
to the linear motion of the air, buildings produce pressure differences for 
the fan in the wind energy system, making it difficult to generate elec
tricity by electrical energy generator [100]. Specific strategic plans are 
required for the adjustable reserve capacity because of the intermittency 
of wind generations. These plans provide highly accurate forecasting of 
wind speed, which is important and results in improved reliability 
[101]. By employing charging/discharging schemes of HESS, a carefully 

planned storage unit in SHEMS can store the energy produced by wind 
turbines. Moreover, some experts have also proposed combining home 
wind and solar technologies to enhance total energy production [102- 
104]. Such small hybrid systems can be more reliable since the peak 
operating periods for solar and wind fall at dissimilar intervals of the day 
and years [105,106]. 

Biomass is another promising renewable source broadly utilized in 
modern homes, especially for cooking, lighting, and heating purposes. 
Several research studies have discussed biomass energy and its appli
cations [107 108 109 110]. Biomass power generation presently 
employed in modern homes is biomass gasification generation, biogas 
power generation, and biomass combustion. In 2015, an estimated 1.9% 
(more than 120,000 MW) of global electricity production and 10% of 
total energy need was provided by bioenergy [111]. Denmark has the 
highest residential use of biomass electricity production in the world 
[112]. Although combining smart home energy dispatch and biomass 
electricity is a widely discussed subject, several challenges, including 
lack of standardized products, underdeveloped technologies, and 
insufficient supply chain, are main obstacles in integrating biomass 
energy in smart homes. 

Geothermal energy is the oldest and most traditional form of energy 
for electricity generation mechanisms, harnessing heat from the earth’s 
sub-surface. It is characterized by low cost and cleanest form of energy 
generation [113]. The main applications of geothermal energy are; 1) 
climatization of homes [114] and 2) heat pump systems. In 2020, the 
global installed capacity of geothermal energy reached 14,050 MW. 
Being the forerunner in geothermal energy utilization, Iceland meets 
more than 90% of its domestic heating and 30.3% of its domestic elec
tricity requirements by harnessing geothermal energy [115]. 

Integration of renewable energy in smart homes 

New frontiers in recurrent production stabilization, peak load 
shaving, power quality improvement, and optimum management are 

Fig. 3. A sector-wise breakdown of global renewable energy consumption in 2019.  
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opened due to current commercial developments in sizeable energy 
storage and power-electronic technologies. The energy produced by 
wind and solar sources has many harmonics in it. It is not in a balanced 
supply and demand condition that is very important in domestic energy 
schemes. Therefore, HESS charging and discharging patterns must be 
properly coordinated to efficiently equalize this imbalance in the energy 
systems and stabilize the power supply. In contrast, EVs and other en
ergy storage mean in HESS play a crucial role in collaborative ar
rangements among home appliances and power gird [116]. To improve 
the performance of the utility grid, energy can be provided to critical 
load end-users by using HESS in collaboration with various sustainable 
power resources to create an autonomous power generation system 
[117]. A single sustainable energy source like wind, solar or geothermal 
is insufficient to supply SHEMS with a steady and affordable electricity 
supply because of their intrinsic seasonal, variable, and periodical 
characteristics [118]. Therefore, a hybrid power arrangement contain
ing multiple sources of sustainable energy resources is required to 
mitigate the undesired effects of energy provision [116]. 

Due adequate sunlight during summer times, solar power is sufficient 
for energy provision and storage for most energy management schemes. 
However, during winter times, when sunlight is faded, wind energy 
becomes the primary power supply source. Moreover, several other ar
rangements exist for hybrid sustainable energy schemes in modern 
households, for example, solar/wind, wind/hydro, solar/biogas, 
biomass/wind, hydro/solar, and so on [49]. The power efficiency peak 
clipping, regulation schemes, and quality of energy for sustainable 
power generation and consumption are enhanced by using power- 
electronic conversion techniques [12]. The increasing number of resi
dential power generation units now rely on these techniques for solar 
and wind-based grid-integrated power resources [119]. 

Since a growing number of households utilize/store sustainable 
power generations, the demand for efficiently designed power- 
electronic converters, concerning configurations and sizing, has 
increased [120]. In addition, large-scale applications of sustainable re
sources in modern homes can be realized using advanced power elec
tronics [9]. For example, as energy produced by solar energy systems is 
in DC power, it requires a special conversion unit to convert DC power 
into single or three-phase AC. On the other hand, micro-turbine and 
wind systems produce AC power with a variable frequency that cannot 
be matched directly in power grids, thus requires conversion into rated 
frequency AC. In battery energy storage units, the most common 
configuration is a two-way DC-DC converter in conjunction with a 
DC–AC inverter [121]. Table 2 lists the literature on smart home energy 
management schemes with RERs. As the role and demand for sustain
able energy in residential applications has increased, the power 
electronics-based SHEMS involved have also been constantly evolving 
[46]. The particular demands are categorized as follows:.  

1) dependable/safe energy provision,.  
2) highly efficient, affordable, less bulky, and effective protection,.  
3) regulation of active and reactive energy productions,.  
4) dynamic ride through operation, and.  
5) system communication and supervision in SHEMS [120]. 

Energy scheduling controller and optimization techniques in 
SHEMS 

The emergence of smart grids and rising concern for saving elec
tricity have presented opportunities for the deployment of SHEMS. A 
SHEMS limits or shifts the usages of household appliances to minimize 
energy costs improve household energy generation profile and energy 
efficiency. A SHEMS is usually implemented with the help of control
lers/optimization techniques. Table 3 describes various types of such 
techniques and their description used in the recent literature of SHEMS. 
Every technique has its strengths and limitations. Therefore, selecting a 
suitable technique for the SHEMS depends largely on the formulated 

Table 2 
Optimal scheduling in RER based smart homes with literature table.  

S. 
No 

Reference Description of the work 
done 

Remarks and limitations 

1 Ditiro Setlhaolo et al. 
2016 [122] 

Utilize MINLP for 
problem formulation 
and optimize it by SCIP 
in MATLAB. Micro-grid 
comprises batteries, PV 
panels for five homes. 
The optimization 
performed to minimize 
cost, inconvenience, and 
CO2 emission 

●multi-objective 
optimization of the 
micro grid was only 
treated as a single 
objective  

●Preference only 
considered for the 
weight of objective 
functions, not for the 
home appliances 

2 Alireza SoltaniNejad 
Farsangi et al. 2018  
[123] 

It used two stages 
stochastic programming 
strategy to minimize 
operational charges in 
micro-grid energy 
management. evaluated 
for three modes: 1) grid- 
connected, 2) islanded 
mode with DRPs, and 3) 
grid-connected with 
DRPs, 

●The technique 
employed is not 
efficient for real-time 
energy management.  

●Multi-objective 
economic emission 
operational planning is 
considered as a single 
objective. 
●User satisfaction for 
the demand side is 
ignored 

3 G.R. Aghajani et al. 
2017 [124] 

It was also a stochastic 
programming model 
with its main emphasis 
on optimizing the micro 
grid’s performance to 
minimize operating 
costs and emissions. 
MOPSO is utilized to 
solve the problem. DRP 
was used with the 
participation of 
residential, commercial, 
and industrial consumer 

●The proposed 
technique suffer from 
premature convergence  

●The applied algorithm 
has poor local 
searchability. 

4 Krishnamoorthy 
Murugaperumal 
et al. 2019 [84] 

Flow diagram-based 
energy management is 
integrated with 
preemptive priority- 
based load scheduling to 
minimize peak load and 
electricity bills. 

●The technique 
employed is not 
efficient for 
optimization problems 
with many local optima  

●The study does not 
consider excess power 
emanating from the 
hybrid renewable 
energy system 

5 S.L. Arun et al. 2018  
[125] 

a scheduling algorithm 
is developed for battery 
units and scheduling 
loads to minimize 
electricity bill and 
maximum utilization of 
RERs while considering 
operational dynamics of 
the non-schedulable 
load, user comfort, 
variation in electricity 
price, intermittency of 
RERs 

●The power 
management strategy 
ensures demand while 
obviating from 
technical and economic 
perspectives.  

●GAs rely on their 
population, unlike 
traditional search 
methods. Population 
size is user-defined, but 
it affects the 
performance and 
scalability of GA’s. 
Small population size 
may result in premature 
convergence, and large 
population size takes 
unnecessary 
computational time 

6 Amin Mohammad 
Rad et al. 2020  
[126] 

Present a framework for 
scheduling SH 
appliances with RERs 
and batteries. SH is 

●The technique 
employed is not 
efficient for 
optimization problems 

(continued on next page) 
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problem. 

Rule-based energy scheduling schemes 

Algorithms employing a rule-based approach are widely used in 
various systems for behavioral application by specifying conditions. A 
rule-based energy management system was proposed using the Rete 
algorithm [127]. Smart taps manage energy in the network, and loads 
are distributed to smart taps for rule processing and collection of data. 

Likewise, a rule-based scheme incorporating energy on demand has 
been proposed to manage electrical appliances. The system automati
cally generates if-then rules based on user-provided priorities of appli
ances [128]. A rule-based SHEMS has been developed to manage power 
utilization by electrical appliances with demand response [129]. A rule- 
based scheme for SHEMS that shifts load to minimum price period and 
curtail the load. [130]. The proposed algorithm can control various 
appliances to provide a suitable solution to minimize electricity costs. 
Moreover, a rule-based SHEMS in conjunction with Monte Carlo simu
lation and particle swarm optimization has been proposed to find the 
optimal size of the renewable resources by minimizing the annual cost of 
electricity [131]. 

Based on the preceding, the rule-based algorithms for home appli
ance scheduling show various limitations, such as less flexibility for 
extensions. The extended system cannot accurately rely on the condi
tions. Moreover, this approach cannot deal with large-scale systems, 
specifically DR schemes, in which it is very difficult to control home 
appliances in real-time. In the context of the COVID-19 pandemic, 
SHEMS that relies solely on rule-based strategy may not necessarily be 
the ideal solution because of the absence of user comfort considerations 
[22]. When integrating renewable energy resources with the smart 
home, a hybrid combination of rule-based algorithms with other opti
mization techniques is very efficient. The rule-based algorithm is a po
tential candidate to implement the energy management of RERs because 
the decision-making process does not require any future journey profile, 
hence making it suitable for real-time application. 

AI-based scheduling controllers 

Several artificial intelligence (AI) techniques, including fuzzy logic 
control (FLC), adaptive neural fuzzy inference system (ANFIS), and 
artificial neural network (ANN), are employed in modern SHEMS. An AI 
controller comprises algorithms that simulate the cognitive functions of 
human intelligence [132,133]. The FLC is an AI technique that formu
lates an automatic control scheme in an algorithm. It is achieved by 
disassembling a complex system into subsystems that are individually 
handled by linguistic control schemes, emulating expert knowledge. 
Hence, it does not require any numerical model to handle complex 
nonlinear systems [134-136]. 

Several studies have reported FLC usage in SHEMS to regulate 
household devices by reducing electricity usage and cost. A comparative 
study of various control strategies for device scheduling, including 
mixed-integer linear programming, continuous relaxation, and FLC, was 
presented in [137]. This study also employed different FLCs like FLC for 
the battery, heat-associated FLC, and task-associated FLC to control 
heating systems storage units and manage electricity usage. By consid
ering the outside temperature forecasts and electricity prices, a day- 
ahead scheduler for air-conditioners was designed with the help of 
FLC to achieve optimal climate control [138]. This FLC-based controller 
demonstrated promising simulation results for reducing electricity 
usage. In [139], a fuzzy technique-based generic electricity consumption 
model for residences was presented. It minimized the energy cost affil
iated with the electricity usage routines of domestic appliances while 
incorporating a solar PV system in SHEMS. The fuzzy system takes the 
kind and runtime retention of the appliance and the possibility of indi
vidual appliances starting within the next minute as inputs and output. 
However, this FLC-based controller’s capabilities were limited to only 
particular kinds of appliances. 

A household appliance scheduler was designed to increase user 
comfort and reduce electricity usage in smart homes. User comfort and 
price forecasting were modeled using fuzzy concepts [140]. In [141], 
energy usage was targeted using FLC without considering DR signals and 
user comfort. Another study reported a dynamic appliance utilization 
time controller relying on fuzzy logic principles for a residential system, 
comprising a solar PV, four appliances, and a battery, which achieved 
promising results in reducing load demand [142]. 

Table 2 (continued ) 

S. 
No 

Reference Description of the work 
done 

Remarks and limitations 

assumed to purchase 
electricity on the spot 
and contractual market 
to meet its demands. The 
optimization problem is 
designed to minimize 
the consumer expected 
cost in the form of two 
stages stochastic 
problem modeled as 
MILP problem and then 
solved by GAMS 
software 

with many local optima  

●The study does not 
consider quantifiable 
consumer satisfaction 
level  

Table 3 
types of controller and optimization techniques with description and their pros 
and cons.  

S. 
No. 

Controllers/Optimization Description 

1. Autonomous energy consumption 
scheduler 

It is a system that provides 
communication between utility and 
consumer. The purpose of the energy 
consumption scheduler is to 
minimize total energy consumption. 

2. Dynamic programming It is a mathematical technique used 
for executing a set of interconnected 
decisions sequences. It gives methods 
for deciding the best combination of 
options. 

3. Microcontroller GSM It is used for decision-making in off- 
peak and peak hours. 

4. Model Predictive Control It is a mathematical model developed 
as a problem of real-time 
optimization to compute and control 
repeatedly. 

5. Fuzzy logic controller Fuzzy logic method is similar to 
reasoning and has high precision. It is 
basic arithmetic for complex and 
nonlinear systems. 

6. GAMS software GAMS is a robust software for 
problem-solving. 

7. Arduino controller for HEM 
algorithm 

It is an open-source software, 
inexpensive compared to other 
microcontroller and simple in 
structure 

8. Linear programming method It is preferred for resolving complex 
problems. 

9. Heuristic/Metaheuristic algorithms The heuristic/meta-heuristic 
algorithms mimic problem solving 
pattern of creatures to solve complex 
practical problems. 

10. Bluetooth low energy (BLE) 
algorithm. Wireless Sensor Home 
Area Network (HAN) 

It is cost-effective method for SHEMS. 
BLE technology has been used, for 
example in cell phones and 
restorative gadgets. 
A HAN controls and monitors the 
energy consumption and 
communicate between the consumer 
and utility center.  
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Another type of AI technique used in smart AI controllers for modern 
SHEMS is ANFIS which optimizes home appliances’ controlling and 
scheduling mechanism to achieve minimum electricity consumption. 
ANFIS combines the benefits of both ANN and fuzzy logic systems to 
construct a set of fuzzy if-then rules to estimate nonlinear functions 
[143,144]. In [145], ANFIS based intelligent inference algorithm for 
SHEMS was proposed, improving inference among the devices that 
convey the retraining schedule to the ANFIS. Consequently, significant 
performance enhancement over the conventional ANFIS is achieved. An 
ANFIS-based intelligent controller for smart homes was presented, 
comprising a fuzzy sub-unit and an intelligent databank [146]. Data 
from external sensors, fuzzy sub-units, and output feedback serve as 
input to the AI controller. Such a controller finds the optimum energy 
scheduling scheme to dynamic cost without reducing energy usage. 
However, parameters like DRPs and consumer priorities were not taken 
into consideration. Table 4 shows a comparison of the ANN, FLC, and 
ANFIS controllers for SHEMS in the context of COVID19. 

By taking advantage of ANN, which consists of a computational 
model based on brain studies and a simplified arrangement of neurons, 
intelligent home appliance scheduling controllers have been reported 
[147,148]. Precise energy management decisions can decrease the 
operational delay for energy demand and aggregate energy cost by 
employing a hybrid distributed algorithm-based ANN [149]. The oper
ational efficacy of the ANN algorithm was improved by combining it 
with particle swarm optimization (PSO), which picks optimum neuron 
values in the individual hidden layer and the learning rate of ANN [150]. 
To achieve efficient utilization of renewables and reduced energy de
mand during peak times, a weekly appliance scheduler based on a 
combination of genetic algorithms (GA) and ANN was designed to 
optimize energy usage in smart homes [151]. An ANN-based smart 
thermal control approach has developed a highly accurate climate 
controller for residential buildings [152]. The use of an ANN-based 
control approach demonstrated a significant improvement in thermal 
comfort in residential buildings. Another study enhanced the accuracy 
of the ANN algorithm by using it in conjunction with the lightning 
search algorithm (LSA), which is a meta-heuristic optimization method, 
to estimate the optimized on/off status of home appliances [153]. 

Using ANFIS and FLC for smart AI controllers revealed several 
shortcomings. For example, ANFIS is data intensive and requires lengthy 
learning sessions. On the other hand, FLC depends on membership 
functions and suitable variables in algorithms based on conditions. 
Generally, the trial and error method is used to figure out the values of 
these variables causing delays. Therefore, the ANN technique is 
preferred over these conventional simulation tools. Its features include 
learning complex nonlinear functions, exceptional forecasting skills, and 
great performance for dynamic processes. Such features are much 
needed in this critical time of COVID-19. As shown in Table 4, ANN 
controller properties are better suited to deal with the dynamic demand 
of SHEMS compared to other controllers. 

Optimization-based controllers 

These algorithms are stimulated from experience enthused out of 
natural phenomena. Heuristic algorithms provide the best possible so
lutions for solving the optimization problem in a sensible and rational 

time frame. The available literature on the subject shows that these al
gorithms have been used in various approaches and models. 

Chandrasekaran et al. [154] worked on a bee colony (ABC) algorithm 
(binary/ real coded) to solve the thermal unit commitment (UC) prob
lem. A strategic evolutionary algorithm named imperialist competitive 
algorithm (ICA) was presented in [155] for resolving the UC problem. 
Another heuristic approach by Gudi et al. [156] for optimizing DSM 
operation was a binary coded PSO. Similarly, other approaches of 
optimization based on the AI technique are GA and graph search algo
rithms (GSA). 

Several optimization techniques have been revised and adopted to 
resolve the problem of home appliance scheduling (PHAS). Extensive 
research work has been conducted from past decades for this purpose. 
These optimization techniques are categorized as; 1) heuristic and 2) 
meta-heuristic methods. The former approach is normally deliberated 
for low-scale optimization problems [157]. The operational research 
mechanisms for this approach are 1) backtracking algorithm [54], 2) 
game theory [158] and, 3) mixed-integer linear programming (MILP) 
[54]. 

In [159], the author presented an approach that scheduled home 
appliances. The said work achieved a cost reduction of provided energy 
and better PAR by evaluating user comfort. A process for scheduling 
home appliances and PHEV was proposed in [160] to reduce the buying 
cost of electricity directly related to the grid. In a similar context, [161] 
reduced the energy cost of industrial and commercial buildings using 
dynamic energy cost tariffs. Furthermore, a 1–3% reduction in energy 
cost was achieved by splitting and shifting the workplace load one hour 
back. The authors have also developed a novel algorithm that achieved a 
5% to 10% reduction in energy cost and peak load in another work. In 
the strategy of [162], the DSM mechanism reduced energy cost with the 
PAR constraint and end-user priorities. 

To offer cost minimization scheduling of power resources and 
controllable appliances, in [163-168], MILP is used with energy opera
tion constraints. This scheduling system was dependent on the inter
mittent nature of RERs and the preparedness of the users. Thus, 
unknown parameters are added to the system using this intelligent 
optimization technique, giving a better solution. From the research work 
of [169], the authors concluded that meta-heuristic optimization 
methods are more accurate than heuristic methods. As meta-heuristic 
optimization methods used to address the PHAS have a strong capa
bility to explore a larger search space for an optimal solution. 

The meta-heuristic algorithms can also be improved by allowing for 
the hybridization of diverse meta-heuristic techniques. For this purpose, 
several research contributions are added to different strategies in 
swarm-based algorithms or the concept of competition in population- 
based algorithms. PHAS with several meta-heuristic optimization algo
rithms were adapted to solve the gaps of this approach and thus 
remained the major concern of the respective researchers. These ap
proaches with their related works are: 1) ant colony optimization (ACO) 
[170], 2) wind-driven optimization (WDO) [171,172], 3) binary PSO 
(BPSO) [170], 4) bacterial foraging optimization (BFAO) [171], 5) GA 
[173,170] and, 6) evolutionary algorithm (EA) [174]. The methods 
mentioned above of addressing large-scale PHAS can solve the respec
tive scheduling problems. However, most of the optimization methods 
still undergo local optima stagnation. Their failure ignores important 

Table 4 
Comparison of ANN, FLC, and ANFIS controllers and their relationship with the pandemic. Very helpful for pandemic Not helpful helpful.  
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criteria, such as reducing the peak to average ratio and maximizing user 
comfort. Therefore, it results in a poor trade-off between user comfort 
and limited budget, with the primary focus on cost reduction during the 
optimization process of PHAS. 

In [175] heuristic-based scheduling scheme for interruptible and 
non-interruptible appliances was proposed, which automatically man
ages the power requirement of a smart home according to the utility 
constraints and user priorities. The proposed control scheme was used to 
minimize electricity bills and PAR with the help of installed RER. 
Whereas, in [176], authors did not incorporate RER but maximized user 
comfort using implicit preferences given by the user. It is very chal
lenging to make user satisfaction quantifiable while reducing the billing 
cost of electricity. Therefore, the authors in [177] proposed a method to 
quantify user satisfaction using time and device-based preference under 
a limited budget. 

In [82], the grey wolf-based power scheduling problem was solved to 
reduce the electricity bill and PAR with maximum user comfort. Screen 
et al. [178] used mixed-integer nonlinear programming (MINLP) to 
control the scheduling of several classes of domestic appliances in 
response to the dynamic price signal. In contrast, the cost of the bill 
could be minimized to even a greater extent by incorporating DERs. The 
objective of the research work was to decrease the daily electricity bill 
while maintaining the user satisfaction level and avoiding the creation 
of new least-price peaks. Young Joo et al. presented an optimization 
algorithm that controls the switching of appliances to reduce monthly 
electricity bills while preserving a certain amount of user satisfaction 
based on the communication between SHEMS and consumers [179]. In 
[180], a multi-objective hybrid energy management system was pro
posed to minimize both the electricity expenses and the household 
greenhouse gas emissions by considering the entire life cycle of the 
generation assets used to provide energy. Uncertainties of energy prices 
and PV generation were examined using a hybrid robust–stochastic 
optimization model for SHEMS in the day ahead and real-time energy 
market [181]. 

A multi-objective evolutionary system was developed in [182,183] 
to alleviate the user discomfort related to high electricity costs. To 
decrease the cost of electricity and enhance user satisfaction level in 
terms of delay minimization in the appliance’s operation, the author in 
[173] used three AI mechanisms; BPSO, GA, and Cuckoo search. 

A heuristic algorithm was proposed for appliance scheduling which 
considered user priority and available power [184]. However, the 
research gap of their existing work was not considered to assign time- 
varying user preference in their strategy, which resulted in causing an 
increase in user discomfort. This user discomfort was addressed in [177] 
by applying fuzzy and quantifiable satisfaction levels based on three 
postulates. Their load satisfaction algorithm was constructed on GA, 
which improved satisfaction under a pre-defined limited cost budget. 
Subsequently, their deployment was tested on a test-bed of a single 
home with 12 different devices. 

On the other hand, in [185,186], an accretive comfort algorithm 
based on time-dependent and device-based priorities, implemented with 
the GA technique, was proposed. Another research was presented in 
[187], which considered cost and peak load reduction with optimal user 

comfort as their main objectives. Finally, Sara et al. presented a 
competitive grey wolf accretive satisfaction algorithm (GWASA) to 
minimize user discomfort [188]. This strategy was tested for three 
budget scenarios to achieve a relationship between user satisfaction and 
cost and hence elaborated the connection between two parameters 
which are of significant importance in the context of the COVID-19 
pandemic. Table 5 shows the relationship between different optimiza
tion techniques used in SHEMS and their implications during the 
COVID-19 pandemic. 

Socio-economic implications of COVID-19 on SHEMS 

The COVID-19 emerged in the last quarter of 2019 and drastically 
turned into a global crisis by early 2020. Due to the epidemic, an esti
mated 30% of the global citizenry was forced into lockdown with 
varying degrees of country-wide quarantines [189]. From a domestic 
perspective, provision, control, and affordability of power are decisive 
factors with the rise in household activities, including doing home of
fice, web purchasing, media streaming, powering domestic equipment, 
and climatization [190]. Due to the pandemic, an increasing number of 
people must adjust to being confined at home, either doing home-office 
or without the possibility to work, which caused changes in everyday 
activities, habits, conducts, and expectations. Another substantial vari
ation, alongside increased overall domestic electricity usage, is the daily 
energy usage pattern. The weekday usage pattern is somewhat identical 
to the classic pre-COVID-19 weekend pattern [191,192]. Conventional 
residential energy usage pattern exhibits a load peak in the morning and 
evening (off-working times). However, the home office excluded com
mutation during the pandemic, which reduced and postponed the 
morning peaks [193]. Both the United Kingdom (UK) and the United 
States (USA) have experienced an increased energy usage in the noon by 
30% and 23%, respectively, during the pandemic [193,194]. With the 
current dire economic situation due to work closures and downsizings, 
domestic end-users must manage variations in daily usage profile while 
reducing energy costs. SHEMS with incorporated solar PV can provide a 
possible solution because it reduces energy costs by scheduling appli
ances and managing energy storage. In addition, conveniently, energy 
generated by solar PV shows a peak during noon; hence, a larger portion 
of energy demand can be rendered by solar power. A recent survey 
showed that an increasing number of people are willing to adopt and pay 
for SHEMS with the options for enhancing domestic ambiance (i.e., 
thermal comfort and ambient air) and energy efficacy [22]. It was also 
reported that people with higher risk perception of catching COVID-19 
were willing to pay more for SHEMS, because of their higher tendency 
to stay at home, than the lower-risk perception groups [22]. 

In modern times, renewable energy is closely related to SHEMS 
because renewable resources such as solar PV have become an essential 
part of modern smart homes. Several driving factors include reducing 
energy costs, increasing environmental awareness, and incentives for 
incorporating renewables in smart homes. As a result, renewable gen
erations have grown enormously over the past two decades. However, 
unprecedented global health and economic crisis have jolted the 
renewable energy sector, threatening its advancement. Data showed 

Table 5 
Relation between optimization techniques and COVID-19 implications.  

Properties Mathematical techniques Heuristic techniques COVID-19 implications and solutions 

Model formulation Model is used to imitate a system, if 
the system is not very complex 

Meta-heuristic techniques try to mimic the 
natural phenomenon to solve the complex 
practical issues 

Issues related to SHEMS are becoming more complex in 
pandemic, and therefore require more realistic solution like meta- 
heuristic techniques 

Renewable energy 
integration 

Mathematical modelling becomes 
more complex 

Renewable energy integration is easy with the 
help of meta-heuristic algorithms 

RERs reduce energy costs which helps the consumers meet the 
growing demand for residential load during epidemics 

Efficiency Requires more time in complex 
problems 

Time consuming and repetitive work but offers 
considerably higher efficiency 

To enhance the user satisfaction, the efficiency of the technique is 
of significant importance 

Precision & 
accuracy 

Provides higher level of accuracy Provide greater precision and accuracy Accuracy is more important for user satisfaction as user 
satisfaction is directly related to user well being  
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that global energy demand reduced by 20% for every month of full 
lockdown. Though global energy demand in the first quarter of 2020 
decreased by 2.5%, electricity generated by renewable sources showed 
demand growth because of preferential accessibility to power nets and 
low operational costs [19,90]. In some regions, including the United 
States, Europe, China, and India, the supply met by sustainable resources 
touched all-time highs. 

Nevertheless, project developers faced a considerable shortage of 
workforce and distribution network interruptions depending on the re
gion and technology. Since China supplies 70% of global solar modules, 
the closure of factories in China delayed solar PV projects around the 
globe, which created significant job cuts in companies relying on resi
dential installations [195]. DER systems have proven to be very useful 
for many countryside and isolated localities during the early course of 
the COVID-19 crisis, providing power to healthcare centers and other 
necessary services. 

Furthermore, an in-depth investigation of economic revival packages 
for the post-pandemic era established that “green” restorative efforts 
like investment in renewables and building efficiency could be more 
cost-efficient. Therefore, as the focus has shifted from rescue to resto
ration, players from various parts of society advocate and push for a 
“green revival,” making renewables and SHEMS a vital area of research 
[196]. Nonetheless, the only way to deal with future pandemics and 
climatic changes is by limiting unnecessary economic ventures and 
building a more resilient and energy-efficient system. 

The long and short-term implications of the COVID-19 pandemic on 
household energy consumption can be summarized as:.  

• The effect on home entertainment activities is expected to increase in 
the long term, resulting in steady and increased power usage 

• The effect of increased domestic cooking on overall residential en
ergy consumption during the lockdown is expected to be temporary 

• The effect on domestic energy cost related to thermal comfort fea
tures (i.e., air-conditioning) is anticipated to stay for a long term, as 
more people are expected to opt for working from home in the future  

• The impact on residential illumination is expected to be similar to 
that for thermal comfort features and will primarily be dependent on 
the subsequent transitions 

• The effects on other residential electricity consumption are un
changed and show trivial temporary effects. 

Challenges associated with SHEMS 

There are several challenges associated with implementing the 
SHEMS concept in residential facilities. However, every challenge 
carries along with the opportunity and mobilization of resources. The 
first part of this section overviews the SHEMS associated challenges in 
general. In contrast, the later part presents the in-depth analysis of 
proposed solutions, summarizing their strengths and limitations against 
the backdrop of COVID-19. 

Every residence contains electronics and electrical equipment 
diverse in terms of energy usage/generation and quantity of use [197]. 
Certain features responsible for such diversity are dwelling attributes, 
residents’ quality of life, profession, and financial condition. Therefore, 
the adaptability of SHEMS for different architectures is crucial for the 
proper management of the schedules of such diverse devices. Further
more, integrating devices from different manufacturers using incom
patible standards makes interoperability an open research issue. 
Consequently, the integration of new equipment becomes more complex 
and costly. 

The COVID-19 pandemic has made well-being even more crucial as 
people spend a greater portion of their time at home. The air- 
conditioning and water heating, an essential part of well-being fea
tures, consume significantly more energy than other residential loads. 
This results in a substantial increment of residential energy demand. A 
possible solution to this increased energy demand could be 

incorporating the concept of green building in the SHEMS to exploit 
natural resources instead of electrical equipment to curtail power usage. 

The primary challenge of a SHEMS is to efficiently manage the power 
usage by balancing different criteria, including price, emission, con
sumption, wellbeing, etc. Every management scheme has its strengths 
and shortcomings. It, therefore, requires a customized solution accord
ing to the given set of priorities. Since people are willing to pay more for 
their dynamically changing priorities during the COVID-19 pandemic, 
efficient SHEMS which can handle these diversified goals are required. 
Several SHEMS tackling these challenges are discussed later in the 
section. 

Furthermore, uncertainties related to smart homes, including wind 
energy generation, PV, climate conditions, residents’ occupation, habits, 
power consumption patterns, etc., are also key problems. To overcome 
the issue arising from these uncertainties, several forecasting tech
niques, e.g., support vector machine (SVM), NN (Neural Network), and 
fuzzy logic, can be employed. The forecasting accuracy is directly 
dependent on the employed technique and error calculation method. 
Some previous studies have attempted to forecast residents’ habits, solar 
energy, wind speed, and water requirements for a complete day 
[60,198]. 

To utilize the full potential of SHEMS, it is required that the neces
sary data and information should always be accessible by the SHEMS. It 
should send/receive specific signals to/from a particular receiver/ 
sender (viz. loads and grid). However, currently available grid systems 
provide very limited support for services like communication, making it 
very challenging to implement the concept of SHEMS in true spirit. To 
overcome this problem, a smart grid enables systematic communication 
between different components connected to the grid, thus facilitating 
SHEMS to implement different operational strategies. Nonetheless, there 
remain security issues about keeping consumer information confidential 
and therefore provide room for future research that can be focused on 
developing stable and secure communication channels for controlling 
pricing, and metering. 

The main challenges of a particular SHEMS scheme are decreasing 
energy price, PAR, and user discomfort. In the design strategy of DSM, 
user comfort is adopted as a necessary criterion that can satisfy the 
energy cost minimization problem. From the existing literature point of 
view, user discomfort results from the pause produced by the scheduling 
of equipment and thermal comfort. Several research works viewed 
comfort as “a combined effect of electricity cost and user dissatisfaction 
related to the thermal and controllable appliances” [199]. The COVID- 
19 pandemic has made it more difficult for DRPs and optimization 
techniques to minimize consumer discomfort due to dynamically vary
ing user preferences. DRPs based scheduling of appliances in smart 
homes causes a delay in the appliances’ operations, resulting in 
discomfort to the end-user. Research has revealed that electricity con
sumers want to reduce electricity bills but do not compromise their 
satisfaction level. 

Moreover, a recent survey showed that the apparent worth of home- 
based undertakings and the domestic ambiance have increased during 
the pandemic, making user comfort a crucial and unavoidable factor 
[22]. Thus, a critical issue in the smart grid is maintaining the user 
comfort level with the reduced cost, often neglected in the cost mini
mization problem of optimal load scheduling. Most of the research work 
calculates delay in appliance scheduling and minimizes it to improve the 
user comfort level. However, in all these methods, the user’s satisfaction 
level is not quantifiable. Moreover, machine learning-based methods 
need previous user consumption patterns to train the model, making it 
less reliable. Consequently, it is emphasized in this research that further 
investigation is required for more reliable satisfaction algorithms along 
with DSM in the context of COVID-19. 

The optimization algorithms commonly used for optimal scheduling 
of appliances in smart homes are deterministic and not suitable for 
handling systems with large components. Due to the non-deterministic, 
multi-objective, highly non-convex, nonlinear, and modality nature of 
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home appliance scheduling problems, the deterministic optimization 
methods are excluded for these sorts of applications. Furthermore, as the 
size of the problem increases (as in the case of many appliances in a 
house), the complexity of the time schedule also increases. Therefore, 
finding a feasible solution using improved meta-heuristic algorithms to 
compute the optimal solution for appliance scheduling in a house is 
necessary. 

With the smart grid advancements, the power system is becoming 
more complex. Undoubtedly, as a part of a smart grid, a smart home 
plays a significant role in optimal energy consumption. However, smart 
homes’ optimal load scheduling, considering only the renewable re
sources or load scheduling of appliances on its demand side, has shown 
its shortcomings. It yields lower energy efficiency and lacks load flexi
bility. Thus, joint optimization of energy and comfort levels in smart 
homes is an important research direction. Table 6 summarises the recent 
works related to the challenges associated with the SHEMS. 

Conclusion 

This paper has provides an overview of the architecture and funda
mental functionalities of SHEMS that are helpful in a pandemic situa
tion. Moreover, it also gives a comparison of previous related works on 
SHEMS. The appliance modeling, scheduling techniques, demand 
response strategies, communication technologies, and the impact of 
COVID-19 on the residential demand were discussed in detail. Various 
types of SHEMS scheduling controllers such as rule-based, ANFIS, ANN, 
and FLC were investigated through the lens of the COVID-19 pandemic. 
Different numerical and meta-heuristic optimization techniques have 
been surveyed. They are used to obtain optimal appliance and energy 
scheduling patterns to minimize energy cost and power consumption by 
shifting the appliances’ operational periods to the off-peak hours with 
maximum user comfort. Several different techniques have been 
compared, considering the implications and their respective solutions 
related to the COVID-19 pandemic. During the pandemic, the peak en
ergy demand has been shifted to off-peak hours; thus, the role of RERs 

Table 6 
State of the art and challenges associated with SHEMS.       

Challenges associated with SHEMs in pandemic 

State 
of the 
art 

Pricing 
scheme 

Appliance 
classification 

Advantage Limitation cost 
minimization 

comfort 
maximization 

PAR 
reduction 

minimize 
extra 
power 

incorporate 
DERs 

[175] RTP Interruptible and 
non-interruptible 
load 

Manages the power 
requirements of  

SHs automatically 
according to the utility 
constraints and user 
priorities using 
heuristic technique 

Distributed controller 
is used which increase 
the required 
infrastructure cost 

✓ ✓ ✓ Х ✓ 

[176] TOU Section wise Employ implicit and 
interactive user 
satisfaction model 

NSGA is likely to stuck 
in local minima, 
required past data to 
compute preference 
values 

✓ ✓ Х Х Х 

[177] Based on 
Fixed-price 

Dependent 
mainly on the 
diverse section of 
the residence 

Low susceptibility of 
getting stuck in local 
minima/maxima, user 
comfort is maximized 
with limited budget 

Longer Computational 
duration of GA  

Static equipment 
preference 

Х ✓ Х Х Х 

[187] Fixed Price Dependent on 
various segment 
of the residence 

User preference 
varying with time were 
employed 

Consumer 
contentment does not 
reach its peak value, 
EACA is extremely 
vulnerable to 
variations in 
algorithm’s tuning 
parameters 

Х ✓ Х Х Х 

[82] Real-time 
cost 

Residential 
equipment 

Algorithm focuses on 
an even switchover 
between global and 
local optimums 

Consumer priority is 
uncared for concern, 
cost can be more 
reduced by using DERs 

✓ ✓ ✓ Х Х 

[178] Dynamic cost 
model 

Residential 
equipment 

Computationally 
effective 

User preference not 
taken into account, 

✓ Х Х Х Х 

[179] TOU, 
Inclined 
block rate 
cost 
estimation 
tariff 

Controllable and 
uncontrollable 

Converge the total 
energy price as well as 
aggregate energy usage 

User preference is not 
taken into account 

✓ Х Х Х Х 

[180] RTP fixed load Hybrid EMS to reduce 
greenhouse gas 
emissions without 
incurring expensive 
electricity bill cost 

preference of the user 
is not taken, user 
comfort is ignored 

✓ Х ✓ ✓ ✓ 

[181] RTP fixed load manage the 
uncertainties of the day 
ahead market price 
when PV generation is 
assumed 

user comfort is not 
taken into account 

✓ Х Х Х ✓  
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has increased to reduce the residential energy cost and dependency on 
the utility grid. Different RERs and their integration in SHEMS were also 
analyzed in this work. 

The COVID-19 pandemic has been catastrophic for the economy and 
caused alteration of everyday routines. However, it has increased the 
awareness of climatic changes and positively changed people’s attitude, 
both on government and domestic levels, towards adaptation and will
ingness to pay for renewable-based SHEMS. The COVID-19 pandemic 
has significantly changed consumer preferences. They are willing to pay 
more, especially for wellbeing functions, atomization of home appli
ances, and visualizing and monitoring energy consumption. This makes 
consumer comfort the most crucial SHEMS parameter during the 
pandemic. However, achieving a higher level of consumer comfort, for 
dynamically changing consumer preferences during the pandemic, is 
also more challenging and requires improvements in currently available 
DR and optimization techniques. It is suggested that a renewable- 
energy-based SHEMS with improved multi-objective meta-heuristic 
optimization algorithms utilizing AI techniques are better equipped to 
cope with the dynamically changing domestic power requirements 
during the pandemic. Therefore, this work has significant value in 
providing a foundation for researchers to formulate new strategies to 
further improve the DRP and optimization techniques by considering 
their pandemic-related limitations and challenges as identified in this 
elaborative study. Besides, this study is also of vital importance for 
future research, considering the expected new wave of COVID-19 and 
the recurrence risk of pandemics exacerbated by global climatic 
variations. 
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