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Abstract

Graft-versus-host disease (GVHD) is an important cause of morbidity and mortality after
allogeneic hematopoietic cell transplantation (HCT). Many studies have suggested that human
herpesvirus-6B (HHV-6B) plays a role in acute GVHD (aGVHD) after HCT. Our objective was to
systematically summarize and analyze evidence regarding HHV-6B reactivation and development
of aGVHD. PubMed and EMBASE databases were searched using terms for HHV-6, HCT,
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and aGVHD, yielding 865 unique results. Case reports, reviews, articles focusing on inherited
chromosomally integrated HHV-6, poster presentations, and articles not published in English were
excluded. The remaining 467 articles were reviewed for the following requirements: a statistical
analysis of HHV-6B reactivation and a GVHD was described, HHV-6B reactivation was defined
by PCR, and blood (plasma, serum, or peripheral blood mononuclear cells) was used for HHV-6B
PCR. Data were abstracted from publications that met these criteria (n = 33). Publications were
assigned to 1 of 3 groups: (1) HHV-6B reactivation was analyzed as a time-dependent risk factor
for subsequent aGVHD (n = 14), (2) aGVHD was analyzed as a time-dependent risk factor

for subsequent HHV-6B reactivation (h = 1), and (3) analysis without temporal specification

(n = 18). A statistically significant association (P < .05) between HHV-6B reactivation and
aGVHD was observed in 10 of 14 studies (71%) in group 1, 0 of 1 study (0%) in Group 2,

and 8 of 18 studies (44.4%) in Group 3. Of the 14 studies that analyzed HHV-6B as a risk

factor for subsequent aGVHD, 11 performed a multivariate analysis and reported a hazard ratio,
which reached statistical significance in 9 of these s tudies. Meta-analysis of these 11 studies
demonstrated a statistically significant association between HHV-6B and subsequent grades Il

to IV aGVHD (hazard ratio, 2.65; 95% confidence interval, 1.89 to 3.72; £<.001).HHV-6B
reactivation is associated with aGVHD, and when studies have a temporal component to their
design, HHV-6B reactivation is associated with subsequent aGVHD. Further research is needed to
investigate whether antiviral prophylaxis reduces incidence or severity of aGVHD.
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INTRODUCTION

Graft-versus-host disease (GVHD) is an important cause of morbidity and mortality after
allogeneic hematopoietic cell transplantation (HCT) [1]. Approximately 40% of allogeneic
HCT recipients from HLA-identical sibling donors will develop acute GVHD (aGVHD)
despite immunosuppressive prophylaxis; the incidence is even higher for recipients of
allogeneic HCT from unrelated donors (~60%) [2]. aGVHD presents within the first 100
days post-transplantation, typically around the time of engraftment, but late-onset aGVHD
can occur beyond 100 days, often when immunosuppression is reduced [1,3]. Over the last
few decades there has been a decrease in incidence and severity of aGVHD because of more
effective prevention strategies [4,5]. However, GVHD remains a significant burden on HCT
recipients through end-organ damage and immunosuppressive treatment regimens, which
also increase risk of opportunistic infections [6]. aGVHD is believed to occur after damage
to host tissues from pretransplant chemotherapy and irradiation. A complex cytokine storm
follows and leads to activation of donor lymphocytes, mainly T cells, which then cause
direct cytotoxicity of targeted organs, primarily the skin, gastrointestinal tract, and liver
[7,8]. Recent studies have suggested that changes in the gut microbiota can also contribute to
the pathogenesis and severity of GVHD [9].

Human herpesvirus 6B (HHV-6B) is a ubiquitous beta-herpesvirus that infects over 90%
of people within the first 2 years of life [10]. Typically, HHV-6B reactivation occurs
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in approximately 40% of allogeneic HCT recipients (range, 13.9%-93.6%; Table 1).
However, the reactivation rate of HHV-6 can vary greatly depending on the level of
immunosuppression, the sensitivity of the diagnostic assay, and the stem cell source (the
reactivation rate may surpass 90% in T cell-depleted umbilical cord blood transplant [CBT]
recipients [14]). HHV-6B is the most frequent cause of encephalitis in HCT recipients [15].
Other signs and syndromes associated with HHV-6 reactivation include fever, rash, diarrhea,
thrombocytopenia, and pneumonitis [16]. Several studies have suggested that HHV-6B plays
arole in aGVHD after HCT [11,12,17-30]. Our objective was to systematically summarize
and analyze evidence regarding HHV-6B reactivation and development of aGVHD in HCT
recipients.

METHODS

Literature Search Strategy

A systematic inquiry of publications indexed in the PubMed database was performed using
the search phrase “(HHV-6 OR HHV6 OR herpesvirus-6 OR HHV-6A OR HHV6A OR
herpesvirus-6A OR HHV-6B OR HHV6B OR herpesvirus-6B) AND (graft versus host OR
GVHD OR cord blood OR bone marrow OR stem cell)” published from November 1987 to
April 2017, which yielded 653 results. Next, a systematic inquiry of publications indexed in
the EMBASE database was performed using the combination of the 3 search phrases:

1. “human herpesvirus 6”/exp OR “human herpesvirus 6” OR “human herpesvirus
6a”/exp OR “human herpesvirus 6a” OR “human herpesvirus 6b”/exp OR
“human herpesvirus 6b” OR “hhv6” (n = 5081)

2. “acute graft versus host disease”/exp OR “acute graft versus host disease” OR
“acute graft versus host reaction”/exp OR “acute graft versus host reaction” OR
“agvhd”/exp OR “agvhd” OR “graft versus host” OR “gvhd”/exp OR “gvhd” OR
“graft versus host reaction”/exp OR “graft versus host reaction” (n = 61,767)

3. “hematopoietic stem cell transplantation”/exp OR *“hematopoietic stem cell
transplantation” OR “hematopoietic stem cell therapy”/exp OR “hematopoietic
stem cell therapy” OR “umbilical cord blood”/exp OR “umbilical cord
blood” OR “cord blood”/exp OR “cord blood” OR “cord blood stem cell
transplantation”/exp OR “cord blood stem cell transplantation” OR “bone
marrow”/exp OR “bone marrow” OR “bone marrow transplantation”/exp OR
“bone marrow transplantation” OR “bone marrow transfusion”/exp OR “bone
marrow transfusion” (n = 480,335)

This search algorithm produced 366 results.

A total of 1019 results from both inquiries were identified. Of these, 154 were duplicates,
leaving 865 unique results. No efforts were made to identify unpublished work.

Study Selection

Figure 1 shows a flowchart of study selection. Case reports (n = 189), reviews (n = 100),
articles describing cases involving inherited chromosomally integrated HHV-6 (CiHHV-6; n
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= 23), articles not published in English (n = 51), and poster presentations (n = 35) were
excluded, resulting in 467 remaining articles.

Next, these articles were reviewed for the following requirements: (1) description of a
statistical analysis assessing the relationship between HHV-6B reactivation and aGVHD
(418 articles excluded for requirement 1), (2) HHV-6B reactivation was defined by HHV-6B
DNA detection by PCR, (3) blood (plasma, serum, or peripheral blood mononuclear cells
[PBMCs]) specimens were used for HHV-6 testing (12 articles excluded for requirements

2 and 3), and (4) patients were systematically tested for HHV-6 regardless of clinical
symptoms and signs of disease (3 articles excluded for requirement 4). One article was
deemed ineligible for inclusion because the authors grouped aGVHD and idiopathic
pulmonary syndrome into an aggregate outcome they defined as “allo-reactive” disease.

Data were abstracted from publications that met the inclusion criteria (n = 33) by 1
investigator (T.L.P.) and confirmed by another (K.C.). An effort was made to contact
investigators to confirm data. Corresponding authors were given 8 weeks to respond to
inquiries.

Publications were assigned to 1 of 3 groups based on the temporal nature of the HHV-6B
and aGVHD analysis by 2 investigators (T.L.P> and D.M.Z.): (1) HHV-6B reactivation
was analyzed as a time-dependent variable with subsequent aGVHD as the outcome, (2)
aGVHD was analyzed as a time-dependent variable with subsequent HHV-6B reactivation
as the outcome, and (3) analysis was performed without temporal specification. If the
corresponding authors did not respond to inquiries regarding whether they treated aGVHD
and HHV-6B reactivation as time-dependent variables within the 8 weeks, their study was
placed in group 3.

Data Extraction

Publications that met the inclusion criteria were subjected to data extraction by 1
investigator (T.L.P.). Study design, subject demographic and clinical information, and results
were collected (Tables 1 to 3). HHV-6B and aGVHD statistical results were confirmed by a
second investigator (K.C.).

Meta-Analysis

Study result consistency was assessed using a test of heterogeneity, which refers to the total
variation in outcomes between studies. Publication bias was evaluated using a funnel plot.
Day +100 and estimates for GVHD grades 11 to IV were chosen for analysis if a study
reported multiple time points or grades, respectively. Random-effects models, which take
into account the differences among participants within studies and allow for differing effect
sizes across studies, were used for meta-analysis. Hazard ratios (HRs; Table 2) or calculated
odds ratios (Table 3) were transformed by taking their natural logarithms (In). Standard
errors were calculated from the In (HR) or In (odds ratio) estimates. To view the effects

of patient age (pediatric versus adult), HHV-6B prophylaxis, CBT (cut-off,>20%), and the
effect of different definitions of HHV-6B reactivation (high level of >1000 copies/mL versus
any or lower level), we performed stratified analyses. A forest plot, sorted by publication
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date, was used to visualize all study results. Statistical analyses were completed in STATA
version 14 (StataCorp LP, College Station, TX).

Study Quality Assessment

This systematic review and meta-analysis was performed according to PRISMA guidelines
[48].

RESULTS

In total, 33 publications met eligibility criteria for inclusion. Fourteen studies analyzed
HHV-6B reactivation as a time-dependent variable with subsequent aGVHD as the outcome
(group 1), 1 study analyzed aGVHD as a time-dependent variable with subsequent HHV-6B
reactivation as the outcome (group 2), and 18 publications performed an analysis of
HHV-6B and aGVHD without temporal specification (group 3). Table 1 summarizes the
characteristics of the 33 studies that met our inclusion criteria.

Studies Examining HHV-6B Reactivation as a Risk Factor for Subsequent aGVHD

Of the 14 studies that analyzed HHV-6B as a predictor for subsequent aGVHD, 10 studies
reported a statistically significant (P < .05) association (Table 2). Ten of 14 studies were
prospective cohort studies (71.4%), whereas the remaining 4 were retrospective cohort
studies (28.6%). Bone marrow and peripheral blood stem cell transplants were included in
most studies, whereas CBTs became more prevalent within this past decade. The size of the
cohorts varied (median, 103; range 49 to 315); the 3 largest studies (n > 200) all reported

a statistically significant association between HHV-6B reactivation and aGVHD. Twelve of
14 studies performed a multivariate analysis, 10 of which reported a statistically significant
association.

Plasma was the most common sample used for HHV-6B testing (12/14, 85.7%), and
quantitative PCR (qPCR) was the most common method of diagnosing HHV-6B reactivation
(13/14, 92.9%). Overall, a total of 1773 patients were examined for HHV-6B in these 14
studies, and 784 of these patients (44.2%) reactivated HHV-6 (range, 17% to 94%). Studies
that used a threshold for reactivation set at >1000 HHV-6 DNA copies/mL reported an
HHV-6B reactivation rate of 23% (range, 17% to 27%) compared with 52% (range, 28%

to 94%) when any level of detection or a threshold <1000 copies/mL was accepted as
reactivation.

Violago et al. [13] administered HHV-6B active antiviral prophylaxis (valganciclovir/
ganciclovir or foscarnet) after HCT to patients at risk for cytomegalovirus (CMV) infection
(n =67, 67% of cohort); no other study administered HHV-6B active antiviral prophylaxis
after HCT. Of the 14 studies, only Zerr et al. [22] systematically examined their cohort for
CiHHV-6. Nine of 14 (64%) studies [12,13,17,19,20,24,27,31,32] examined other pathogens
besides HHV-6B (including CMV, Epstein Barr virus [EBV], varicella zoster virus, BK
virus, herpes simplex virus, adenovirus, and HHV-7) as risk factors for aGVHD, and only
Admiraal et al. [17] reported a statistically significant association between a non-HHV-6
pathogen, EBV, and aGVHD. Although 4 other studies [13,19,24,27] examined EBV as a
risk factor for aGVHD, none observed a statistically significant association.
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Studies Examining aGVHD as a Risk Factor for Subsequent HHV-6B Reactivation

Only 1 study examined aGVHD as a risk factor for subsequent HHV-6B reactivation. Hill et
al. [49] prospectively studied a cohort of 44 CBT recipients and did not find a statistically
significant association in multivariate analysis (HR, 2.41; 95% ClI, .94 to 6.19; P=.07).

Hill et al. [49] used plasma samples for gPCR, defined HHV-6B reactivation as DNAemia
>25 copies/mL and reported that high-dose valacyclovir mitigated HHV-6B reactivation
(adjusted HR, .39; 95% ClI, .14 to 1.08). Patients with suspected ciHHV-6 were excluded
from their analysis. Evaluation of aGVHD as a risk factor for reactivation of other viruses
was not performed in this study.

Studies Examining HHV-6B Reactivation and aGVHD without Temporal Specification

Of the 18 studies that examined HHV-6B reactivation and aGVHD without temporal
specification (group 3), 8 (44%) reported a statistically significant association (P < .05), and
1 study [45] found a marginal association (P=.051). Twelve of 18 studies were prospective
cohort studies, 4 were retrospective cohort studies, and 2 were case control studies. Nine
studies included CBT recipients, and 2 of these [36,40] had a majority of CBT recipients

in their cohort. The overall size of the cohorts varied (median, 48 to 49 patients; range,

15 to 366), 4 of which included more than 100 patients. Only 2 of 18 studies performed

a multivariate analysis for HHV-6B reactivation versus aGVHD [35,40], with a statistically
significant association reported in 1 of the 2 (HR, 2.3; 95% CI, 1.1 to 4.7; P=.023) [40].

Overall, a total of 1553 patients were examined for HHV-6B reactivation in these 18 studies,
of which 692 (44.6%) reactivated HHV-6B (median, 54.7%; range, 20% to 87%). The
samples used for HHV-6B testing and the type of PCR testing used to identify HHV-6B
reactivation varied greatly (Tables 1 and 3). Of the 1216 patients examined for HHV-6B
reactivation using qPCR (11 studies), 458 (37.7%) reactivated HHV-6B (median, 53%;
range, 13.9% to 87%). Of the 133 patients who had samples available for qualitative PCR
testing in 2 studies, HHV-6B was detected in 75 patients (56.4%) (median, 51.4%; range,
42.9% to 60%). Of the 204 patients who had samples available for nested PCR testing in 5
studies, 135 patients (66.2%) reactivated HHV-6B (median, 78.4%; range, 56% to 85%).

HHV-6B-active antiviral prophylaxis (ganciclovir, foscarnet, or cidofovir) was not
administered in any of the studies after HCT. Three studies [29,33,37] examined patients
in their respective cohorts for ciHHV-6. Five of 18 studies examined pathogens other
than HHV-6B versus aGVHD, and Kullberg-Lindh et al. [35] found that aGVHD was a
prognostic factor for adenovirus infection, although this association was not significant in
multivariate analysis.

Meta-Analysis

Study result consistency was assessed using a test of heterogeneity for our meta-analyses

of both groups 1 and 3 (group 1, 12 = 59.7%, P=.006; group 3: 12 = 23.8%, P=.210),
indicating low to moderate heterogeneity between the risk of aGVHD associated with
HHV-6B reactivation (Figures 2 and 3). Additionally, review of funnel plots suggested some
publication bias present in group 1.
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Eleven of 14 studies in group 1 reported an HR from Cox proportional hazards regression,
which reached statistical significance in 9 studies (Table 2). Meta-analysis of these 11
studies (Figure 3) demonstrated a significant association between HHV-6B and subsequent
grades Il to IV aGVHD (HR, 2.65; 95% ClI, 1.89 to 3.72; P<.001). Every group 1 study
included in our meta-analysis provided an HR for grades Il to IV aGVHD except Cirrone
et al. [11]; thus, we performed a sensitivity analysis excluding Cirrone et al. and found that
this did not affect our results (HR, 2.64; 95% Cl, 1.82 to 3.82; £< .001; data not shown). In
addition, analyses stratified by patient age, HHV-6B prophylaxis, GVHD prophylaxis, CBT
(cut-off, >70%), and definition of HHV-6B reactivation did not affect the overall results
(data not shown).

Twelve of 18 studies in group 3 provided sufficient data to perform a meta-analysis. Meta-
analysis of these 12 studies also demonstrated a significant association between HHV-6B
and grades Il to IV aGVHD (odds ratio, 2.41; 95% Cl, 1.70 to 3.43; £<.001). An analysis
stratified by CBT (cut-off, >70%) was performed and did not affect the results (data not
shown). Other stratified analyses were not performed because of a lack of variability or lack
of a clear cut-off in the targeted variables across the included studies.

DISCUSSION

We performed a systematic review of studies evaluating an association between HHV-6B
reactivation and aGVHD. Meta-analysis of the studies that specifically analyzed HHV-6B as
a risk factor for subsequent aGVHD demonstrated a significant association (HR, 2.65; 95%
Cl, 1.89 to 3.72; P<.001). Similarly, meta-analysis of the studies that did not perform time-
dependent analyses of HHV-6B and aGVHD also demonstrated a significant association
(odds ratio, 2.41; 95% CI, 1.70 to 3.43; £<.001).

Because the clinical implications of ciHHV-6 are still unclear, we excluded articles focusing
on ciHHV-6. However, it is worth noting that in a retrospective analysis of archived pre-HCT
PBMC samples from 4319 HCT donor-recipient pairs who received an allogeneic HCT
from 1992 to 2013, investigators reported that grades 1l to IV aGVVHD was more frequent
when recipients or donors had ciHHV-6 [50]. Further research is needed to fully understand
the clinical impact of ciHHV-6.

Other herpesviruses have been assessed as potential triggers of aGVHD. CMV and EBV, in
particular, have been extensively analyzed as risk factors for GVHD; however, few studies
have demonstrated a statistically significant association, and, overall, results have conflicted
[12,51,52]. In a cohort study of 4394 allogeneic HCT patients (excluding CBT) spanning
from 1995 to 2013, Green et al. [53] reported that CMV reactivation was not associated
with subsequent development of grades Il to IV aGVHD (adjusted HR, 1.09; 95% ClI, .97 to
1.22) or grades Il to IV aGVHD (adjusted HR, .91; 95% ClI, .68 to 1.21). Furthermore, a
study of 11,364 allogeneic HCT patients reported that the 100-day cumulative incidence of
grades Il to IV aGVHD was increased by only 1.07-fold if the donor was EBV-seropositive
versus EBV-seronegative (32.2% versus 30.2%, respectively) [54]. In contrast, the presented
meta-analysis demonstrates that HHV-6B has a strong statistical association with subsequent
grades Il to IV aGVHD (HR, 2.65; £<.001).

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2022 March 20.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Phan et al.

Page 8

Use of quantitative HHV-6 results may help identify patients at particularly high risk of
aGVHD. For example, Wang et al. [12] reported that the cumulative incidences of grades
Il to IV aGVHD in low (<100 copies/106 PBMCs), intermediate (100 to 5000 copies/10°
PBMCs) and high (>5000 copies/108 PBMCs) HHV-6 viral level groups were 13.8%,
47.1%, and 54.6%, respectively. Compared with patients with low viral level of HHV-6B,
patients with intermediate and high viral levels of HHV-6B had increased probability of
subsequent development of grades Il to IV aGVHD (£ =.0005). Violago et al. [13],

de Pagter et al. [20], and Admiraal et al. [17] all used a threshold of >1000 copies/mL
plasma to define HHV-6 reactivation, and all reported similar reactivation rates (19%

in 100 patients, 17% in 108 patients, and 27% in 273 patients, respectively). Despite
this, in multivariate analysis the association between HHV-6 reactivation and subsequent
aGVHD reached statistical significance in only de Pagter et al. (HR, 6.07; £<.001) and
Admiraal et al. (HR, 3.47; £<.0001) but not in Violago et al. (HR, 1.95; P=.178). This
inconsistency was likely due to the size of the studied cohorts, although it is possible that
CMV prophylaxis, which is effective against HHV-6, could have affected Violago et al.’s
results.

One possible mechanism of HHV-6 triggering or exacerbating GVHD is by interaction

with and up-regulation of CD134 (also known as OX40 or TNFRSF4) [55,56], which is an
HHV-6B receptor for cell entry [57]. CD134 is an immunomodulatory molecule that blocks
natural regulatory T cell (Treg) activity and antagonizes generation of inducible Treg cells
[58,59], and a recent study of 23 allogeneic HCT patients showed that CD134 up-regulation
coincided with HHV-6B reactivation [56]. Through IL-10 and other immune mechanisms,
Treg cells reduce the functional activity of autoreactive cells and are believed to prevent the
development of aGVHD [60,61]. CD134 has also been suggested to play a role in GVHD
pathophysiology in transplant recipients [62—65]. Results from an in vitro study [63] suggest
that use of CD134-allodepleted grafts may reduce alloreactivity and GVHD without loss

of pathogen-specific and leukemia-specific immunity. Studies performed in mouse models
reported that use of an antiCD134 monoclonal antibody reduced the morbidity and mortality
of aGVHD in mice [62,64]. Further clinical studies are needed to fully understand the
implications in humans.

Additionally, some researchers have suggested that the delay or absence of immune
reconstitution, especially of CD4* T cells, facilitates viral reactivation [33,66-68], which
may subsequently contribute to a number of outcomes including aGVHD, graft failure,

and increased mortality [69]. After allogeneic HCT, T cell reconstitution is a long process
that proceeds along 2 pathways with distinct kinetics: (1) a thymus-independent phase that
begins immediately during the ear/y post-transplant period and is mediated by adoptively
transferred graft-derived T cells or recipient T cells that survived conditioning and (2) a /ate
thymus-dependent phase that is a prolonged, multistep process that can take up to 18 months
after HCT, in which lymphomyeloid progenitor cells repopulate the thymus with thymocyte
precursors that can reconstitute thymopoiesis [68,70]. CD4* lymphopenia, including CD4*/
CD25" (Treg) lymphopenia, has been associated with high levels of homeostatic cytokines
like IL-7, which has been implicated in the pathogenesis of GVHD [71-73]. Given that
HHV-6 reactivates early and often after HCT and can directly infect and deplete CD4™ cells
[17,44,67,68,74-79], it is reasonable to hypothesize that HHV-6 could interfere with early T
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cell reconstitution [44,67,74—79], resulting in uncontrolled alloreactivity secondary to Treg
depletion and leading to aGVHD. Coupled with our systematic review and meta-analysis,
the aforementioned data provide a possible causal pathway for HHV-6B and aGVHD.
However, HHV-6 reactivation could simply be an epiphenomenon; thus, more experimental
data, such as results from a prospective randomized trial, are needed to confirm causality.

Although the search algorithm resulted in over 1000 articles and abstracts, there is still a
possibility that some publications were not included using this strategy. Additionally, results
from the funnel plot implied some evidence of publication bias in the group 1 analysis;
however, there was no evidence publication bias in the group 3 analysis. Another limitation
of this systematic review and meta-analysis is that the patient population, the methods
(including type of HCT performed, type/dosage of immunosuppressive drugs used, HHV-6
testing procedures, GVHD prophylaxis/treatment), and the outcome definitions were not
identical across all studies. In addition, the existent risk of misdiagnosis of HHV-6 skin
manifestations as aGVHD [23,80], and the variability in aGVHD diagnosis and staging
practices between transplant centers may further confound the comparison of findings across
these studies.

Finally, the statistically significant relationship between HHV-6 reactivation and subsequent
aGVHD does not prove causality. Antiviral trials are needed to define strategies to manage
HHV-6B and to elucidate its role in aGVVHD. Unfortunately, the available antivirals for
HHV-6 can have adverse side effects (eg, bone marrow suppression, nephrotoxicity), which
will make interventional studies technically challenging until less toxic HHV-6B—-active
antivirals are available or until there is more direct experimental evidence to support such

a trial. Because HHV-6B infection can persist in the organ without a high viral load in

the periphery [81-83], analysis of tissue may be the only means of identifying an active
HHV-6B infection. At the National Institute of Allergy and Infectious Diseases—sponsored
workshop on roseoloviruses, leading experts in the field underscored that in-depth molecular
interrogation of tissues involved in end-organ disease is required to identify pathologic and
molecular signatures of HHV-6B infection [84]. Ultimately, determining whether antiviral
prophylaxis or treatment reduces the incidence or severity of aGVVHD while reducing
HHV-6B activity will provide conclusive evidence regarding the role HHV-6B plays in
aGVHD.
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Literature search:

PubMed and EMBASE online literature databases searched using terms for HHV-6, HCT, and aGVHD

(see Methods for full search algorithm)

\ 4

Search results: 865 unique articles

Articles screened on basis of title ) Excluded (n=353)
” 1. Case reports (n=189)
and abstract N
7- Reviews (n=100)
3 Articles describing cases involving inherited
chromosomally integrated HHV-6 (n=23)
i 4, Articles not published in English (n=51)
5% Poster presentations (n=35)
Included (n=467)
2
Manuscript review and application _ Excluded (n=434)
of inclusion criteria a1l Article did not include statistical analysis of HHV-6
reactivation as a risk factor for subsequent aGVHD or
vice versa (n=418)
v 2. HHV-6 reactivation was defined by laboratory
Included (n=33) methods other than PCR
3. Only human samples other than blood (plasma,
serum or PBMCs) were used for HHV-6 testing (n=12
total for exclusion criteria #2 and #3),
4. Article did not systematically test for HHV-6 (n=3)
5 Study grouped aGVHD and IPS into an aggregate
outcome that they defined as “allo-reactive” disease
(n=1)
v v \ 4
14 articles (Group 1) 1 articles (Group 2) 18 articles (Group 3)
Analyzed HHV-6 reactivation as Analyzed aGVHD as a risk factor Did not articulate whether HHV-
a risk factor for subsequent for subsequent HHV-6 6 reactivation or aGVHD
aGVHD reactivation occurred first
Figure 1.
Flow chart.
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Figure 2.
Funnel plots for group 1 (Z0p) and group 3 (bottom).
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Figure 3.

Forest plots for group 1 (Yef?) and group 3 (right).
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