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Abstract
Autism spectrum disorder (ASD) is characterized by aberrant functional connectivity (FC) within/between certain large-

scale brain networks. Although relatively lower level of FC between default mode network (DMN) regions (i.e., DMN-FC)

has been detected in many previous studies, they failed to capture the temporal dynamic features of DMN-FC and were

limited by small sample size. Here, the dynamical conditional correlation, which could assess precise FC at each time point

and has been proved to be a technique with high test–retest reliability, was applied to investigate the DMN-FC pattern of

patients with ASD from the Autism Brain Imaging Data Exchange, which included functional and structural brain imaging

data of more than 1000 participants. The data analysis here showed that compared to typical developing (TD) participants,

patients with ASD exhibited significantly lower mean DMN-FC level across recording time, but significantly higher

variance of DMN-FC level across recording time. Moreover, these alterations were significantly associated with symptom

severity of patients, especially their impaired communication skills and repetitive behaviors. These results support the view

that aberrant temporal dynamic of FC within DMN is an important neuropathological feature of ASD and is a potential

biomarker for ASD diagnosis.

Keywords Dynamic functional connectivity � Dynamical conditional correlation � Autism spectrum disorder �
Default mode network

Introduction

Autism spectrum disorder (ASD), refers to a broad range of

conditions characterized by challenges with social and

verbal/nonverbal communication skills and repetitive

behaviors (Anagnostou and Taylor 2011). According to the

2016 data of Autism and Developmental Disabilities

Monitoring Network which is an active surveillance pro-

gram that provides estimates of the prevalence of ASD in

United States, the ASD prevalence was 18.5 per 1000 (one

in 54) children aged 8 years, and ASD was 4.3 times as

prevalent among boys as among girls (Baio et al. 2018).

This neuropsychiatric disorder is generally diagnosed in

early childhood and brings heavy burden to the affected

individuals and their caregivers (Leigh and Du 2015).

Due to the application of the newly developed neu-

roimaging techniques, scientists have got a deep insight

into the neural mechanisms that underpin this disorder

(Amaral et al. 2008; Walsh et al. 2021). Using functional

magnetic resonance imaging (fMRI), researchers revealed

that ASD was accompanied by aberrant functional con-

nectivity (FC) between distinct cortical regions (Sun et al.

2021). This abnormal FC could be cortical hyperconnec-

tivity or hypoconnectivity, depending on various factors

(e.g., the large-scale brain network being investigated and

task being executed) (Jung et al. 2014; Kana et al. 2015;
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Keehn et al. 2013). In the current study, we focus on the FC

within default mode network (DMN) which plays crucial

role in mentalizing, self-reference and social cognition,

since hypoconnectivity between DMN regions is among

the most commonly reported findings in patients with ASD

(Padmanabhan et al. 2017). Although hypoconnectivity

within DMN has been consistently observed in previous

studies, the defects of these studies may seriously hinder

the discovery of precise FC pattern within DMN. Firstly,

static Pearson correlation coefficient between fMRI signals

of different brain regions was commonly used as measure

in previous ASD-related FC studies (Keehn et al. 2013;

Lawrence et al. 2019). However, it has been shown that the

coupling or dependency between cortical regions fluctuated

over time, even during task-free resting-state, thus static

FC may be too simplistic to capture the full extent of

cortical activities (Li et al. 2020). The sliding-window

based techniques, in which correlation matrices are com-

puted over fixed-length windowed segments of the neural

time series, have been applied to track the dynamic nature

of FC in some previous studies (Falahpour et al. 2016).

Note that, these techniques have certain limitations, e.g.,

the window length was arbitrarily decided by researchers,

unable to reflect transient FC mode, and low or moderate

test–retest reliability (Choe et al. 2017). Secondly, the

sample size was very small in previous studies (i.e.,\ 100)

(Falahpour et al. 2016; Jung et al. 2014). Considering these

shortcomings, the dynamical conditional correlation

(DCC), which could assess the dynamic functional con-

nectivity (dFC) between brain areas and has been proved to

be a FC technique with relatively higher test–retest relia-

bility than traditional sliding-window approach (Choe et al.

2017), was applied to investigate the DMN-FC (i.e., the

functional connectivity between DMN regions) patterns of

patients with ASD. The datasets from the Autism Brain

Imaging Data Exchange (ABIDE), which included func-

tional and structural brain imaging data of more than 1000

participants, were used here (Di Martino et al. 2014). We

hypothesized that compared to typical developing (TD)

participants, patients with ASD should exhibit significantly

lower average DMN-FC level across recording time which

is consistent with previous studies, but significantly higher

variation of DMN-FC level across recording time. More-

over, these abnormalities should be significantly associated

with the autistic symptom severity in ASD group.

Materials and methods

The selection of fMRI datasets

ABIDE consists of 1112 resting-state functional magnetic

resonance imaging datasets with corresponding structural

MRI and phenotypic information (e.g., gender, age at scan,

sex, IQ and diagnostic information) of 539 patients with

ASD and 573 TD participants (Di Martino et al. 2014).

These datasets were collected from 17 international sites,

and have been anonymized in accordance with the Health

Insurance Portability and Accountability Act guidelines

and 1000 Functional Connectomes Project/International

Neuroimaging Data-sharing Initiative protocols. The data

collection was carried out in accordance with the basic

principles of the Helsinki declaration and approved by the

research ethics committees of 17 institutions (i.e., Cali-

fornia Institute of Technology/Carnegie Mellon University/

Kennedy Krieger Institute/Ludwig Maximilians University

Munich/NYU Langone Medical Center/Olin Center, Insti-

tute of Living at Hartford Hospital/Oregon Health and

Science University/San Diego State University/BCN Neu-

roImaging Center, University Medical Center Groningen/

Stanford University/Trinity Centre for Health Sciences/

University of California, Los Angeles/University of Leu-

ven/University of Michigan/University of Pittsburgh/

University of Utah/Yale Child Study Center). Informed

consent was obtained from the participants or their legal

guardians. Details of acquisition and site-specific protocols

are available at .

Imaging analyses here were limited to: (1) data with

anatomical images providing near-full brain coverage and

successful registration; (2) data passing manual quality

assessments of three independent raters; (3) data with

Mean Framewise Displacement (func_mean_fd)\ 0.2

mm; (4) individuals with Percent Framewise Displacement

(FD) greater than 0.2 mm (func_perc_fd)\ 25%; (5)

individuals with IQ[ 75; (6) individuals in ASD group

with reliable diagnostic information obtained via Autism

Diagnostic Observation Scale (ADOS) or Autism Diag-

nostic Interview-Revised (ADI-R); (7) data from sites with

more than three participants in each group after selecting

datasets based on the above six criteria. Finally, the data-

sets of 343 patients with ASD and 428 TD participants

were retained. Statistical tests conducted on the age at scan,

func_mean_fd, func_perc_fd and IQ score did not reveal

any significant group difference (ps[ 0.05).

Signal preprocessing

The fMRI signal preprocessing was performed using the

Data Processing Assistant for Resting-State fMRI

(DPARSF) (Yan and Zang 2010), which is a convenient

plug-in software based on Statistical Parametric Mapping

(SPM) package and Resting-State fMRI Data Analysis

Toolkit (REST) (Friston et al. 1995; Song et al. 2011). The

following sequence of preprocessing steps was performed:
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1. The first 4 image volumes were discarded to allow

the fMRI signal to reach a steady state.

2. Slice-timing correction. All volume slices were

corrected for different signal acquisition times by

shifting the signal measured in each slice relative to

the acquisition of the slice at the mid-point of each

TR.

3. The images for each subject were realigned using a

six-parameter (rigid body) linear transformation with

a two-pass procedure (registered to the first image

and then registered to the mean of the images after

the first realignment).

4. Individual structural images (T1-weighted

MPRAGE) were co-registered to the mean functional

image after realignment using a 6 degrees-of-free-

dom linear transformation without re-sampling.

5. The transformed structural images were segmented

into grey matter, white matter and cerebrospinal fluid

(Ashburner and Friston 2005). The Diffeomorphic

Anatomical Registration Through Exponentiated Lie

algebra (DARTEL) tool was used to compute

transformations from individual native space to

MNI space (Ashburner 2007).

6. The Friston 24-parameter model was used to regress

out head motion effects from the realigned data

(Friston et al. 2008).

7. The signals from WM and CSF were regressed out to

reduce respiratory and cardiac effects. Global signal

regression did not conducted, since previous studies

showed that it could yield substantial increases in

negative correlations (Murphy et al. 2009).

8. The images were registered into Montreal Neuro-

logical Institute (MNI) space with 3 mm3 cubic

voxels by using transformation information acquired

from DARTEL. The images were further smoothed

by a kernel of 6 mm.

9. Temporal filtering (0.01–0.1 Hz) was performed on

the time series in order to remove low-frequency

drifts and high-frequency noise from the signal.

10. According to Andrews-Hanna et al. (2010), 18

sphere regions-of-interest (ROIs) with radius

10 mm within DMN were defined. The centroid

coordinate of each sphere ROI was displayed in

Table 1 (Andrews-Hanna et al. 2010). The signal

time series of each ROI was computed as the mean

value of voxels within this ROI.

Computing dFCs

Here, the dFC metrics between ROIs were computed

through the DCC method. Compared to the traditional and

widely used sliding-window method, the DCC method is a

model-based multivariate volatility method that has con-

sistently been shown to outperform sliding-window meth-

ods (Choe et al. 2017). The DCC method at least has the

following advantages. Firstly, it does not need to choose a

window length, which is usually arbitrarily decided by

researchers. Secondly, it provides a more suitable estimate

of the correlation at a specific time point, which can be

critical particularly if it is important to link the dynamic

correlation to the timing of a specific task or emotion and

can reflect abrupt changes in connectivity patterns. Thirdly,

the test–retest reliability of DCC method is much higher

than the sliding-window methods (Choe et al. 2017).

Assume yt is bivariate mean zero time series of two

ROIs with dimension 2 � T, where T is the length of each

ROI signal. The dynamic correlations Rt with dimension 1

� T can be calculated using the following equations:

r2
i;t ¼ xi þ ai � y2

i;t�1 þ bi � r2
i;t�1; where i equals 1 or 2

ð1Þ

Dt ¼ diag r1;t; r2;t

� �
ð2Þ

et ¼ D�1
t � yt ð3Þ

Qt ¼ 1 � h1 � h2ð Þ � Qþ h1 � et�1 � e
0

t�1 þ h2 � Qt�1 ð4Þ

Rt ¼ diag Qtf g�1=2 � Qt � diag Qtf g�1=2 ð5Þ

Firstly, each ROI signal within yt is modeled by a

generalized autoregressive conditional heteroscedastic

(GARCH) model, which expresses the conditional variance

of a single time series at time t as a linear combination of

past values of the conditional variance and of the squared

process itself (Eq. (1)). Secondly, the standardized residual

et was computed through Eqs. (2) and (3). Thirdly, non-

normalized version of the time-varying correlation matrix

Qt was computed using an exponentially weighted moving

average (EWMA) window (Eq. (4)). Note that, in Eq. (4),

h1 and h2 are non-negative scalars satisfying

0\h1 þ h2\1, Q can be calculated as Q ¼ 1
T

PT
t¼1et � eTt :

Lastly, Qt is rescaled, which creates the dynamic correla-

tions Rt.

Computing temporal mean and variance of dFCs

After the dFCs of all ROI pairs were assessed through the

approach illustrated above, we could obtain a time-varying

correlation matrix Ct with dimension N � N � T, where N

and T were the number of ROIs and time points respec-

tively. Thus this Ct could reflect the FC between each ROI

pair at each time point. In this study, we computed two

basic summary statistics for each pairwise dFC, i.e., the

temporal mean value of dFC (FC) and the temporal vari-

ance over time (FCd).
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Statistical tests on temporal mean and variance
of dFCs

In order to test whether the two summary statistics of dFC

(i.e., FC and FCd) were significantly altered in patients

with ASD, the network-based statistic (NBS) was con-

ducted (Zalesky et al. 2010). This method consists of fol-

lowing steps. Firstly, mass univariate testing was

performed on all the 153 (i.e., C2
18) pairs on a graph via

independent-samples t-test, with the age at scan, func_-

mean_fd, func_perc_fd, IQ score, gender and sites included

as covariates. Secondly, the pairs with t-test value

exceeding a given threshold (p\ 0.005) were admitted to a

set of supra-threshold pairs. Thirdly, ‘‘connected graph

components’’ defined as a set of supra-threshold pairs for

which a path can be found between any two ROIs within

this component were identified. The size of each compo-

nent was assessed as the total number of pairs it comprised.

Fourthly, the null distribution of size of connected com-

ponent was empirically derived using a permutation

approach with 5000 permutations. For each permutation,

all participants were randomly re-allocated into two

groups, and the above three steps were conducted. The

component with largest size was recorded for each per-

mutation, which yielded an empirical null distribution for

the size of the largest component. Lastly, the one-sided

family-wise error rate corrected p-value for an originally

identified component was estimated as the proportion of

permutations for which the largest component was of the

same size or greater.

Correlations with symptom severity

In order to investigate the relationship between the two

summary statistics and measures of autistic symptom

severity in the ASD group, the Pearson correlation coeffi-

cients between the two summary statistics and symptom

severity as assessed by the ADOS total (ADOS_TOTAL),

communication (ADOS_COMM), social (ADOS_SO-

CIAL) and stereotyped behavior (ADOS_STER-

EO_BEHAV) scores were calculated for each ROI pair

after controlling the effects of following variables: the age

at scan, func_mean_fd, func_perc_fd, IQ score, gender and

sites. The significance of the correlation coefficients was

assessed with t-statistic. The threshold for significance was

p\ 0.05.

Classification of participants in ASD group
and TD group using support vector machine

Note that the above statistical tests and correlation analyses

could be applied to reveal the neuropathlogical mechanism

Table 1 The 18 ROIs within

DMN defined in the current

study

ROI Abbrev Brodmann area MNI coordinate

x y z

PCC-aMPFC core

Anterior medial prefrontal cortex (#1) aMPFC 10, 32 - 6 52 - 2

Posterior cingulate cortex (#2) PCC 23, 31 - 8 - 56 26

dMPFC subsystem

Dorsal medial prefrontal cortex (#3) dMPFC 9, 32 0 52 26

Left temporal parietal junction (#4) lTPJ 40, 39 - 54 - 54 28

Left lateral temporal cortex (#5) lLTC 21, 22 - 60 - 24 - 18

Left temporal pole (#6) lTempP 21 - 50 14 - 40

Right temporal parietal junction (#7) rTPJ 40, 39 54 - 54 28

Right lateral temporal cortex (#8) rLTC 21, 22 60 - 24 - 18

Right temporal pole (#9) rTempP 21 50 14 - 40

MTL subsystem

Ventral medial prefrontal cortex (#10) vMPFC 11, 24, 25, 32 0 26 - 18

Left posterior inferior parietal lobule (#11) lpIPL 39 - 44 - 74 32

Left retrosplenial cortex (#12) lRsp 29, 30, 19 - 14 - 52 8

Left parahippocampal cortex (#13) lPHC 20, 36, 19 - 28 - 40 - 12

Left hippocampal formation (#14) lHF? 20, 36 - 22 - 20 - 26

Right posterior inferior parietal lobule (#15) rpIPL 39 44 - 74 32

Right retrosplenial cortex (#16) rRsp 29, 30, 19 14 - 52 8

Right parahippocampal cortex (#17) rPHC 20, 36, 19 28 - 40 - 12

Right hippocampal formation (#18) rHF? 20, 36 22 - 20 - 26
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of autism, and were inadequate to assist in clinical diag-

nostic purposes. For clinical diagnostic decision,

biomarkers with the ability to reliably distinguish normal

from abnormal at the individual participant level should be

developed and validated. To achieve this purpose, we

developed a classification method with support vector

machine (SVM) to distinguish ASD patients with healthy

controls at individual participant level.

The features used in the SVM were temporal mean and

variance of dFCs with significant group differences as

revealed by NBS.

The SVM performs classification by finding the hyper-

plane that maximizes the margin between the two classes.

Here, a Radial Basis Function (RBF) kernel was used. In

order to assess the generalization performance of the SVM

model, a fivefold cross-validation strategy was adopted. In

the strategy, all the participants in two groups were parti-

tioned into 5 subsets (each subset with a roughly equal

sample size). Moreover, the participant numbers of two

groups were roughly equal in each subset. In each run, the

samples within one subset were used as the testing dataset,

while the remaining samples in the other 5 subsets are used

as the training dataset. The averaged value of classification

results across all fivefold cross-validations were reported

here.

Before training an SVM with the RBF kernel, two

hyper-parameters should be defined: C and gamma. A

nested cross-validation strategy was used to identify the

optimal values of these two hyper-parameters within range

[2–5, 2–4, 2–3, …, 24, 25]. Firstly, the training dataset in

each run was further split into training subset and testing

subset. Secondly, for each combination of values for hyper-

parameters, SVM was trained on the training subset and

validated on the testing subset. This procedure was repe-

ated for 5 times. The average classification accuracy under

a specific combination of hyper-parameter values was then

computed. For each run, the hyper-parameter values com-

bination with the highest average classification accuracy

were chosen and applied to construct the SVM model using

the training dataset.

Results

Group differences on the temporal mean of dFCs

Statistical tests conducted on the temporal mean of dFC

(i.e., FC) revealed that the FC of certain connections were

significantly lower in ASD group, compared to those in TD

group. These results included: (1) the FC of dFCs between

ROI #1 (anterior medial prefrontal cortex, aMPFC) and

ROI #2 (posterior cingulate cortex, PCC), ROI #3 (dorsal

medial prefrontal cortex, dMPFC), ROI #7 (temporal

parietal junction [right hemisphere], rTPJ), ROI #9 (tem-

poral pole [right hemisphere], rTempP), ROI #10 (ventral

medial prefrontal cortex, vMPFC), ROI #12 (retrosplenial

cortex [left hemisphere], lRsp); (2) the FC of dFCs

between ROI #2 (PCC) and ROI #3 (dMPFC), ROI #9

(rTempP); (3) the FC of dFC between ROI #3 (dMPFC)

and ROI #4 (temporal parietal junction [left hemisphere],

lTPJ); (4) the FC of dFC between ROI #7 (rTPJ) and ROI

#13 (parahippocampal cortex [left hemisphere], lPHC).

From these results, we could find that significantly reduced

FC mainly involved ROI #1 (aMPFC), ROI #2 (PCC) and

ROI #3 (dMPFC). The numbers of aberrant connections for

these 3 ROIs were 6, 3 and 3 respectively.

Group differences on the temporal variance
of dFCs

Statistical tests conducted on the temporal variance of dFC

(i.e., FCd) revealed that the FCd of two connections were

significantly higher in ASD group, compared to those in

TD group. These two connections were the dFC between

ROI #1 (aMPFC) and ROI #2 (PCC), and the dFC between

ROI #1 (aMPFC) and ROI #12 (lRsp).

Associations between the temporal mean of dFCs
and autistic symptom severity

Through computing the correlation between FC of each

connection and autistic symptom severity assessed by

ADOS, we found that: the Pearson correlation coefficients

between FC of certain connections and ADOS_COMM

score, ADOS_STEREO_BEHAV score were significantly

negative. Significant results were not found for the other

two scores (i.e., ADOS_TOTAL and ADOS_SOCIAL).

The correlations of ADOS_COMM score and FC of the

following connections were significantly negative: the dFC

between ROI #2 (PCC) and ROI #4 (lTPJ), the dFC

between ROI #12 (lRsp) and ROI #14 (hippocampal for-

mation [left hemisphere], lHF?). Please refer to Table S1

of supplementary materials for details.

As for ADOS_STEREO_BEHAV score, negative cor-

relations were found for quite a few connections. Please

refer to Table S2 of supplementary materials for details.

After summarizing the results, we could find that the ROIs

with significant connections larger than 3 were ROI #12

(lRsp), ROI #14 (lHF?) and ROI #9 (rTempP).

These results were displayed in Fig. 1.
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Associations between the temporal variance
of dFCs and autistic symptom severity

Analyzing the relationship between FCd of ROI pairs and

ADOS scores, significantly positive correlations were

found for ADOS_COMM, ADOS_STEREO_BEHAV, but

not for ADOS_TOTAL and ADOS_SOCIAL.

Significantly positive correlations were detected for

plenty of connections when testing the relationship

between FCd of ROI pairs and ADOS_COMM score.

Please refer to Table S3 of supplementary materials for

details. Observing the results, we found that these con-

nections were mainly contributed by the following ROIs:

ROI #4 (lTPJ), ROI #12 (lRsp) and ROI #14 (lHF?). The

number of significant ROI pairs for these three ROIs were

14, 12 and 8.

As for ADOS_STEREO_BEHAV, we found that the

correlation between ADOS_STEREO_BEHAV score and

FCd of ROI pairs ROI #1 (aMPFC)-ROI #3(dMPFC) was

significant (p\ 0.05). Please refer to Table S4 of supple-

mentary materials for details.

These results were displayed in Fig. 2.

The classification result of SVM

The features used in the SVM were temporal mean and

variance of dFCs with significant group differences as

shown in ‘‘Group differences on the temporal mean of

dFCs’’ and ‘‘Group differences on the temporal variance of

dFCs’’ sections. The final results showed that the classifi-

cation accuracy rate has its maximum 83.27% (implying

that the classification error rate is 16.73%). This implies

that we have obtained a meaningful diagnostic result using

the suggested techniques.

Discussion

In the current study, using DCC technique and the resting-

state fMRI datatsets of ABIDE, the hypothesis that tem-

poral mean and variance of dFCs within DMN were altered

in patients with ASD was validated. Moreover, through

classification analysis, we found that these significantly

altered FC metrics could be used in ASD diagnosis with

high classification accuracy (83.27%). In the other hand,

through correlation analysis, we found that these alterations

could predict the autism symptom severity of patients.

Altered dFCs features within DMN

Statistical tests conducted on FC of dFCs revealed that the

FC of many ROI pairs in ASD group were significantly

smaller than that in TD group. Observing the aberrant

connections, we found that they mainly involved the fol-

lowing ROIs: anterior medial prefrontal cortex (aMPFC),

posterior cingulate cortex (PCC) and dorsal medial pre-

frontal cortex (dMPFC). The aMPFC, especially its dorsal

section, is supposed to be involved in self-referential pro-

cesses (Shalom 2009). The PCC, together with its adjacent

retrosplenial cortex (Rsp), is consistently engaged by a

range of tasks that examine episodic memory, including

autobiographical memory and imagining the future, spatial

navigation and also scene processing (Auger and Maguire

2013; Leech and Smallwood 2019). The dMPFC may

contribute to the development of the tendency to initiate

joint attention in infancy, thus its dysfunction is followed

by impairments in the development of social cognition, as

assessed on theory of mind measures (Vargas et al. 2019).

Theories suggest that the MPFC and PCC together form a

Fig. 1 The correlation coefficient between temporal mean of dFCs and autistic symptom severity assessed by ADOS_COMM (A) and

ADOS_STEREO_BEHAV (B). Note that only connections with significant correlation coefficients were shown
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core network dedicated to reflecting upon ourselves,

encoding and retrieving information about ourselves.

Further statistical tests over FCd also revealed the cru-

cial role of aMPFC and PCC/Rsp on brain connectivity:

FCd of dynamic aMPFC-PCC connectivity and aMPFC-

lRsp connectivity were significantly larger in ASD group,

compared with those in TD group.

Here, hypoconnectivity were found for the links

between aMPFC/dMPFC, PCC and other DMN areas

which were highly consistent with previous studies using

traditional statics FC techniques (Padmanabhan et al.

2017). However, a novel finding here is that the temporal

variance of dFCs between aMPFC and other DMN regions

(i.e., PCC/lRsp) were significantly higher in ASD group,

which has not been detected via traditional approaches.

These results suggested that significantly much lower and

more volatile connections between DMN regions, espe-

cially those involved aMPFC/dMPFC and PCC/Rsp, were

an important pathological feature of ASD, which may

reduce the efficiency of functions related with DMN, such

as self-representation, social information processing.

Correlations between dFCs features
and symptom severity

The speculation made above was further supported by the

correlation analysis between dFC summary statistics and

measures of autistic symptom severity in the ASD group:

negative correlations between FC and ADOS scores, pos-

itive correlations between FCd and ADOS scores.

The correlations between ADOS_COMM score and FC

of the following two ROI pairs were significantly negative:

the dFC between ROI #2 (PCC) and ROI #4 (lTPJ), the

dFC between ROI #12 (lRsp) and ROI #14 (lHF?). Sum-

marizing the connections whose FCd were positively

associated with ADOS_COMM score, we found that these

significant results were mainly contributed by the follow-

ing ROIs: ROI #4 (lTPJ), ROI #12 (lRsp) and ROI #14

(lHF?). These results suggested that the abnormal level of

features of connections involved ITPJ, lRsp and lHF?,

whether their temporal mean or variances, could result in

the impairment of communication skills in patients with

ASD. A very striking finding observed here was that the

correlation of ADOS_COMM score and FCd of 14 dFCs

involved lTPJ were significantly positive, which means that

the correlations of ADOS_COMM score and FCd of only

three lTPJ-related dFCs did not reach significant level.

These results highlighted the importance of lTPJ in social

communication development. Previous studies suggested

that the TPJ is associated with joint attention, generating

shared focus on an object across individuals for under-

standing, and predicting others’ actions and intentions

(Goelman et al. 2019). Our results observed here is highly

consistent with these previous theories.

Here, the correlations between ADOS_STER-

EO_BEHAV score and FC of many ROI pairs were sig-

nificantly negative, and we could find that these ROIs with

significant connections larger than 3 were ROI #12 (lRsp),

ROI #14 (lHF?) and ROI #9 (rTempP). On the other hand,

significant correlation between ADOS_STEREO_BEHAV

score and FCd was only found for the connection between

ROI #1 (aMPFC) and ROI #3 (dMPFC), i.e., the connec-

tion within MPFC. Similar to the results on ADOS_COMM

score, the results on ADOS_STEREO_BEHAV score also

highlighted the importance of ROI #12 (lRsp) and ROI #14

(lHF?). The retrosplenial cortex has emerged as a key

Fig. 2 The correlation coefficient between temporal variance of dFCs and autistic symptom severity assessed by ADOS_COMM (A) and

ADOS_STEREO_BEHAV (B). Note that only connections with significant correlation coefficients were shown
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member of a core network of brain regions that underpins a

range of cognitive functions, including episodic (autobio-

graphical) memory, spatial navigation, imagination and

planning for the future (Vann et al. 2009). The hip-

pocampal formation is part of medial temporal lobes and is

essential for spatial navigation, as well as the formation of

new declarative and episodic memories (Lee et al. 2019;

Sabariego et al. 2020).

Observing the patterns of results of correlation analysis,

we could find a very interesting phenomenon: when ana-

lyzing the FC of dFCs, more significant ROI pairs were

found for ADOS_STEREO_BEHAV score, compared with

ADOS_COMM score; whereas when the FCd of dFCs

were investigated, opposite pattern appeared. This amazing

result may suggest that in patients with ASD, relatively

lower information exchange efficiency between cortical

regions may result in repetitive behaviors, whereas rela-

tively higher variability of information exchange efficiency

between cortical regions may impair the verbal/nonverbal

communication skills of human beings.

Future directions in related field

The static or dynamic FCs between time series of ROI pairs

through classical Pearson’s correlation or DCC techniques

were considered to be low-order representation of the

functional interaction. In order to comprehensively char-

acterize the functional networks under normal or abnormal

states, multi-level, high-order FC networks have been

proposed by previous researchers (Zhang et al. 2017).

Zhang et al. (2016) proposed that higher FC network could

be computed based on the principle of ‘‘correlation’s cor-

relation’’ (Zhang et al. 2016). In this approach, the tradi-

tional FCs between any cortical ROI pair produced FC

topographical profiles for each ROI, i.e., the FCs between a

given ROI and all other ROIs. Then, the correlations

between the FC topographical profiles of any ROI pairs

were computed, which produced first-level of higher order

FC networks. Through this method, researchers could

generate many levels of higher-order FC networks. Previ-

ous studies showed that multi-level, high-order FC network

representation could nicely capture complex interactions

among brain regions. Moreover, features derived from

higher-order FC networks could be used in ASD diagnosis

with high accuracy (Zhao et al. 2018, 2020). In the future

studies, we could generate higher-order FC networks using

the DCC technique, which has higher test–retest reliability

compared to the traditional Pearson’s correlation approach.

On the other hand, it should be noted that the dynamic

FCs between cortical ROIs not only could provide metrics

that quantifying the temporal variability of FC, but also

could be used to derive the temporal metrics (e.g., mean

duration, time coverage, occurrence frequency and transi-

tion probability) of certain brain states through clustering

analysis (Li et al. 2020). In the future studies, the DCC

techniques could be used to derive such large-scale brain

states, which should provide some results with higher

temporal resolution and test–retest reliability.

Conclusion

In the current study, using the DCC technique and the

resting-state fMRI datasets of ABIDE, the temporal

dynamic features (i.e., mean and variance) of DMN-FC of

ASD group and TD group were investigated. The results

indicated that compared to TD participants, the mean dFC

value of certain connections were significantly lower in

patients with ASD, and the variance of dFC of certain

connections were significantly higher in these patients.

Further analysis showed that these alterations were sig-

nificantly associated with symptom severity, especially the

level of impaired communication skills and repetitive

behaviors. These results proved and further developed the

theory that aberrant temporal dynamic of FC pattern within

DMN is inherent in autistic brain.
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