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Abstract
The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG)

signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies

on the selection of filter bands and extensive analytical processing time required to build an effective model, which has

been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which

automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-perfor-

mance classification model dedicated to each subject can be obtained in a short time for online processing or further offline

analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals.

For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines

the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep

Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor

imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes

of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results

show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery

task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.

Keywords Motor imagery � Narrow band � Deep Convolutional Neural Network (DCNN) � Feature fusion

Introduction

Motor imagery (MI) is a very important BCI paradigm

which has been widely applied in motor rehabilitation and

controlling for disabled patients (Wang et al. 2017; Ortner

et al. 2012; Lazarou et al. 2018). Several methods have

been proposed for EEG-based MI feature extraction, the

most classical of which is the CSP algorithm (Kumar et al.

2016), but the effectiveness of the CSP algorithm depends

heavily on the selection of the filter band and is only

effective in resolving the two-class motor imagery task. In

order to improve the classification accuracy, various vari-

ants of the CSP algorithm have been proposed, such as the

filter bank CSP (FBCSP) algorithm (Ang et al. 2008) and

the discriminative filter bank CSP (DFBCSP) algorithm

(Thomas et al. 2009). However, these methods still focus

on the extraction of static energy features, neglecting the

dynamics of the EEG signals during the execution of motor

imagery, and even show a decrease in classification accu-

racy when applied to different subjects.

In addition, recent works for improving CSP perfor-

mances are employed Convolutional Neural Networks

(CNN). EEG signals processing based on Convolutional

Neural Networks can be divided into two main categories,

raw signal input networks and feature input networks (Wu

et al. 2019). The raw signal input network is an end-to-end
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model where the raw EEG signal is input directly, with (or

without) only a little pre-processing. It can automatically

learn useful features from raw data, but it is difficult to get

satisfactory results for small datasets, and for datasets

under different tasks, the model needs to be tuned with

relevant background knowledge. By contrast, the feature

input network is more suitable for small datasets, and its

processing of the EEG signals is divided into two parts:

firstly, the EEG signals are converted into feature vectors

by feature extraction methods such as wavelet transform

and spatial filter, and then the feature vectors are used as

input to the CNN for training and classification.

It has been shown (Pfurtscheller et al. 2006; Higashi and

Tanaka 2012) that different motor imagery tasks will excite

energy on different channels and frequency bands, while

the optimal filter band for the same motor imagery task

varies among subjects, therefore, it is prone to lose valid

information that depends on the subject and the motion

patterns when extracting static features. The currently

proposed band selection algorithms are determined by grid

search, which is still very computationally intensive even

for small datasets. Olivas-Padilla and Chacon-Murguia

Olivas-Padilla and Chacon-Murguia (2019) proposed a

pruning approach to search for pruning by bi-directional

iteration and assuming monotonicity in the classification

accuracy of EEG signals. Although this method improves

the efficiency of the search, the frequency bands obtained

by this method are subject to large errors since the classi-

fication accuracy of the EEG signals does not show

monotonicity as the frequency bands change. To solve this

problem, we combine different filter bands in the feature

extraction stage to extract the dynamic energy features in

the EEG signals by the CSP algorithm, which improves the

classification accuracy of EEG signals.

In this paper, we propose a narrow filter bank CSP

(NFBCSP) algorithm based on a band search tree, which

argues that narrow bands with a step length less than or

equal to 4 Hz can remove redundant information to the

maximum and retain the most distinguishable dynamic

features. Most of the current studies are devoted to finding

a better feature selection and feature fusion scheme in the

same feature space, such as the L1-Norm and Dempster-

Shafer fusion-based algorithms proposed by Jin et al.

(2020). However, it relies heavily on the feature space

being used, and lacks generalization capability in real

scenes. In contrast, the NFBCSP algorithm proposed in this

paper is dedicated in selecting the appropriate feature space

through dynamic energy features at different frequency

bands, which has higher generalization ability in

comparison.

Through the NFBCSP algorithm, researchers can obtain

the optimal narrow band by fast iteration and construct a

high-performance classification model exclusively for each

subject, which greatly reduces the time for tuning and data

analyzing. Moreover, due to the extraction of dynamic

features that distinguish between subjects and motion pat-

terns, the classification accuracy is also greatly improved.

For the multi-class motor imagery task, in order to

further improve the classification accuracy, we propose a

multi-band feature fusion model based on Deep Convolu-

tional Neural Network by intra-band and inter-band feature

fusion on the basis of optimal narrow-band. We apply the

proposed method above to two motor imagery datasets, the

BCI-VR two-class motor imagery dataset and the BCI

Competition IV dataset 2a (Tangermann et al. 2012),

which were compared with the results obtained by other

recent methods.

Dataset

Two datasets were used for this work, one is the motor

imagery dataset collected by the BCI-VR system, which

consists of two different motor imagery tasks, left hand

grasping and right hand grasping. The other is the BCI

Competition IV dataset 2a, which consists of four classes

of motor imagery tasks, left hand, right hand, both feet and

tongue.

Acquisition of the BCI-VR dataset

Twelve healthy college students, including four females

and eight males, with a mean age of 22 (±2) years, were

recruited to participate in the experiment. To ensure that

the subjects had a good mental state, the experiment was

conducted from 9:00 to 11:00 am. During the experiment,

subjects sat quietly in a chair in front of a computer screen,

wearing an EEG cap and Head Mount Display (HMD).

Simulation was presented from a virtual reality environ-

ment, including a hospital scene and a pair of virtual arms,

and subjects performed motor imagery based on textual

cues in the virtual reality, as well as feedback from the

virtual arms, as shown in Fig. 1. The study was reviewed

and approved by the institutional Ethical Review Com-

mittee at Saitama Institute of Technology and the protocol

number is 2018-01. Signed informed consent was obtained

from each participant.

NeuroScan EEG signal acquisition device was used to

acquire the subject’s EEG signals, and 64 electrodes were

evenly distributed around the motor cortex of the subject’s

scalp according to the 10/20 international standard system

(Homan et al. 1987), with the grounded electrode REF as

the reference electrode, and using a sampling frequency of

250 Hz.

While some channel selection algorithms, such as

position priori weight permutation entropy (PPWPE) (Sun
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et al. 2021), can be effective in improving the signal-to-

noise ratio of EEG, it has been shown that small differ-

ences exist in the classification accuracy using different

numbers of electrodes (Tam et al. 2011; Lo et al. 2016).

Most of the currently designed MI-BCI systems require

22–118 electrodes, and to be consistent with the BCI

Competition dataset, only the 22 electrodes in the red part

of Fig. 2 were used in the experiment.

Experimental procedure

To avoid eye fatigue caused by wearing the HMD for a

long time, each data collection lasted a total of 47 min. The

data collection was divided into 8 sessions, each lasting 5

min, with a one-minute break after each session. Each

session consists of 30 trials with a duration of 10 s per trial.

During each trial, the subjects were in a relaxed state with a

rest period of 0–3s in order to allow them proper rest. Since

the stimulus presentation is shown through virtual reality, it

takes about 2.5 s for the arm to complete the gripping

action of the simulation, therefore, 3s-6s are devoted to the

presentation of visual stimuli, where the subject can see

either a left-handed or right-handed grip in virtual reality.

Finally, to ensure the subjects had enough time to complete

the motor imagery, 6s-10s were the period of motor ima-

gery, during which subjects imagined their left or right

hand grip based on the motion they saw during the stage of

stimulus presentation. The experimental paradigm for data

collection is shown in Fig. 3.

Dataset segmentation and pre-processing

In the BCI Competition IV dataset 2a, 9 different subjects

performed 4 classes of motor imagery in 2 experiments.

Each experiment consisted of 288 trials, 72 trials of each

class of motor imagery, and 3 s of motor imagery duration

in each trial. The 288 trials from the previous experiment

were used as the training set, and the 288 trials from the

subsequent experiment were used as the test set. The BCI-

VR motor imagery dataset consisted of the EEG signals

acquired from 12 subjects, with a total of 240 valid samples

per subject and a duration of 4 s of motor imagery in each

trial. 80% of the total dataset was used for training and

20% as a test for accuracy evaluation, data division was

determined by 10-fold cross-validation.

In this paper, the EEG signal was preprocessed using the

independent component analysis (ICA) method, and the

components with obvious blink artifacts and muscle arti-

facts were analyzed by independent component topogra-

phies. After removing the components with artifacts, the

remaining components are reconstructed and finally a

band-pass filter is applied to the reconstructed EEG signal.

Modified CSP algorithm using optimal
narrow band

Most researchers tend to choose the filter band from 7–32

Hz because the Mu and Beta bands lie within this range

(Wang et al. 2019; Pfurtscheller and Neuper 2001). It has

been experimentally concluded that for different subjects,

the energy will be excited in different bands which are not

limited to the Mu and Beta bands. Therefore, using fixed

Fig. 1 Stimulating presentation of virtual reality scenes

Fig. 2 Layout of electrodes. Red circles indicate the used electrodes

in this study Fig. 3 Experimental paradigm for data acquisition
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filter bands does not effectively remove redundant infor-

mation, and may even result in the loss of valid informa-

tion. This paper uses narrow bands to extract dynamic

features that depend on the subject and motion patterns, the

work of Barry et al. (2007) has shown that narrow bands

have an effect on Event-related Potentials (ERP) signals

generated by different stimuli, and this paper will further

demonstrate the validity of narrow bands for motor

imagery.

Feature extraction by CSP algorithm

The CSP algorithm maps the EEG signals to a subspace by

constructing a spatial filter x that maximizes the difference

in variance between the two classes after mapping.

Assume that the band-pass filtered EEG signals is

denoted as X 2 RC�N , where C indicates the number of

channels and N indicates the number of samples. The

training data were divided into 2 classes, X1 and X2. Xd

indicates the EEG signals corresponding to the samples in

the different classes, and d 2 f1; 2g indicates the class

label.

Denote Xd as Xd ¼ ½xd;1; xd;N �, xd;i 2 RC. The time

average of Xd is expressed as ld ¼ ð1=NÞ
PN

i¼1 xd;i, and the

time variance of Xd after using a spatial filter x is denoted

as follows.

r2ðXd;xÞ ¼
1

N

XN

i¼1

jxTðxd;i � ldÞj2 ð1Þ

The maximum value of the variance difference equals the

minimum value of one class with variance sum fixed, and

the constraints are expressed as follows.

min
x

r2ðXd;xÞ; s.t.
X

d¼1;2

r2ðXd;xÞ ¼ 1 ð2Þ

Define Rd as the covariance matrix of the EEG signals

labeled d. Rd is expressed as follows.

Rd ¼
1

N

XN

i¼1

ðxd;i � ldÞðxd;i � ldÞT ð3Þ

After introducing the covariance matrix, Eq. (2) can be

denoted as follows.

min
x

xTRdx; s.t. xTðR1 þ R2Þx ¼ 1 ð4Þ

Equation (4) for solving the spatial filter can be derived

from Eq. (5) for solving the generalized eigenvalue. By

solving the 2r eigenvectors corresponding to the smallest r

and the largest r generalized eigenvalues, the spatial filter

x 2 RC�2r is constructed.

Rdx ¼ kðR1 þ R2Þx ð5Þ

The EEG signals is mapped to a subspace using spatial

filter x and the features of the mapped signal are extracted,

e.g., variance features are expressed as follows.

y ¼ r2ðX;xÞ ð6Þ

y 2 R2r represents the eigenvector of the EEG signals that

can be used as input to the classifier along with other time-

frequency domain features to obtain the classification

result.

Band search tree

We propose a method to acquire the optimal narrow band

by combining the narrow band with the CSP algorithm.

The broadband 0.1–32 Hz is determined as the root node of

the band search tree and divided equally into four bands,

which are 0.1–8 Hz, 8–16 Hz, 16–24 Hz, and 24–32 Hz.

After band-pass filtering through these four bands, features

are extracted using the CSP algorithm and then classified

using a Support Vector Machine (SVM) (Suykens and

Vandewalle 1999) model with linear kernels. The Support

Vector Machine is a supervised learning model which finds

the hyperplane that best separates one class of data from

another, while providing a faster model training speed than

neural networks.

Using 80% of the training set as training data and 20%

as validation data, the classification accuracy of the four

bands is obtained from the SVM model. Find the band with

the highest classification accuracy among the four bands

and the band adjacent to it with higher classification

accuracy, use these two adjacent bands together as the

parent node, and divide them into four bands with smaller

steps for the next round of search. At the end of each search

round, the global classification accuracy is updated to the

maximum value, and the band information corresponding

to the maximum value is saved. The first 4 rounds of band

steps are 8Hz, 4Hz, 2Hz, and 1Hz, and the last round

merges the 4th round’s band with step 1 to acquire narrow

bands with steps of 3Hz and 2Hz. The number of band

iterations for the entire process is 19, which is a significant

improvement over the 528 iterations required using the grid

search, and the classification accuracy is almost as high as

before. The structure of the band search tree is shown in

Fig. 4.

Algorithm 1 describes the process of searching for the

optimal narrow band. lowfreq and highfreq denote the lower

and upper frequencies of the optimal narrow band, maxaccu
denotes the classification accuracy of the optimal narrow

band, startfreq denotes the starting band of the current

round, step denotes the step size of each band in the current

round, and Aacc is used to save the classification accuracy

382 Cognitive Neurodynamics (2022) 16:379–389

123



of the four bands obtained in each round of search. The

function adj(X, Y) is used to return the subscript of the

larger value adjacent to Y in the X array, and idx(X, Y) is

used to return the subscript of Y in the X array. The nfb is a

classification discriminative model which uses the CSP

algorithm to extract the features of the filtered EEG signal

and classify it using the SVM with a linear kernel.

Comparing the difference between the optimal narrow

band and the 7-32Hz broadband for one of the subjects’

EEG signals, the superimposed average effect of C3/C4

channels is shown in Fig. 5. After using the optimal narrow

band, the EEG signals from left and right hand motor

imagery are more distinguishable in the time-domain,

which proves the effectiveness of the narrow band for

extracting dynamic energy features.

Fig. 4 Band search tree architecture. Dark blue indicates the band

with the highest accuracy in the current round, while light blue

indicates the band adjacent to the highest accuracy band with higher

accuracy in the current round. Gray indicates the removed bands,

which will not be calculated in the next round. Orange indicates the

band with the highest classification accuracy during the entire search

process, and is output at the end of the search

Fig. 5 Comparisons on the average stacking with different filter bands

using C3/C4 channels
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Application of optimal narrow band in online
systems

Since the acquisition of the optimal narrow band requires

multiple iterations, it is not easy to acquire the optimal

narrow band in the processing of the online system in real

time, even though only 19 iterations are required.

We acquired the EEG signals of five subjects perform-

ing left and right hand motor imagery tasks at different

times using the BCI-VR system, and found that the same

subject had similar optimal narrow band in two different

experiments, as shown in Table 1.

The experiment shows that in practical applications, the

optimal narrow band can be obtained from offline data

acquisition, and directly applied to subsequent online sys-

tems. Compared with traditional discrimination models, the

use of the optimal narrow band can greatly improve the

classification accuracy of the EEG signals, which is

dependent on the dynamic features of the subjects, and help

to accelerate the progress of research such as the online

rehabilitation system for motor imagery.

Multi-band feature fusion based on DCNN

Narrow bands for multi-class task

Extending the biclass task to the multiclass task, experi-

ments were conducted using the BCI Competition IV

dataset 2a.

The experiment shows that the optimal narrow band for

the same category of motor imagery varies greatly among

subjects. We analyzed the EEG signals of subjects S1 and

S3 in the BCI Competition dataset and found that for

subject S1, the optimal narrow band for the left hand with

other three classes was 25–26 Hz, while the optimal narrow

band for the right hand with other three classes was

12–16Hz. Subject S3 is almost opposite to the above, with

the optimal narrow band of 12–13 Hz for the left hand with

other three classes, and the optimal narrow band of 20–24

Hz for the right hand with other three classes. Such dif-

ferences show that in the multiclass motor imagery task, it

is difficult to extract highly distinguishable features from a

single filter band, while using multiple narrow bands to

form a filter bank can extract more discriminating dynamic

features compared to a single filter band. At the same time,

for the same type of motor imagery task, different subjects

need to select different bands individually to maximize the

classification performance.

For the four classes of motor imagery task, we construct

four OVR classifiers. For each classifier, a certain kind of

motor imagery is considered as the first class and all others

are considered as the second class, while an optimal narrow

band is determined. Since the ratio of the first and second

class is 1:3, which is an unbalanced number of classes, F1

Score is used instead of accuracy as a model evaluation

metric to optimize the model in the process of determina-

tion of the optimal narrow band. For each of the four

optimal narrow bands, a spatial filter is constructed. The

EEG signals is projected to the subspace with the highest

discrimination by the spatial filter, and the eigenvectors

corresponding to the first four and the last four eigenvalues

are extracted. All algorithms are implemented with python

3.7 and tensorflow 1.15.3.

The input of CNN

The traditional CSP algorithm only acquires the time

variance of the EEG signals after mapping by a spatial filter

as a feature, but we observe that the EEG signals in the

subspace are significantly different in the time and fre-

quency domain. Therefore, for the signal after mapping in

subspace, the time domain features are represented by the

maximum, minimum, mean, and standard deviation, and

the frequency domain features are represented by the fre-

quency mean, frequency variance, and frequency entropy.

The frequency mean is expressed as follows.

fl ¼
1

N

XN

k¼1

FðkÞ ð7Þ

FðkÞ; k ¼ 1; 2;N denotes the spectral map after Fast

Fourier Transform and N denotes half of the highest fre-

quency. The frequency variance is expressed as follows.

fr2 ¼
1

N � 1

XN

k¼1

ðFðkÞ � flÞ ð8Þ

The frequency entropy is expressed as follows.

fe ¼ �1�
XN

k¼1

FðkÞ
flN

log2
FðkÞ
flN

ð9Þ

Table 1 The optimal narrow band of the EEG signals for motor

imagery acquired at different times by different subjects

Subjects Day1 (Hz) Day2 (Hz)

S1 11–13 11–12

S2 11–14 10–13

S3 22–24 22–24

S4 12–13 11–12

S5 24–28 26–29

Day1 and Day2 are one day apart, and both are in the morning
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For each EEG signals after the optimal narrow band fil-

tering, four 8� 7 feature matrices are acquired, and the

four feature matrices are vertically cascaded to generate a

result matrix with dimension 32� 7 as the input of DCNN,

finally the Deep Convolutional Neural Network is used to

achieve band fusion, as shown in Fig. 6.

Feature fusion

A 32� 7� 1 feature matrix is obtained as the input to the

DCNN after dimensional conversion, and the whole net-

work is divided into three blocks in order to fuse the band

features.

The first block contains two convolutional filters with

kernel sizes of 1� 3 and 8� 1, which are used to fuse

intra-band features while reducing the size of the feature

map. The second block uses convolutional filters with

kernel size 1� 3 and 4� 1 to fuse inter-band features,

after the second block, the dimension in which the number

of features is compressed to 1. Since the input data has

already been pre-extracted with features, no pooling layer

is added to the entire network, and the network is down-

sampled directly through the convolutional layer to

enhance the learning capability of the network. Normal-

ization operations are performed on the fused features and

input to the third block. The third block is the full con-

nection layer for classification, and to avoid overfitting,

dropout layer is used with a rate of 0.5.

In the experiment, we compared the effects of different

activation functions, which showed that the Rectified

Linear Unit (ReLU) (Hara et al. 2015) activation function

performed better in the classification. ReLU is a nonlinear

activation function that prevents the gradient from van-

ishing and makes the network sparse compared to other

activation functions, while accelerating the training speed

of the network. Therefore, in this paper, the ReLU acti-

vation function is applied to the convolutional and fully

connected layers. The details of the whole network struc-

ture are shown in Fig. 7.

The network is trained using a cross-entropy loss func-

tion, defined as Cðp; qÞ ¼ �
Pn

i pi log qi, where p is the

target distribution and q is the observed distribution. The

network was optimized using Adam optimizer (Kingma

and Ba 2014) with learning rate of 1e-3 and decay weights

of 1e-7. The normal distribution with zero mean and unit

variance was used to initialize the convolutional layer

weights, the batch normalization layer was initialized using

1, and the batch size was 16.

Results

The experiment was performed using the BCI-VR dataset

and the BCI Competition IV dataset 2a. For the BCI-VR

dataset, experiments were conducted using the broadband

CSP, FBCSP, DeepConvNet (Schirrmeister et al. 2017),

EEGNet (Lawhern et al. 2018), and NFBCSP proposed in

this paper, with the test set accounting for 20% of the total

dataset, and 10-fold cross-validation was applied for per-

formance analysis. For the BCI Competition IV dataset 2a,

the results were evaluated by two metrics, classification

accuracy and kappa coefficient (McHugh 2012), which

Fig. 6 Multi-Band feature fusion by Deep Convolutional Neural Network (DCNN)
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were compared with results obtained from other recent

work.

The Kappa coefficient is calculated based on the con-

fusion matrix, which can be used to check the consistency

of the results as well as to indicate the classification

accuracy. Denote the classification accuracy as p0, the

number of real samples as a1; a2; ; ac in each class, the

number of predicted samples as b1; b2; ; bc in each class,

where c denotes the number of classes and the number of

samples in the overall class as n. Define pe as follows.

pe ¼
a1 � b1 þ a2 � b2 þþac � bc

n � n
ð10Þ

The Kappa coefficient expression is shown as follows.

k ¼ p0 � pe
1� pe

ð11Þ

The results obtained for each algorithm in the BCI-VR

two-class motor imagery dataset are shown in Table 2,

where the bolded font indicates the best performance of

that subject among all the algorithms compared. The

broadband CSP uses 7–32 Hz band-pass filter, FBCSP1

uses 9 non-overlapping filter banks within 4–40 Hz, each

filter step is 4 Hz, and FBCSP2 uses 6 non-overlapping

filter banks within 4–40 Hz, each filter step is 6Hz. Com-

pared with other classical algorithms, the NFBCSP algo-

rithm has significantly improved the average classification

accuracy as well as the average deviation, and most of the

subjects achieved the highest classification accuracy.

The experiments showed that most of the subjects’

optimal narrow bands were concentrated in the a and b
bands. The optimal narrow band of S2 was 1–4 Hz, prob-

ably caused by the 22 channels selected in the experiments

did not contain its primary energy information, therefore,

the future study can redetermine the optimal narrow band

through the channel selection algorithm for subjects with

anomalies in the optimal narrow band.

To further demonstrate the effectiveness of the NFBCSP

algorithm in the classification of two-class motor imagery

task, the four-class motor imagery task in the BCI Com-

petition IV dataset 2a were transformed into 6 two-class

motor imagery tasks. The classification accuracy was

evaluated using the NFBCSP algorithm by comparing it

with the RoCSP-SRIT2NFIS algorithm (Das et al. 2016),

which currently performs best on the BCI Competition IV

dataset 2a, and the performance analysis of the 6 two-class

Fig. 7 Details of intra-band and inter-band feature fusion implemented by DCNN

Table 2 Comparison of

classification accuracy (%)

between NFBCSP algorithm

and other algorithms on the

BCI-VR two-class motor

imagery dataset

Subjects CSP FBCSP 1 FBCSP 2 EEGNet DeepConvNet NFBCSP Narrow-Band (Hz)

S1 78.33 84.58 81.46 75.21 75.01 90.21 12–13

S2 70.42 75.52 72.92 65.42 78.33 81.88 1–4 Hz

S3 78.13 80.73 84.79 80.83 86.67 87.70 11–14

S4 59.58 68.96 65.63 71.87 73.75 83.33 11–12

S5 91.25 92.50 91.66 88.12 88.12 97.71 15–17

S6 59.17 73.33 66.88 64.79 74.38 80.83 11–12

S7 75.01 79.79 80.63 71.25 78.75 81.67 26–28

S8 78.33 93.54 91.25 84.37 92.50 95.00 10–12

S9 93.45 96.88 97.08 93.54 94.37 95.83 13–16

S10 59.58 68.13 67.08 71.87 75.21 79.79 11–14

S11 70.21 88.96 85.63 77.70 82.95 86.30 22–24

S12 67.29 74.58 71.04 59.58 70.21 76.88 90 12–13

Mean 73.40 81.46 79.67 75.38 80.85 86.43

Std 10.94 9.39 10.35 9.62 7.59 6.61
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motor imagery tasks is shown in Table 3. The experiment

shows that the motor imagery task with the highest average

classification accuracy is the left hand and foot, and the

average classification accuracy of the NFBCSP algorithm

proposed in this paper is about 1.53% higher than the

RoCSP-SRIT2NFIS algorithm, which further demonstrates

the effectiveness of the NFBCSP algorithm for the two-

class motor imagery task.

For the four-class task, the four-class task is transformed

into 4 two-class tasks, and determine the optimal narrow

band for each two-class task separately with band-pass

filtering. Using the CSP algorithm to extract features from

the filtered signal, and feature fusion is performed using the

DCNN architecture proposed in Sect. 4. Table 4 shows the

comparison of the performance between the proposed

method in this paper and the method proposed by other

work, which includes the results of the competition winner.

The average classification accuracy of the proposed

method was 76.87% with an average kappa coefficient of

Table 3 Classification accuracy (%) of the RoCSP-SRIT2NFIS algorithm and the NFBCSP algorithm for 6 two-class motor imagery tasks in the

BCI Competition IV dataset 2a

Subjects Left vs Right Left vs Foot Left vs Tongue Right vs Foot Right vs Tongue Foot vs Tongue

RoCSP Proposed RoCSP Proposed RoCSP Proposed RoCSP Proposed RoCSP Proposed RoCSP Proposed

S1 93.06 91.67 99.31 97.92 99.31 97.92 100.00 97.22 100.00 98.61 78.47 81.94

S2 68.75 65.28 83.33 90.97 73.61 83.33 84.03 96.53 72.92 79.86 79.86 94.44

S3 97.22 96.53 95.83 100.00 96.53 97.22 95.83 97.22 99.31 99.31 79.17 95.83

S4 75.00 77.78 90.28 90.97 92.36 92.36 90.97 91.67 88.89 87.50 73.61 80.56

S5 65.97 93.75 70.83 77.08 78.47 83.33 72.92 72.92 77.08 84.03 75.00 68.75

S6 72.22 70.14 72.22 79.86 75.00 72.92 70.83 77.08 74.31 78.47 75.00 75.00

S7 86.11 81.25 98.61 97.22 97.22 94.44 99.30 100.00 98.61 97.92 86.11 84.72

S8 97.22 96.53 91.67 93.75 96.53 92.36 90.28 88.89 91.67 88.19 90.28 82.64

S9 93.75 90.28 97.92 92.36 97.92 99.31 89.58 84.72 95.83 89.58 95.13 93.75

Mean 83.26 84.80 88.89 91.13 89.66 90.35 88.19 89.58 88.74 89.27 81.40 84.18

Std 12.03 11.01 10.42 7.41 10.10 8.25 9.93 9.04 10.48 7.45 7.06 8.66

Table 4 Comparison of classification accuracy and kappa coefficients of the NFBCSP algorithm with other recent algorithms on the BCI

Competition IV dataset 2a

Subjects Kappa coefficients Classification accuracy(%)

Winer Ank

et al.

(Ang

et al.

2012)

Sakhavi

et al.

(Sakhavi

et al. 2018)

Raza

et al.

(Raza

et al.

2016)

Sharba

et al.

(Sharbaf

et al.

2017)

Proposed Aghaei

et al.

(Aghaei

et al.

2015)

Yang

et al.

(Yang

et al.

2015)

Sakhavi

et al.

(Sakhavi

et al. 2015)

Liao

et al.

(Liao

et al.

2020)

Proposed

S1 0.68 0.78 0.83 0.88 0.75 0.85 67.88 77.14 80.55 88.60 88.39

S2 0.42 0.41 0.54 0.22 0.31 0.57 42.18 49.82 53.82 55.70 67.71

S3 0.75 0.76 0.87 0.88 0.82 0.88 77.87 80.41 84.72 86.70 90.63

S4 0.48 0.53 0.56 0.39 0.56 0.64 51.77 53.88 64.58 71.00 73.61

S5 0.40 0.42 0.50 0.53 0.47 0.59 50.17 65.47 59.03 66.50 69.09

S6 0.27 0.19 0.27 0.33 0.38 0.43 45.97 48.70 44.10 56.00 56.94

S7 0.77 0.80 0.86 0.38 0.75 0.87 87.50 81.37 84.03 88.40 89.93

S8 0.75 0.74 0.78 0.85 0.74 0.74 85.79 84.39 86.80 80.09 79.86

S9 0.61 0.54 0.73 0.81 0.67 0.68 76.31 82.29 77.77 77.10 75.69

Mean 0.57 0.57 0.66 0.58 0.61 0.69 65.05 69.27 70.60 74.60 76.87

Std 0.17 0.20 0.19 0.25 0.17 0.15 16.73 14.08 14.71 12.25 10.83
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0.69, which is an improvement over the other methods with

different degrees and has less mean deviation.

It can be found that extracting the dynamic energy

features of different subjects under different motor imagery

tasks by using narrow filter band can effectively improve

the classification accuracy, which proves the effectiveness

of narrow filter band for motor imagery. For the biclass

motor imagery task, after using CSP algorithm to extract

the dynamic features of the optimal narrow band, it is still

able to maintain high classification performance by directly

applying machine learning algorithms, such as Support

Vector Machines, Linear Discriminant Analysis (LDA)

(Balakrishnama and Ganapathiraju 1998), etc. For the

multi-class motor imagery task, DCNN can be used to fuse

and classify multiple band features, but the feature selec-

tion scheme still needs to be considered, while the choice

of features directly determines the structure of the network.

Conclusion

In this paper, we propose a narrow filter bank CSP

(NFBCSP) algorithm, which automatically determines the

optimal narrow band by using a band search tree, and uses

the CSP algorithm to extract dynamic energy features in

the EEG signals that depend on subjects and motion pat-

terns. For the multi-class motor imagery task, the DCNN

architecture is designed based on the NFBCSP algorithm,

using convolutional operations to fuse and classify features

from multiple narrow bands. The experiments show that for

the two datasets used in this paper, the average classifica-

tion accuracy of the left and right hand motor imagery task

reached 86.43%, and the average classification accuracy of

the four-class motor imagery task reached 76.87%, which

is a significant improved than other algorithms. The

experiment also shows that the optimal narrow band of

motor imagery for the same subject at different times is

similar, therefore, it is also an effective potential solution

for implementing online systems. Since our method

requires the selection of features in advance to construct

the feature map as input to the neural network, it may lead

to bias in the selection of features for different subjects.

Although the two datasets used in this paper have signifi-

cantly improved the average classification accuracy, there

are still some subjects whose classification performance is

worse than other methods, which means that better feature

selection and band fusion methods are directions for future

works.
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supplementary material available at https://doi.org/10.1007/s11571-
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