Table 2.
Classifier effectiveness comparison
Classifier | Accuracy | Precision | Recall | F1 | TP | FP | TN | FN | AUC |
---|---|---|---|---|---|---|---|---|---|
SGD | 0.06 | 0.03 | 0.738 | 0.678 | 1,020 | 605 | 564 | 362 | 0.610 |
Naive Bayes | 0.02 | 0.004 | 0.871 | 0.704 | 1,205 | 833 | 336 | 177 | 0.580 |
Linear SVC | 0.27 | 0.002 | 0.662 | 0.642 | 915 | 553 | 616 | 467 | 0.595 |
Random Forest | 3.57 | 0.06 | 0.790 | 0.674 | 1,093 | 765 | 404 | 289 | 0.568 |
Logistic Regression | 0.22 | 0.002 | 0.758 | 0.684 | 1,034 | 603 | 566 | 348 | 0.616 |
Nearest Neighbor | 0.019 | 4.17 | 0.646 | 0.616 | 894 | 625 | 544 | 488 | 0.556 |
Decision Tree | 9.18 | 0.009 | 0.616 | 0.604 | 852 | 585 | 584 | 530 | 0.558 |
Gradient Boost | 22.7 | 0.02 | 0.860 | 0.701 | 1,189 | 818 | 351 | 193 | 0.580 |
Perceptron | 0.08 | 0.05 | 0.749 | 0.638 | 1,088 | 770 | 399 | 294 | 0.571 |
Passive Aggressive | 0.09 | 0.04 | 0.768 | 0.702 | 935 | 533 | 586 | 497 | 0.591 |