Skip to main content
. 2022 Mar 21;59(1):237–261. doi: 10.1007/s10844-021-00646-9

Table 2.

Classifier effectiveness comparison

Classifier Accuracy Precision Recall F1 TP FP TN FN AUC
SGD 0.06 0.03 0.738 0.678 1,020 605 564 362 0.610
Naive Bayes 0.02 0.004 0.871 0.704 1,205 833 336 177 0.580
Linear SVC 0.27 0.002 0.662 0.642 915 553 616 467 0.595
Random Forest 3.57 0.06 0.790 0.674 1,093 765 404 289 0.568
Logistic Regression 0.22 0.002 0.758 0.684 1,034 603 566 348 0.616
Nearest Neighbor 0.019 4.17 0.646 0.616 894 625 544 488 0.556
Decision Tree 9.18 0.009 0.616 0.604 852 585 584 530 0.558
Gradient Boost 22.7 0.02 0.860 0.701 1,189 818 351 193 0.580
Perceptron 0.08 0.05 0.749 0.638 1,088 770 399 294 0.571
Passive Aggressive 0.09 0.04 0.768 0.702 935 533 586 497 0.591