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ABSTRACT
Background  Exercise-induced cardiac remodelling (EICR) 
results from the structural, functional and electrical adaptations 
to exercise. Despite similar sports participation, EICR varies 
and some athletes develop phenotypic features that overlap 
with cardiomyopathies. Training load and genotype may explain 
some of the variation; however, exercise ‘dose’ has lacked 
rigorous quantification. Few have investigated the association 
between EICR and genotype.
Objectives  (1) To identify the impact of training load and 
genotype on the variance of EICR in elite endurance athletes 
and (2) determine how EICR and its determinants are 
associated with physical performance, health benefits and 
cardiac pathology.
Methods  The Pro@Heart study is a multicentre prospective 
cohort trial. Three hundred elite endurance athletes aged 14–
23 years will have comprehensive cardiovascular phenotyping 
using echocardiography, cardiac MRI, 12-lead ECG, exercise-
ECG and 24-hour-Holter monitoring. Genotype will be 
determined using a custom cardiomyopathy gene panel and 
high-density single-nucleotide polymorphism arrays. Follow-up 
will include online tracking of training load. Cardiac phenotyping 
will be repeated at 2, 5, 10 and 20 years.
Results  The primary endpoint of the Pro@Heart study is the 
association of EICR with both training load and genotype. The 
latter will include rare variants in cardiomyopathy-associated 
genes and polygenic risk scores for cardiovascular traits. 
Secondary endpoints are the incidence of atrial and ventricular 
arrhythmias, physical performance and health benefits and 
their association with training load and genotype.
Conclusion  The Pro@Heart study is the first long-term 
cohort study to assess the impact of training load and genotype 
on EICR.
Trial registration number  NCT05164328; 
ACTRN12618000716268.

INTRODUCTION
‘Exercise-induced cardiac remodelling’ 
(EICR) comprehends the structural, 

functional and electrical adaptations of 
the heart in response to the metabolic and 
mechanical demands of exercise.1 Although 
cross-sectional and some short-term prospec-
tive studies have enhanced our understanding 
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What is already known on this topic
	► There is a large unexplained variability in the extent 
of exercise-induced cardiac remodelling among 
highly trained endurance athletes.

	► Endurance athletes may present with structural, 
functional and electric features that overlap with 
cardiomyopathies.

	► Endurance athletes have an increased risk of devel-
oping atrial fibrillation.

What this study adds
	► Insights on the impact of training load and genotype 
on the variability of exercise induced cardiac remod-
elling and its prognostic impact.

	► A new gold standard for training load quantification 
in the field of sports cardiology.

	► Knowledge on the phenotypic features that predis-
pose endurance athletes to a higher physical perfor-
mance and more health benefits; but also to cardiac 
disease and arrhythmias such as atrial fibrillation.

How this study might affect research, practice 
or policy

	► Stimulate other long-term prospective collaborative 
trials in the field of sports cardiology that combine 
comprehensive cardiovascular phenotyping, training 
load quantification and genotyping.

	► Provide a better understanding of the normal 
spectrum and variability of the athlete’s heart for 
clinicians.

	► Aid clinical practice in identifying athletes at risk of 
cardiac disease and arrhythmias.
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of EICR, numerous questions concerning the spectrum, 
determinants and the prognosis of EICR remain unan-
swered.

The determinants of EICR
Training load
Athletes participating in highly dynamic and static 
sports (eg, cycling and rowing), accomplishing more 
training hours per week and performing at the highest 
level have the largest hearts.2 3 However, not all athletes 
engaging in the same sport and competing at a similar 
level remodel equally. In a group of 174 non-elite male 
runners for example, 16% had concentric left ventricular 
(LV) remodelling, 11% had non-dilated concentric LV 
hypertrophy (LVH), 4% had non-dilated eccentric LVH, 
9% had dilated eccentric LVH and the remaining 60% 
had normal LV geometry.4 A 2004 study by Abergel et al 
showed a wide scatter of LV internal diameter at end-
diastole, maximal wall thickness and LV ejection fraction 
(LVEF) in professional cyclists before participating in the 
1995 and 1998 Tour de France with 11% having a reduced 
LVEF ≤52%, 51.4% having a dilated LV of >62 mm and 
8.7% having a LV wall thickness of >13 mm.5

Subtle differences in training load may at least partially 
explain some of the variability. In well-conducted longi-
tudinal trials with supervised exercise programmes, 
endurance training in sedentary individuals increased 
biventricular volumes and mass.6–8 In seasoned athletes, 
intensification of training induced significant cardiac 
structural adaptations, suggesting that acute changes 
in training regimens significantly influence cardiac 
structure beyond the already present remodelling from 
extensive long-term training load.9–12 The evidence of 
training load as a determinant of EICR also extends 
towards cardiac pathology. More days and hours per 
week or the cumulative lifetime distance, hours or years 
of training, have been associated with atrial fibrillation 
(AF), myocardial fibrosis and exercise-induced arrhyth-
mogenic right ventricular cardiomyopathy (ARVC) in 
athletes.13–18

Although the importance of training load on EICR is 
evident, the field of sports cardiology has only scratched 
the surface of this association. In contrast to the accurate 
and extensive evaluation of EICR, training load has been 
poorly defined and has mostly relied on the history of 
training hours, distances and amount of completed races 
gathered though screening questionnaires that are prone 
to inaccuracy and fail to quantify the internal training 
load. Training load encompasses multiple variable such as 
type, frequency, intensity and duration of exercise which 
can be brought back to two measurable components: 
external and internal loads. External loads are objective 
measures of the athlete’s work during exercise (eg, time, 
distance, altitude, speed and power). By contrast, internal 
loads represent the athlete’s physiological and psycholog-
ical responses to the imposed external loads (eg, heart 
rate, blood pressure, serum lactate levels). Over recent 
decades, wearables have become omnipresent in athletes 

and record a wealth of data including time, distance, 
speed, power output and heart rate during exercise. With 
an electronic training diary linked to the athlete’s heart 
monitoring and sports GPS device, external and internal 
training loads from every single training session can be 
exported and expressed across multiple time domains 
(eg, per week, month, years).

Genotype
Where training load fails to explain the variability in 
cardiac structure and function between athletes, genetics 
may provide insights.

Genetic make-up plays an essential role in cardiac struc-
ture and function. The most notable impact of genetics 
on cardiac morphology is in cardiomyopathies such as 
hypertrophic cardiomyopathy (HCM), dilated cardio-
myopathy (DCM) and ARVC. These are typically caused 
by single rare variants in genes that encode cardiomyo-
cyte components such as sarcomere and desmosomal 
proteins.19 However, the genetic heterogeneity, plei-
otropy, variable penetrance and the variable impact 
environmental factors result in an important phenotypic 
variability.

Exercise-induced ARVC serves as a prime example. 
Our research group has contributed to the recognition of 
exercise-induced ARVC, characterised by a combination 
of potentially life-threatening ventricular arrhythmias 
originating from a dilated and mildly dysfunctional right 
ventricle (RV) at rest or during exercise.20–23 Genetic 
testing in these athletes revealed a lower than expected 
prevalence of desmosomal gene mutations, thereby 
implying a significant contribution of intense exercise 
to the resulting phenotype.24 Furthermore, in patients 
labelled with ‘gene-elusive’ ARVC a higher prevalence of 
athletes and more intense exercise history was reported.25 
The terms ‘exercise-induced’ and ‘gene-elusive’ ARVC 
may be considered synonyms, with the former Australian/
Belgian terminology emphasising the common feature of 
high doses of intense endurance exercise and the latter 
Baltimore terminology emphasising the observation that 
genetic mutations are seldom identified. As not all endur-
ance athletes develop exercise-induced/gene-elusive 
ARVC, a solely exercise-induced ARVC is disputed. It 
remains to be investigated which factors, including geno-
type, predispose certain athletes towards a phenotypic 
expression of ARVC when exposed to exercise. The gene-
exercise relation is already evidenced by the exacerbated 
disease progression in genotype positive ARVC due to the 
mechanical stress of exercise.26 27 Interactions between 
mechanical stress and genetic susceptibility have also 
been reported for peripartum cardiomyopathy. Although 
assumed an acquired disorder, recent data have shown 
an increased prevalence of rare cardiomyopathy gene 
variants, including truncating TTN variants (TTNtv), in 
women with peripartum cardiomyopathy compared with 
a reference population.28 Further, studies in a zebrafish 
TTNtv model have shown reduced tolerance of mechan-
ical stress in titin-deficient hearts.29 Aside from rare gene 



3De Bosscher R, et al. BMJ Open Sp Ex Med 2022;8:e001309. doi:10.1136/bmjsem-2022-001309

Open access

variants, the potential role of more common variants 
should be emphasised. As an example, common polymor-
phisms associated with cardiac structure and function 
have been linked to incident DCM in the general popula-
tion and may influence the phenotype among carriers of 
TTN truncating variants.30

Genetics also play an essential role in the onset of 
arrhythmias. There is growing evidence on the role of 
a genetic predisposition in the onset of AF. Research in 
cases of early-onset AF and families with AF has identi-
fied numerous variants in genes coding for ion channels, 
transcription factors and myocardial structure, which 
could be a primary cause of AF, regardless of exercise.31 
Genome-wide associations studies in large populations 
with AF and controls have identified >100 chromosomal 
loci associated with AF in which common variants are 
present. As the prevalence of AF in athletes exceeds 
that of the general population, the interaction between 
genetics and environmental factors (eg, exercise) is 
thought to play a crucial role in phenotypic expres-
sion. Of particular interest are the genes encoding for 
mechanical stress-sensitive cardiac ion channels in which 
stimuli such as hypertension or endurance exercise alter 
channel activity. The KCNQ1 gene for example encodes 
for the cardiac I

Ks
 channel and a missense mutation was 

detected in a family with hypertension, atrial dilation 
and atrial fibrillation.32 Other mechanical stress-sensitive 
ion channels include two-pore domain K+channels (eg, 
TREK1, TREK2, TRAAK), transient receptor potential 
channels (eg, TRPM4, TRPC3, TRPC6) and the Piezo1 
channel.33

Sex
Besides training load and genetics, cross-sectional studies 
suggest sex-differences in the type and extent of EICR. 
Absolute measures of LV and RV dimensions and mass are 
smaller in females, but when corrected for body surface 
some echocardiographic studies have reported larger 
indexed end-diastolic diameters in female athletes than 
in males.34 35 A recent study using cardiac MR (CMR) 
showed lower indexed LV and RV volumes in adoles-
cent and adult female athletes with a higher tendency 
towards eccentric remodelling as evaluated by volume 
to mass ratios.36 Functionally, while no sex-differences 
were noted for LVEF and RVEF in adolescent athletes, 
RVEF was lower in adult males compared females. The 
latter could suggest that RV function remains stable 
from adolescence to adulthood in females but decreases 
in males. Using deformation imaging, LV and RV global 
longitudinal strain was higher at rest and increased 
more during exercise in female athletes compared 
with males, thus further supporting a potential higher 
susceptibility towards RV dysfunction in male athletes.37 
Whether the sex-differences in EICR contribute to the 
reduced arrhythmogenic risk in female athletes remains 
unclear.20 21 24

Ethnicity
As ethnic diversity in sports has grown over the years 
so has the relevance and understanding of the role of 
ethnic background on EICR. While ventricular dilation 
is common in white athletes with 14% having an LV 
diameter of >60 mm on transthoracic echocardiography, 
significant hypertrophy such as an LV wall thickness 
of >12 mm is uncommon.38–40 In black athletes the degree 
of ventricular dilation is similar to white athletes whereas 
an in increased in LVWT >12 mm is more frequent and 
seen in up to 12% of black athletes.41–43 Black athletes 
generally present with a higher systolic blood pressure at 
rest and during exercise which could explain the higher 
prevalence of LVH.44 Additionally LV hypertrabeculation 
is more frequent in black athletes than in white athletes.45 
These differences in structural remodelling between 
white and black athletes is also illustrated on the ECG with 
anterior T-wave inversions being more common in black 
athletes and considered a normal ethnic variant.46 With 
regard to East Asian athletes a slight distinction can be 
made between Chinese and Japanese athletes. The former 
have shown similar cardiac dimensions as compared with 
white athletes whereas the latter have greater LV end 
diastolic dimensions.47–50 In Arab athletes, in comparison 
to white and black athletes, smaller cardiac dimensions 
have been measure with a similar degree of LVH as white 
athletes.51 Finally in Pacific Islanders a higher LV mass 
was seen when compared with white athletes.52 Whether 
differences in cardiac remodelling between ethnic popu-
lation is based on differences in genotype, training load 
or other factors remains to be explored.

The prognosis of EICR
Despite the many health benefits of endurance exercise, 
athletes are not granted immunity from cardiovascular 
disease.

Atrial fibrillation
Atrial fibrillation is the most common arrhythmia and 
has a U-shaped dose–response relationship with endur-
ance exercise. On the one hand, low to moderate 
intensity exercise has been associated with a decreased 
risk of AF.53 54 On the other hand, a higher incidence of 
AF was seen when endurance exercise was performed 
more frequently (ie, >4/week) and longer (ie, >5 hours/
week) or when a lifetime exercise history of >2000 hours 
was met.13–15 A 2009 meta-analysis calculated that endur-
ance athletes are 5.3 times more likely to develop AF than 
controls.55 56 Part of the propensity for AF in high-level 
endurance athletes is thought to arise from the structural 
and functional atrial adaptations. A recent study by Trivedi 
et al investigated the differences in atrial structural and 
functional properties between healthy non-athletes, non-
athletes with paroxysmal AF, healthy endurance athletes 
and athletes with paroxysmal AF. Diastolic dysfunction, 
LA dilation and reduced LA strain characterised non-
athletes with AF whereas athletes, regardless of AF, had 
a normal diastolic function, increased LA volumes and 
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decreased LA strain. However, athletes with AF had lower 
LA emptying fraction and LA expansion index, which 
are suggestive of atrial cardiomyopathy.57 This study 
highlights the difficulties in distinguishing the healthy 
athlete’s dilated atrium for one that is predisposed to AF.

Ventricular arrhythmias and sudden cardiac death
Sudden cardiac death (SCD) is an uncommon event in 
athletes and occurs primarily through ventricular arrhyth-
mias. The incidence of SCD ranges between 0.4 and 8.4 
per 100 000 athlete-years.58 ARVC and other inherited 
cardiomyopathies such as HCM and DCM can be highly 
arrrhythmogenic and are among the most common 
causes of SCD in young athletes.59 60 A particular chal-
lenge in sports cardiology is the overlapping phenotype 
of EICR and these cardiomyopathies. Although research 
has granted clinicians strategies to distinguish disease 
from physiological adaptation a better understanding of 
the extent and mechanisms of EICR is required.23 61–65

Another putative risk factor associated with SCD in 
athletes is myocardial fibrosis.60 Reports on myocar-
dial scarring in athletes are heterogeneous regarding 
prevalence, location, extent, aetiology and clinical signif-
icance. Coronary artery disease (CAD)-patterns and 
non-CAD subepicardial/midmyocardial fibrosis have 
been associated with potentially life threatening arrhyth-
mias such as non-sustained ventricular tachycardia but 
also ventricular tachycardia leading to sudden death or 
an appropriate shock by an implanted defibrillator.66 67 In 
contrast, hinge point fibrosis associated with cumulative 
exercise exposure, such as years of training and the life-
time number of races and race distances is considered a 
benign consequence of RV overload.16–18

The majority of SCD in athletes are classified as sudden 
unexplained deaths in which the role of plain EICR as 
potential triggers and/or substrates of arrhythmias is 
unknown.59 60

Physical performance and health benefits
Despite the increased risk of arrhythmias in some highly 
trained individuals, there is no denying the numerous 
health benefits associated with endurance exercise in the 
general population. Endurance exercise is associated with 
a lower prevalence and better control of cardiovascular 
risk factors such as arterial hypertension, dyslipidaemia, 
obesity and diabetes mellitus.68–71 Increased longevity is 
the strongest health outcome associated with exercise. 
Regular physical exercise at low to moderate intensity, 
even in small doses, reduces all-cause and cardiovascular 
mortality.72 73 These findings can be extended to higher 
levels of exercise with Olympic athletes demonstrating 
an increased life expectancy of up to 6.5 years compared 
with the general population.74–78 Research in Tour de 
France participants from 1947 until 2012 has similarly 
reported a 41% lower mortality rate in cyclists for both 
malignancies and cardiovascular causes.79 However, the 
cited research is limited by its retrospective design and 
focus on elite athletes who on average were over 20 years 

old thereby being potentially affected by the ‘survival of 
the fittest’ selection bias.

The time required to a cover a given distance defines 
physical performance of an endurance athlete. Physio-
logically, the latter can be brought back to the velocity 
and power generated by the athlete, with VO

2
max being 

one of the major determinants. Elite endurance athletes 
have the highest VO

2
max, with values of more than 70 

and up to 85 mL/kg/min, equalling 150%–200% of 
the VO

2
max seen in healthy active young individuals.80 

Alongside capillary density and mitochondrial density, 
the high levels of VO

2
max have also been attributed to 

EICR such as increased cardiac size and stroke volume.81 
For the elite athlete, the ultimate measure of physical 
performance is the level of competitiveness, the number 
of finals reached and Olympic Games participated in, or 
the amount of victories, trophies and medals obtained. 
It is unknown whether and/or which features of EICR, 
including pathology such as AF and myocardial fibrosis, 
affect VO

2
max and physical performance. How much 

do alterations in training regimen explain differences 
in physical performance? To which extent does geno-
type play a role in predetermining gold medallists and 
Olympic champions? Finally, looking at both genotype 
and phenotype the question raises whether you can out-
train unfavourable genetics?

In conclusion, much of the variability, determinants 
and the outcome of EICR has yet to be determined. 
Prospective long-term studies that investigate EICR in 
large cohorts of athletes are needed to improve knowl-
edge in these areas of sports cardiology. The Pro@Heart 
study is a multicentre prospective cohort trial designed to 
assess and follow-up all aspects of EICR in young compet-
itive endurance athletes. The interplay between training 
load and genotype will be investigated and insights on 
the long-term outcome of EICR will be gained.

THE PRO@HEART STUDY
Trial design
The Pro@Heart (Prospective Athlete’s Heart) study is an 
international multicentre prospective cohort trial with 
collaborators in Australia (Baker Heart and Diabetes 
Institute Melbourne, St Vincent’s Hospital Melbourne, 
University of Adelaide, Royal Adelaide Hospital, Royal 
Melbourne Hospital and Victor Chang Cardiac Research 
Institute) and Belgium (University Hospitals Leuven, 
University Hospital Antwerp and Jessa Hospital Hasselt). 
(​ClinicalTrials.​gov Registry Identifier NCT05164328—
Australia New Zealand Clinical Trials Registry Identifier 
ACTRN12618000716268).

Objectives and hypothesis
The primary objective of the Pro@Heart study is to 
investigate the impact of training load (ie, accurately eval-
uated in term of type, frequency, duration and intensity) 
and genotype on the variability of structural, functional 
and electrical EICR in young competitive endurance 
athletes. The second objective is to determine how EICR, 
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training load and genotype are associated with physical 
performance, health benefits and cardiac pathology 
(eg, exercise-related cardiomyopathies and arrhythmias) 
during follow-up over several decades.

The hypotheses are that: (1) Genetic factors contribute 
to variability in EICR beyond training load and, (2) 
Athletes with extreme EICR have a higher risk of arrhyth-
mias. The study hypotheses are illustrated in figure 1.

Study population and eligibility criteria
Athletes aged 14–23 years are recruited from elite endur-
ance sports programmes and organisations including 
Cycling Vlaanderen, Triatlon Vlaanderen, Belgian 
Cycling, Cycling Australia, Rowing Australia and Athletics 
Australia and from sports performance centres including 
Nottebohm Antwerpen, Bakala Academy Leuven and 
Adlon Hasselt. Volunteers have also been recruited by 
means of ‘word of mouth’ and social media campaigns 
within elite endurance sporting circles. Non-athletes 
consist of age and gender matched university and college 
students recruited from Australian and Belgian univer-
sities in addition to social media campaigns. Subjects 
will be included based on the eligibility criteria listed in 

box 1. Informed consent will be obtained from the partic-
ipants or their legal guardian.

A young age at inclusion will ensure a baseline evalu-
ation at the beginning of the athlete’s career, at a time 
point of relative low cumulative training load. Moreover, 
it will allow close follow-up of the evolution of EICR over 
years, in correlation with training load, genotype, cardio-
vascular disease and athletic performance. The age range 
of 14–23 years was considered the best compromise 
between enrolling athletes with relatively low cumulative 
training load and sufficient commitment to high-level 
endurance training, minimising the risk of dropout.

To ensure a high level of athleticism, individuals must 
be competing at a national or international level for at 
least 2 years in a sport with a high dynamic and moderate-
high static training components performed for sustained 
periods. Hence triathlon, cycling, distance running of 
1500 m or more, rowing, swimming of 400 m or more 
and cross-country skiing (which includes biathlon and 
Nordic combined) were sports eligible for inclusion. 
The distances for running and swimming were selected 
based on the characteristic parabolic pacing profile of 
endurance exercise (ie, a fast-paced start, a slower and 
stable-paced middle section and finally a sprint).82 83 As 
cardiac volumes are similar between sedentary individ-
uals and subjects exercising <3 hours per week, a cut-off 
of  <3 hours per week of physical activity defined non-
athletes.84

Study procedures
Baseline evaluation includes medical history, review of 
medication and supplements, physical examination with 
blood pressure measurement on both arms and blood 
samples for biochemistry and DNA isolation. Genetic 
variants will be identified using a custom cardiomyopathy 
gene panel and the Axiom Precision Medicine Diversity 
Array (Thermo Fisher Scientific, Waltham, Massachusetts, 
USA). Rare variants will be assessed using the American 

Figure 1  Study hypothesis of the Pro@Heart study. The 
first hypothesis is that genotype and training load are two 
major determinants in the variability of EICR. The second 
hypothesis is that cardiac disease and arrhythmias but also 
health benefits and physical performance are associated to 
specific (preclinical) phenotypes of EICR, training load and 
genotype. EICR, exercise-induced cardiac remodelling.

Box 1  Eligibility Criteria for the Pro@Heart study

Inclusion criteria
1.	 Males and females aged 14–23 years old.
2.	 Athletes competing in endurance sports at national or international 

level for at least 2 years. Sports include:
	– Triathlon.
	– Cycling.
	– Distance running (≥1500 m).
	– Rowing.
	– Swimming (≥400 m).
	– Cross-country skiing (including biathlon and Nordic combined).

3.	 Non-athletes engaged in <3 hours per week of physical activity.

Exclusion criteria
1.	 Medical history of cardiovascular disease.
2.	 Current smoker of past history of smoking.
3.	 Diabetes mellitus.
Eligibility criteria for the Pro@Heart study including both inclusion and 
exclusion criteria.
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College of Medical Genetics and Genomics pathogenicity 
criteria.85 Polygenic risk scores for various traits will be 
derived from suites of common variants. A resting 12-lead 
ECG will be recorded and interpreted in accordance 
with international recommendations.86 Two-dimensional 
and three-dimensional transthoracic echocardiograms 
(TTE) and CMR with the administration of gadolinium 
as a contrast agent including native and postcontrast T1 
mapping and will be performed at rest to assess ventric-
ular systolic and diastolic function, atrial function, 
extracellular volume and myocardial tissue characterisa-
tion (ie, myocardial fibrosis). Cardiopulmonary exercise 
testing for maximal oxygen consumption measurement 
(VO2max) including 12-lead ECG recording will evaluate 
athletic performance and exercise-related repolarisation 
abnormalities and arrhythmias. Dual-energy x-ray absorp-
tiometry will assess body composition. Twenty-four-hour 
Holter monitoring will determine heart rate limits and 
the prevalence of arrhythmias. In addition to resting 
cardiac imaging, all recruits will also undergo exercise 
imaging to evaluate contractile reserve, using either two-
dimensional TTE or CMR.

Follow-up will include annual telephone communica-
tion enquiring about clinical events as well as continuous 
monitoring of training load using an electronic training 
diary. The duration, distance, altitude, speed, power 
output and heart rate during training sessions recorded 
by sports GPS trackers will be exported to a big data plat-
form. Measured external and internal training loads will 
be combined into a single parameter quantifying training 
load as a composite of duration and intensity, such as the 
Bannister training impulse (TRIMP) and derivatives.87–89 
The permission to track all sports activities using a central 
coach profile will be asked to the athlete or their legal 
guardian. All exported raw data will be pseudonymised 
in accordance with current general data protection regu-
lation guidelines.

The study flow chart is presented in figure 2. A detailed 
overview of study procedures is provided in online 
supplemental appendix.

Endpoints
The primary endpoint of the Pro@Heart study is the 
association of EICR (eg, ventricular hypertrophy, dila-
tion, reduced function and/or myocardial fibrosis) with 
both training load, quantified as a combination of dura-
tion and intensity, and genotype such as the prevalence 
of rare and common variants in cardiomyopathy-
associated genes and polygenic risk scores. Secondary 
endpoints are (1) the long-term incidence of arrhyth-
mias such as AF and atrial flutter as well as ventricular 
ectopic beats, non-sustained and sustained ventricular 
tachycardia, (2) the physical performance (eg, VO

2
max 

and race results) and (3) the health benefits (eg, 
longevity, cardiovascular risk factors) and their associ-
ation with the different phenotypes of EICR, training 
load and genotype.

STATISTICAL CONSIDERATIONS
Sample size and power calculations
The study is powered for primary and secondary objec-
tives.

Regarding the primary objectives, using an average 
indexed LV end-diastolic volume of 113±19 mL/m² from 
preliminary data and considering that 43% of the variance 
in LVEDV can be explained by all single-nucleotide poly-
morphisms (SNP) on a genotyping array, a population of 
220 athletes would render a statistical power over >90%.30 
Likewise, using an average indexed right ventricular 

Figure 2  Design and flow chart of the Pro@Heart study. 
Endurance athletes are recruited from state and national 
sports programs from the age of 14 to 23 years. Baseline 
evaluation includes a clinical exam and intake of medical 
history, medication, supplements and exercise history, 
quantification of current training load through an electronic 
training diary, blood sampling, DEXA, resting 12-lead ECG, 
two- and three-dimensional resting TTE, cardiopulmonary 
exercise testing including 12-lead exercise ECG and maximal 
oxygen consumption measurement, CMR imaging at rest 
and during exercise and a 24-hour Holter monitoring. Follow-
up consists of repeated testing at 2, 5, 10 and 20 years. 
CMR, cardiac magnetic resonance; DEXA, dual-energy x-ray 
absorptiometry; ECG, electrocardiogram; TTE, transthoracic 
echocardiograms.

https://dx.doi.org/10.1136/bmjsem-2022-001309
https://dx.doi.org/10.1136/bmjsem-2022-001309
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end-diastolic volume of 125±22 mL/m² and considering the 
same variance in RVEDV to be explained by all SNPs on a 
genotyping array, a population of 220 athletes would give a 
statistical power of >90%.

For the secondary objective of AF, based on the 2009 
meta-analysis by Abdulla and Nielsen reporting a prevalence 
of AF of 23% in 655 athletes and 12.5% in 895 non-athletes 
aged 51±9 years, a sample size of 300 endurance athletes and 
150 non-athletic controls would provide 80% power and 5% 
probability of a type I error in detecting a difference in AF 
prevalence between athletes and non-athletes during long-
term follow-up.55

Statistical analysis
Groups will be defined based on the types of EICR being 
investigated. Differences between baseline and follow-up 
will be compared using either a related-samples Wilcoxon 
signed rank test or a paired-samples t-test. Independent 
samples will be compared using either a Mann-Whitney U 
test or an independent-samples t-test as appropriate. Cate-
gorical data will be compared using a Related-Samples 
McNemar test. In case of three or more groups being 
defined repeated-measures ANOVA or a Friedman test will 
be used to analyse the continuous outcomes. Cochrane Q 
test will be used for dichotomous outcomes. The risk of type 
I errors due to multiple comparison will be assessed and 
corrections using the Bonferroni method or Benjamini-
Hochberg procedure will be considered. Multiple linear, 
non-linear and logistic regression analysis will be used to 
determine the association between cardiac remodelling 
(including adverse remodelling), the presence of poten-
tial pathological variants in cardiomyopathy associated 
genes and training load. Differences between gender and 
ethnicities will be addressed either by subgroup analyses 
comparing athletes with different gender and ethnicity or 
by incorporating gender and ethnicity as an independent 
variable in multivariate analyses. Cumulative event rates will 
be calculated and presented using Kaplan-Meier time-to-
event curves.

TRIAL STATUS
The Pro@Heart trial has been approved by the ethical 
committees of the University Hospitals Leuven, University 
Hospitals Antwerp, Jessa Ziekenhuis Hasselt and Baker 
Heart and Diabetes Institute. The first subject gave informed 
consent and took part in the trial on 23 June 2015. To date, 
over 220 athletes have been included, more than 70 athletes 
have had their 2-year follow-up appointment and the 5-year 
follow-up visits are being scheduled. Inclusions are ongoing. 
Trial results will be communicated through publications. 
Published articles will be available to the community on 
wwwproatheartbe.

CONCLUSION
Cross-sectional and short-term longitudinal trials have 
offered a better understanding of EICR and exposed the 
large variability in clinical phenotypes, including cardio-
vascular pathology but also the health and performance 

benefits. However, few studies have investigated the poten-
tial determinants and the long-term prognosis of EICR in a 
prospective manner. While training load may explain some 
of this variability, to date, the quantification of training load 
has primarily been reliant on subjective recall. The role of 
genotype in cardiomyopathies and certain cardiac arrhyth-
mias is clear but its importance in EICR and arrhythmias in 
athletes remain to be investigated.

The Pro@Heart study is a multicentre prospective cohort 
study that will combine comprehensive phenotyping with 
long-term follow-up to provide new insights on the spec-
trum and variability of EICR as well as how training load 
and genetics determine cardiac structure, functional and 
electrical properties, including arrhythmias in endurance 
athletes.
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