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Abstract

The separation of an object from other objects or the background by selecting the optimal
threshold values remains a challenge in the field of image segmentation. Threshold seg-
mentation is one of the most popular image segmentation techniques. The traditional meth-
ods for finding the optimum threshold are computationally expensive, tedious, and may
be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm
(IWOA) based on Kapur’s entropy for solving multi-threshold segmentation of the gray
level image. Also, IWOA supports its performance using linearly convergence increas-
ing and local minima avoidance technique (LCMA), and ranking-based updating method
(RUM). LCMA technique accelerates the convergence speed of the solutions toward the
optimal solution and tries to avoid the local minima problem that may fall within the opti-
mization process. To do that, it updates randomly the positions of the worst solutions to be
near to the best solution and at the same time randomly within the search space according
to a certain probability to avoid stuck into local minima. Because of the randomization
process used in LCMA for updating the solutions toward the best solutions, a huge number
of the solutions around the best are skipped. Therefore, the RUM is used to replace the
unbeneficial solution with a novel updating scheme to cover this problem. We compare
IWOA with another seven algorithms using a set of well-known test images. We use sev-
eral performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured
Similarity Index Metric, Standard Deviation, and CPU time.
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1 Introduction

Image segmentation is the practice of splitting an image into several homogeneous and
continuous regions that do not overlap so that any two of these regions are heterogene-
ous. It is a mandatory step in image processing (Kuruvilla et al. 2016) and computer
vision (Hu et al. 2016) to facilitate the analysis and understanding of images. Recently,
there are various types of images to be processed and analyzed, such as X-ray (Zhang et al.
2020), Nuclear Magnetic Resonance (NMR) (Griswold et al. 2019), computed tomogra-
phy (Farook et al. 2020; Zhang et al. 2020), sonar (Song and Liu 2020), position emission
tomography (Bal et al. 2020), thermal (Al-Musawi et al. 2020), light intensity (gray-scale),
and color images. Several image segmentation approaches have been developed, including
region detection (Aksac et al. 2017), edge detection (Prathusha and Jyothi 2018), Feature
selection-based clustering (Narayanan et al. 2019), and threshold segmentation (Han et al.
2017).

Threshold segmentation is one of the most commonly used approaches categorized into
bi-level threshold and multi-level threshold. In the bi-level threshold, we can group image
objects into two classes: foreground (object) and background. When the image contains
different objects with different intensity, the bi-level threshold couldn’t segment it. Accord-
ingly, we use a more complex threshold segmentation called a multi-level one. The multi-
level threshold groups the image objects into more than two classes. Threshold segmen-
tation is simple, accurate, fast, and needs small storage. Unfortunately, time complexity
increases exponentially with the multi-level threshold. The used threshold techniques try to
find the optimal threshold values based on two approaches: parametric and non-parametric
approaches (Dirami et al. 2013). In the parametric approach, each class in the image has
some parameters to be calculated using a probability density function. The non-parametric
one obtains the threshold values by maximizing some of those functions (Kapur’s entropy
(Kapur et al. 1985), fuzzy entropy (Oliva et al. 2019), and Otsu method (Otsu 1979;
Bhandari and Kumar 2019)) without using statistical parameters.

The traditional techniques used to find the optimal threshold values are time-consuming.
Meta-heuristic algorithms have been used and integrated with threshold segmentation tech-
niques to overcome the high time complexity for a multi-level threshold. Many authors pay
attention to employ meta-heuristic algorithms for solving multi-threshold segmentation
problems, including Genetic Algorithm (GA) (Elsayed et al. 2014), Particle Swarm Opti-
mization (PSO) (Guo and Li 2007; Xiong et al. 2020; Di Martino and Sessa 2020), ant-col-
ony optimization algorithm (Kaveh and Talatahari 2010), Whale Optimization Algorithm
(WOA) (Abd El Aziz et al. 2017), symbiotic organisms search optimization (Chakraborty
et al. 2019), and firefly optimization (Erdmann et al. 2015).

Unfortunately, the algorithms in the literature for the ISP suffer at least from one of the
following problems:

— Falling into local minima,
— Low convergence speed,
— Not feasible for tackling images having higher threshold levels.

Therefore, in this paper, a new optimization approach based on the improved whale optimi-
zation algorithm is proposed to overcome the previous drawbacks for the ISP.

Recently, a new optimization algorithm (Mirjalili and Lewis 2016), namely whale
optimization algorithm (WOA), has been proposed for tackling continuous optimization
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problems. Although the significant performance of the WOA in reaching good outcomes
for several real optimization problems (Abdel-Basset et al. 2020; Jafari-Asl et al. 2021; El-
Fergany et al. 2019), it still suffers from the local minima and the low convergence speed.
Therefore, in this paper, WOA is improved using two strategies to promote its exploration
and exploitation capabilities. The first strategy is the linearly convergence increasing and
local minima avoidance technique (LCMA) that moves the positions of the worst solutions
to be near to the best solution and at the same time randomly within the search space of
the problem to avoid falling into local minima. The second strategy is the ranking-based
updating method (RUM) to replace the unbeneficial solutions with other better solutions,
helping in improving its performance. After then, these strategies are effectively integrated
with the standard WOA to maximize Kapur’s entropy for tackling the ISP. Empirically, the
improved WOA (IWOA) is validated 13 test images taken from Berkeley Segmentation
Dataset (BSD) with threshold levels between 2 and 100 to check the efficacy of IWOA
in selecting the optimal thresholds. To see the superiority of the proposed algorithm, it
is compared with a number of well-known optimization algorithms under various perfor-
mance metrics: SSIM, PSNR, STD, fitness value, and CPU time. The empirical outcomes
prove the efficacy of IWOA on these images in comparison to the compared optimization
algorithms for SSIM, PSNR, STD, and the values of the objective. Unfortunately, the pro-
posed algorithm couldn’t overcome some compared algorithms for the CPU time as our
main limitations, but its superiority for the other metrics, such as SSIM, PSNR, and STD
makes a better alternative for the existing method proposed for ISP. Finally, we summarize
the main contributions of this paper as follows:

— We propose an Improved Whale Optimization Algorithm (IWOA) based on Kapur’s
entropy for solving the multi-threshold image segmentation.

— We improve the performance of IWOA using the LCMA, and RUM.

— Several experiments and the Wilcoxon rank-sum test are conducted to prove the effi-
cacy of IWOA in comparison with other well-known algorithms based on some per-
formance metrics, including Peak Signal to Noise Ratio (PSNR), Structured Similarity
Index Metric (SSIM), and fitness value metrics using a set of benchmark test images.

We organize the remaining of the paper as follows. Section 2 presents the previous works
done for tackling the multi-threshold image segmentation problem. In Sect. 3, we introduce
the multi-threshold image segmentation problem using Kapur’s entropy. Moreover, Sect. 4
describes the whale optimization algorithm. Section 5 explains and illustrates the proposed
algorithm. Section 6 shows the experiments outcome and their discussions. Finally, Sect. 7
draws the conclusions and the future works about the proposed algorithm.

2 Related work

Image segmentation groups the pixels of an image according to some specific criteria,
including textures, shape, color, and intensity. Many applications exploit image segmenta-
tion in understanding and analyzing the acquired images, such as medical diagnosis (Mittal
et al. 2020; Zhang et al. 2020; Sinha et al. 2020; Ren et al. 2019), object recognition (Wang
et al. 2019), geographical imaging (Chen 2020), satellite image processing (Karydas
2020), remote sensing (Su and Zhang 2017), historical documents (Alberti et al. 2017), and
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historical newspapers (Naoum et al. 2019; Barman et al. 2020). Although threshold seg-
mentation is easy to implement and has a low computational burden, it is still a challenge
for the researchers to determine the optimal n- level threshold. The traditional methods to
search for optimal thresholds values such as an exhaustive search can be tedious and com-
putationally expensive. Many authors handled the problem of n- level threshold as an opti-
mization problem solved using meta-heuristic algorithms, which could overcome several
optimization problems (Abdel-Basset et al. 2020a, b, [44], Abdel-Basset et al. 2020; Lang
and Jia 2019). We will review several attempts done for the optimal threshold selection.

Singla and Patra (2017) selected the initial thresholds by obtaining the mid-points of
any two consecutive peaks of the energy curve of an image. Then, the cluster validity
measure tries to find the potential thresholds and the bounds that may contain the optimal
ones. Finally, the GA algorithm seeks to discover the optimal thresholds from its defined
bounds. Also, Manikandan et al. (2014) proposed GA with a simulated binary crossover
to maximize the Kapur’s entropy for medical image segmentation. Another meta-heuris-
tic algorithm PSO introduced for image segmentation. Maitra and Chatterjee (2008) inte-
grated PSO with cooperative and comprehensive learning to face the dimensionality curse
and to reduce the premature convergence of the swarm, respectively. Consequently, a mod-
ified PSO (Liu et al. 2015) employed the adaptive inertia and the adaptive population to
improve its performance for maximizing the Otsu’s function to find the optimal thresholds,
which will separate homogenous regions within an image. The MPSO has been validated
on 12 test images and compared with the standard PSO and GA. Ghamisi et al. (2013)
introduced fractional-order Darwinian PSO to solve the problem of the n-level threshold
based on Otsu to maximize the variance between the classes.

Another metaheuristic is the Bacterial Foraging Algorithm (BFA). Sanyal et al. (2011)
applied an adaptive BFA for gray-scale image segmentation depending on fuzzy entropy,
which adaptively switches the bacterium between exploitation and exploration stages.
Also, the authors in Sathya and Kayalvizhi (2011) accelerated the convergence of a modi-
fied BFA by moving the best bacteria to the subsequent iterations. The results proved that
the modified BFA based on Otsu’s function has a high convergence speed in comparison
with Kapur’s one. After that, a cooperative BFA (Liu et al. 2015) combined a self-adaptive
foraging strategy, which controls the swim amplitude and cell-to-cell communication. The
cooperative BFA had higher quality segmentation and less CPU time. Furthermore, BFA
(Tang et al. 2017) is incorporated with PSO to support the global search capability in addi-
tion to the weak bacterium, which selects a random strong one to reach a location near it.
Pan et al. (2017) developed BFA depending on edge-detection for cell image segmentation
as the traditional edge-detection techniques are costly expensive and may produce discon-
nected edges. Lately, BFA (Wang et al. 2019) is integrated with PSO to avoid randomly
selecting the direction of the bacterial chemotactic step.

Mostafa et al. (2017) proposed a liver image segmentation using WOA that multiplies
the clustered image by the binary one. This clustered image divides the liver image into a
predetermined number of clusters. Also, the algorithm used the statistical image to indicate
the liver position and converted it into a binary one. The problem of multi-level threshold
segmentation (Abd El Aziz et al. 2018) is handled as a multi-objective problem that maxi-
mized both the Kapur’s entropy and Otsu’s function. Abd El Aziz et al. (2017) examines
the performance of the WOA and Moth-Flame Optimization (MFO) algorithm. WOA traps
into local optima while MFO succeeds in balancing the switch between the exploration and
the exploitation phases (Sikariwal and Chanak 2018). Ultimately, some of the most recent
multilevel thresholds image segmentation method are briefly discussed in Table 1.
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Table 1 Some recent methods proposed for ISP

Algorithms

Contributions and disadvantages

Hybrid slime mould optimizer with whale optimi-
zation algorithm (HSMA_WOA) (Abdel-Basset
et al. 2020)

An equilibrium optimizer (EO) (Abdel-Basset et al.

2021)

Improved marine predators algorithm (IMPA)
(Abdel-Basset et al. 2020)

Contributions

— This paper proposed a new image segmentation
algorithm based on integrating the slime mould
algorithm (SMA) with the whale optimization algo-
rithm for segmenting the Covid-19 X-ray images

— This approach employed both SMA and WOA
together to unify their advantages for overcoming
the disadvantages of each one separately

— Afterward, HSMA_WOA has validated 12 chest
X-ray images and its outcomes were compared
with those of a number of well-known optimization
algorithms to see their efficacy

— Finally, the experimental findings show the superi-
ority of the HSMA_WOA over the others

Disadvantages

— Its performance for general test images has not been
observed

Contributions

— In this paper, the equilibrium optimizer was adapted
for the multilevel thresholding image segmentation
problem by maximizing Kapur’s entropy to find
the optimal threshold values for various threshold
levels

— It has been validated using a number of images
and compared to some well-known optimization
algorithms to appear its efficacy

Disadvantages

— Still suffers from falling inside local minima which
prevents it from reaching the optimal threshold
values

Contributions

— Recently, a novel multilevel thresholding image
segmentation approach has been proposed for
segmenting the Covid-19 X-ray images

— This approach was based on the marine predators
algorithm improved by a ranking-based diversity
reduction strategy to increase the exploitation capa-
bility of the standard marine predators algorithm

— The experimental outcomes proved the superior-
ity of this improved one in terms of PSNR, SSIM,
standard deviation, fitness values, and UQI

Disadvantages

— A little expensive in terms of the computational
cost compared to the standard MPA and some of
the rival algorithms
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Table 1 (continued)

Algorithms

Contributions and disadvantages

Antlion optimization (ALO) and multiverse optimi-
zation (MVO) algorithms (Chouksey et al. 2020)

An improved Bloch quantum artificial bee colony
algorithm (ABC) (Huo et al. 2020)

Coyote optimization algorithm (COA)(Moses 2020)

Crow search algorithm (CSA) (Moses et al. 2019)

Contributions

— In this paper, both ALO and MVO have been pro-
posed for overcoming the multilevel thresholding
image segmentation problem by maximizing both
Kapur’s entropy and the Otsu method

— Those two algorithms were compared with other
evolutionary methods in terms of PSNR, SSIM,
feature similarity index (FSIM), standard deviation,
stability analysis, and fitness values. The experi-
mental results showed that MVO is faster and better
than the compared methods

Disadvantages

— Its performance for threshold levels higher than 5 is
not known and hence not preferred for the images
that have threshold levels higher than that

Contributions

— The ABC has been improved by the quantum Bloch
spherical coordinates of the qubit for reaching
better outcomes within a small number of iterations
when solving the multilevel thresholding image
segmentation problem

— The experimental outcomes show the superiority of
the proposed algorithm

Disadvantages

— Low convergence speed

— Falling into local minima

Contributions

— In this paper, the COA was adapted to tackle the
ISP

— The experimental outcomes showed the superiority
of the COA in terms of convergence speed, objec-
tive values, and image quality

Disadvantages

— Moves slowly to the near-optimal solution and this
will make it consume several function evaluations

Contributions

— Those authors proposed the CSA with the Otsu
method as an objective function for selecting the
optimal threshold values

— The CSA proved its superiority over the improved
particle swarm optimization (PSO), firefly algo-
rithm (FFA), and also the fuzzy version of FA in
terms of the quality of the segmented image, and
the objective values

Disadvantages

— Low convergence speed

— Not observed for threshold levels greater than 5
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Table 1 (continued)

Algorithms

Contributions and disadvantages

Modified water wave optimization (MWWO) algo-
rithm (Yan et al. 2020)

Modified Red Deer Algorithm (MRDA) (De et al.
2020)

Modified hybrid bat algorithm (Yue and Zhang
2020)

Contributions

— In this paper, the water wave optimization algo-
rithm was modified by the opposition-based learn-
ing strategy and ranking-based mutation strategy
to find the optimal values for the underwater image
segmentation problem

— The opposition-based learning was used to increase
the diversity of the individuals to avoid being stuck
into local minima and reach better outcomes. While
the ranking-based mutation operator was used to
improve the selection probability

— The experimental results showed the superior-
ity of MWWO in terms of the segmented images
and the objective values over the other compared
algorithms

Disadvantages

— Not compared with the recently-published algo-
rithms where the latest compared algorithm was
published in 2017

Contributions

— The red deer algorithm modified by a few adap-
tive approaches to improve its efficacy has been
proposed in this research for tackling the image
segmentation problem

— This algorithm was compared with the standard
one and genetic algorithm over a set of real-life
test images and could prove its efficacy in terms
of fitness value, convergence speed, and standard
deviation

Disadvantages

— Not investigated using several test images to check
its stability, in addition to using a huge number
of iteration up to 1000 which notifies its low
convergence speed in the right direction of the near-
optimal solution

Contributions

— Recently, the bat algorithm has been modified by
a genetic crossover operator and a smart inertia
weight (SGA-BA) to enhance its performance for
maximizing the Otsu method to estimate the opti-
mal thresholds of a set of images

Disadvantages

— Consuming computational cost higher than the
other compared algorithm
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Table 1 (continued)

Algorithms Contributions and disadvantages
Improved flower pollination optimizer (IFPA) (Li Contributions
and Tan 2019)

— In this paper, the authors improved the flower pol-
lination algorithm for optimizing the Tsallis entropy
as an objective function to find the optimal thresh-
olds that separate similar regions within an image

— The experimental results show the superiority
of this improved one compared to those three

algorithms
Grey Wolf Optimizer (GWO)(Khairuzzaman and Contributions
Chaudhury 2017) — The GWO has been proposed for finding the opti-

mal thresholds to separate similar regions within
an image. This algorithm used Kapur’s entropy and
Otsu method as objective functions to find those
optimal thresholds

— The experimental results show that GWO could
be superior in terms of the quality of segmented
images and stability and speed

Disadvantages

— Using the intensity of the image to perform the
segmentation process

— Not adequate for the images having intensity inho-
mogeneity problem

Many other meta-heuristic algorithms are developed for image segmentation, such as
cuckoo search (Bhandari et al. 2014), bat algorithm (Yue and Zhang 2020), flower pollina-
tion algorithm (Wang et al. 2015), crow search algorithm (Oliva et al. 2017; Upadhyay and
Chhabra 2019), Harris hawk optimization algorithm (Bao et al. 2019), grey wolf optimizer
(Yao et al. 2019), krill herd algorithm (He and Huang 2020), bee colony algorithm [59],
multi-verse optimizer (Kandhway and Bhandari 2019), and locust search algorithm (Cue-
vas et al. 2020). Unfortunately, the traditional methods for threshold image segmentation
are costly in terms of computations and time-consuming. Therefore, many of the research-
ers find themselves forced to search for new ways to solve this problem in less time and not
computationally expensive. One of these ways is to deal with threshold image segmenta-
tion as an optimization problem that can be solved using meta-heuristic algorithms. How-
ever, the success of meta-heuristic algorithms in obtaining an optimal solution in a rea-
sonable time, the balance between the exploration and exploitation phases and falling into
local optima are the biggest problem to face when dealing with theses algorithms. Also, the
convergence speed of the algorithms toward the optimal solution may be slow.

As aresult, this paper comes to address the aforementioned drawbacks and solve the prob-
lem of threshold image segmentation. WOA is one of the meta-heuristic algorithms that are
applied to many problems (Mafarja and Mirjalili 2018; Liu et al. 2020; Abdel-Basset et al.
2018). This motivates us to propose an improved whale optimization algorithm that employs
the LCMA technique for tackling threshold image segmentation. LCMA works on solving
two problems that the WOA suffers from. WOA at the start has high exploration capability
and reduces gradually with the iteration; this is considered the first problem due to reduc-
ing the convergence speed within the starting of the optimization process. After finishing the
exploration capability, which after the first half of the iteration, the WOA will pay attention to
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the best-so-far solution to find a better solution around it if it is not local minima and this is
considered the second problem. Accelerating the convergence speed of the algorithm toward
the best-so-far and avoiding falling into local minima motivate us to propose LCMA to move
the locations of K worst individuals near to the location of the best one and randomly within
the search space according to a certain probability, in addition to using the ranking-based
updating method (RUM) to replace the unbeneficial solutions with other solutions generated
based on a novel scheme helping the algorithm in exploiting more solutions around the best-
so-far solutions. K, at the start, carries a small value, and this value increases gradually with
the iteration until getting to the maximum (all the individuals in the population) at the end-
ing of the optimization process. Kapur’s entropy illustrated in the following section is used to
evaluate the quality of the solutions.

3 Mathematical model of Kapur’s entropy

Kapur’s entropy (Kapur et al. 1985) is a method that works on finding the optimal threshold
values that will separate the similar regions within an image by maximizing the entropy of the
histogram. Let’s start with a bi-level threshold. In bi-level threshold, this method tries to find
the threshold value ¢ that divides an image into background and foreground, namely, B and F
that maximize the following function:

Maximize . f(n) =B+ F (1)
t—1 t—1
X X, P,
B=—Z;F(’)*lnF(’),X,—7’,TO= -oXi 2)

~
|

-
|

|
ST =) X, 3

=t

where P; determines the number of pixels with a grey value i, and T is the total number of
pixels in an image. 7;, and T, refer to the respective probabilities of each class. L is the high-
est value for a pixel in a grey-scale level and equal 255. The previous function was used for
finding the threshold value for the bi-level threshold problem. Also, it can be adapted easily
for tackling the multi-level threshold problem by redesigning as follows:

flot),ty, .o t) =Ry + R+ Ry + ... +R, 4)
to—1 t—1
X, X, P,
Ry=— Y =Lt X, =L T,=) X, )
; T, T, ' T ; !
-1 -1
X, X, P,
R1=—Z#*lnﬁ,x,.=7’,T1=in 6)
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where n is the number of threshold levels, and ¢#; is the threshold values such that:
i=0,1,2,...,n. At the end, our proposed algorithm will work on maximizing Eq. (4) to
find the optimal threshold values.

4 Whale optimization algorithm

In WOA, Mirjalili and Lewis (2016) simulates the actions and conducts performed by the
humpback whales. The whales surround the victim in a spiral shape swimming up to the
surface in a shrinking circle using an astounding feeding method called the bubble-net
approach when attacking their victim or prey. WOA simulates this hunting mechanism by
making a 50% probability of selecting between a spiral model and a shrinking encircling
prey to generate the new position of the current whale. To exchange practically between
the spiral model and the shrining encircling mechanism, first, a random number, namely p,
is created between 0 and 1 and if this number is less than 0.5, then the encircling mecha-
nism is applied; otherwise; the spiral model is employed. The mathematical formula for the
encircling mechanism (exploitation phase) is as follows:

S;(it+1)=S*(r)—A =D ©)]

A=2xax*xrand —a (10)

a=2-2% it (11)
maxlier

D =|C* S*(ir) — S,;(in) | (12)

C =2 x rand (13)

where S, is the position of the current i whale, it is the current iteration, S* is the position

of the best whale in the population, rand is a random number in [0, 1], t,,,,;,, refers to the
course of iterations, D is computed using Eq. (12) which measures the distance between
the best-so-far solution, multiplied by a random number C between 0 and 2, and the current
i whale and a is a distance control parameter linearly decreased from 2 to 0. The spiral
model tries to mimic the helix-shaped movement of whales, so it is proposed between the
position of the victim and the whale. The mathematical model of a spiral shape (exploita-
tion phase) is as follows:

Si(it + 1) =S*(ir) + cos(2 # 7 % ) % €** % D’ (14)
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D' = | S*(it) — S;(ir) | (15)

where D' indicates the distance between the position vector of prey and i whale, [ is a
random number between [—1, 1], b is a constant to describe the logarithmic spiral shape.
To search for the prey in another direction in the search area, WOA uses a random whale
from the population to update the position of the current whale in the exploration phase. If
A is greater than 1, then the current whale is updated according to a random whale from
the population. The mathematical model of the search for the prey (exploration phase) is as
follows:

Si(it +1) =S, nai) —A =D (16)

D =|C % S,,,a(®) — S;(it) | (17)

where S,,,4 1S @ random position vector selected from the current population. The pseudo-
code of the standard whale optimization algorithm is described in Algorithm 1.

Algorithm 1 The standard WOA

1: Initialize the population of whales S;(i =1,2,3,...,n)
2: Evaluate the fitness of each whale

3: Find the best whale S*

4: it =1

5: while it < t;qqrter doO

6: for each i whale do

7 Update a, A, p,C, and |

8: if p < 0.5 then

9: if |[A| <1 then

10: Update S;(it + 1) using Eq. 9
11: else

12: Update S; (it + 1) using Eq. 16
13: end if
14: else
15: Update S;(it + 1) using Eq. 14
16: end if
17:  end for

18:  Check the objective value of the whale S; (it 4 1)

19:  Replacing the best whale S* with S;(it + 1) if better.
20: it++

21: end while

5 The proposed approach
In this section, the improved whale optimization algorithm (IWOA) is adapted for tackling
multi-threshold image segmentation problems. IWOA is improved using two strategies to pro-

mote its exploration and exploitation capabilities:

— The first strategy is the linearly convergence increasing and local minima avoidance
technique (LCMA) that moves the positions of the worst solutions to the direction of
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the best-so-far solution or within the search space of the problem to prevent stuck into
local minima.

— The second strategy is the ranking-based updating method (RUM) to replace the unben-
eficial solutions with other better solutions, helping in improving its performance.

The next subsections will illustrate the proposed algorithm in more detail.

5.1 Initialization

In this phase, a population of N whales is randomly generated. The dimension of each

whale is initialized randomly within the boundaries of gray levels of the image as illus-

trated in the following equation:
S, =H

min

+ rand(0, 1) * (Hmax - Hmin) (18)
where H,,;, and H,,,, is the minimum and maximum of the gray level values in the image
histogram, and rand(0, 1) is a random number in the range of [0, 1]. The grey-scale level is
represented in 8-bit, where the lowest value in decimal is O and the highest is 28 — 1 = 255.
For representing the positions of the whales within H,;, = 0 and H,,,, = 255, Eq. (18) will
be used to distribute the position of each whale within this boundary. For example, let’s
imagine an image with homogenous regions (n) equal to 10. For finding those threshold
values that will separate those regions from each other using the WOA, then WOA will
spread its solutions within the search space randomly as shown in Fig. 1 that depicts a solu-
tion from among all the solutions to illustrate a representation of the solutions to the image
segmentation problem for the grey-scale image.

After distributing the solutions within the boundaries of the problem, these values
should be transformed into integers because each pixel in the grey image is represented
with only 8-bit for an integer value and subsequently each pixel will only load an integer
value not decimal. As a result, the values before the dot within Fig. 1 will be used to repre-
sent the solution for the image segmentation problem and the numbers after the dot will be
truncated as shown in Fig. 2.

Afterward, the integers in Fig. 2 will be arranged as depicted in Fig. 3 and Eq. (4) is
called to calculate the quality of those threshold values under Kapur’s entropy.

Threshold level of 10
| 5.1 [ 125 [20.5 [ 100.5 | 50.5 | 30.2 | 150.3 | 200.1 | 250.2 | 80.4

Fig. 1 Depiction of a solution to multilevel thresholding

> Threshold level of 10
5 112 ]20 ]100 |50 ]30 [ 150 [ 200 | 250 | 80

Fig.2 Unordered integer threshold values

> Threshold level of 10
5 [12 20 [30 |50 |80 | 100 | 150 | 200 | 250 |

Fig.3 Ordered integer threshold values
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The previous steps will distribute the dimensions (number of threshold values required)
of the problem within the search space, convert them into integer values, arrange them, and
evaluate them using Eq. (4) will be applied for each solution within the initialization step.
After that, the initialization step will terminate and the solution created using WOA within
the optimization process will be only converted into an integer, arranged, and evaluated
using Eq. (4).

5.2 Linearly convergence increasing and local minima avoidance strategy

We propose a linearly convergence increasing and local minima avoidance strategy
(LCMA) to accelerate the convergence speed of the worst solutions toward the best solu-
tion and at the same time to avoid the local minima problem that the optimization algo-
rithms may fall into. LCMA updates a number of K worst individuals, or whales for con-
sistency with the proposed algorithm, in the population towards the best solution found
so far and randomly within the search space of the problem based on a certain probabil-
ity known as exploration rate (ER) to avoid falling into local minima. We can calculate K
using the following equation:

it

K:N—mund( % (N—x)) (19)

maxlter
where N determines the size of the population, if is the current iteration, maxiter is the
maximum number of iterations, and x is a fixed number of the solutions that will be
updated within each iteration. round is used to round a number to the nearest integer. After
calculating the number of worst individuals K, we update each one of the worst individuals
w; using Eq. (20) to update their positions toward the best solution gradually.

W; =W+ Usr s (Hpae = Hpgp) +10 % (8" —wy),j=1,2,...,K (20)
where W, refers to the worst solution, and r is a random numerical vector in the range of
[0, 1]. H,,,, and H,,;, are two vectors used to contain the upper bound and the lower bound
of the search space of the optimization problem, respectively. U is a binary vector used to
determine if the exploration capability will be applied or not, and will be generated accord-
ing to the following formula:

U=r,> ER @1

In Eq. (21), if the current position in U vector corresponding to a value in r, vector is
greater than ER then this position will take a value of 1 (which this position will take an
exploration capability), otherwise it will take a value 0. Algorithm 2 illustrates the steps of
the LCMA technique.
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Algorithm 2 LCMA technique

: Calculate K using Eq. 19.
: Find the list of solutions that has the worst fitness in the population using quicksort
: for j =1to Kdo
Update each worst solution wj using Eq. 20 in the population
end for

Typically, at the start, the optimization algorithms give the highest capability for

exploration even exploring most of the regions within the search space. This capability
may waste most of the iterations within the optimization process without any benefits,
although the best current solution may not be a local minima. Subsequently, paying atten-
tion to the best-so-far solution will help in reaching the optimal solution in less time. Based
on that, we propose this methodology to give the optimization algorithm a high ability
on finding a better solution in a reasonable time. On the other side, in some of the meta-
heuristic algorithms, its exploration capability is erased at the end of the iterations and
subsequently, the possibility of finding a better solution if the current best one is local is
impossible. As a result, we support a part within our methodology to dispose of this prob-
lem by giving the optimization algorithm ability on searching within the search space of
the problem for a better solution. The advantage of LCMA is helping in accelerating the
convergence speed toward the best-so-far solution with decreasing falling into the local
minima problem.

Our methodology is distinct from the evolutionary population dynamics (EPD) (Saremi
et al. 2015) where, in EPD, the worst n/2 solutions are removed from the population and
added alternatively n/2 solutions generated randomly around the best-so-far solution. On
the other hand, LCMA will select a number of the worst-so-far solution to move them
toward the best-so-far randomly with exploration rate within the search space of the prob-
lem based on a certain probability (ER) to avoid stuck into local minima. In addition, this
number of the worst selected solution will start with a small number and increases with the
iteration until reaching the maximum (all the individuals within the population) at the end
of the iteration.

5.3 Ranking -based updating method (RUM)

Recently, a new strategy (Abdel-Basset et al. 2020) known as a ranking strategy has been
proposed to replace the unbeneficial solutions with others helping the algorithm in reach-
ing better outcomes. The main obstacle in front of this strategy is the updating method used
to generate a new solution in the form that will improve the performance of the proposed
algorithm. Therefore, within our work, a new updating method to promote the exploitation
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Fig.4 Flowchart of the proposed algorithm IWOA for Multi-threshold image segmentation problem
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capability gradually with the iteration even reaching the maximum at the end of the itera-
tion is proposed. Mathematically, this updating method is formulated as follows:

S=S"+r*Ax(Sy—S,,) (22)

Where r, and r, are the indices of two whales selected randomly from the population. r is a
numerical vector generated randomly between 0 and 1.

5.4 The pseudo-code of IWOA

To evaluate the solutions, we use Eq. (4) as illustrated before in Sect. 3. This function work
on finding the homogenous regions based on maximizing the entropy of the histogram.
In our proposed algorithm, this function is used as a fitness function to find the optimal
threshold values that maximize the variance of an image. The pseudo-code of the proposed
algorithm IWOA to solve the multi-thresholding segmentation problem is shown in Algo-
rithm 3 and the same steps are pictured in Fig. 4. In Algorithm 3 shows the pseudo-code
of the proposed algorithm IWOA to solve the multi-thresholding segmentation problem. In
Algorithm 3, the standard algorithm is integrated with the LCMA strategy to promote its
exploitation in addition to avoiding entrapment into local minima as possible. Furthermore,
to utilize the whales in the population within the optimization process as much as possi-
ble, the RUM is used as an attempt to increase the exploitation capability of the proposed
to find a better solution. Broadly speaking, RUM is employed to replace those solutions
which spent a consecutive number, namely Rk, of the failed attempts exceeding the prede-
fined threshold thr recommended 3.

Since the LCMA moves randomly a number of the worst solution toward the best-so-far
solution, a large number of the solutions around the best-so-far may be skipped without
exploring although of the possibility of finding better solutions within them. Therefore, the
RUM is used with the proposed algorithm to explore gradually the solutions around the
best-so-far solutions as an attempt to reach better outcomes.

Figure 4 shows the flowchart of the IWOA. At the start, within this figure, the test
images and their histogram are inputted to the proposed algorithm; after that, the initiali-
zation step is executed to distribute a number of the solutions within the upper and lower
bound values of 255 and 0, respectively. Those initialized solutions will be updated by the
standard WOA, LCMA, and RUM as depicted in this figure for reaching better fitness val-
ues. Finally, the best-so-far solution S* is returned to generate the segmented image using
algorithm 4.
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Algorithm 3 The proposed IWOA

1: Initialize the population of whales S;(i =1,2,3,...,N)
2: Evaluate the fitness of each whale using Eq. 4

3: Find the best whale S*

4: RK: an array of N cells initialized with Os value

5: it =1

6: while it < t,qz1ter do

7:  for each i whale do

8: Update a, A, p,C, and 1

9: if p < 0.5 then

10: if |[A| <1 then

11: Update S; (it + 1) using Eq. 9

12: else

13: Update S; (it + 1) using Eq. 16

14: end if

15: else

16: Update S;(it + 1) using Eq. 14

17: end if

18: Check the fitness value of the whale S;(it + 1) using Eq. 4
19: if S;(it+1) > S* then
20: RK; =0
21: else
22: RK; ++
23: end if
24: if RK; > thr then
25: Update S;(it + 1) using Eq. 22
26: end if
27: Update the best whale S* with S; (it + 1) if better.
28:  end for
29:  Calling Algorithm 2
30: it++

31: end while
32: Calling algorithm 4 to generate the segmented image.

5.5 Our motivations to WOA and segmented image generation algorithm.

At the start, WOA starts with a high exploration capability and this capability gradually
reduces with the iteration even fading away after the first half of the iterations. Afterward,
the exploitation capability will dominate the whole optimization process to explore most of
the regions around the best-so-far solution for finding better if it is not local minima. And
this is considered the main advantage of WOA, in addition to the easiness to be understood
and implemented, which motivates us to use it. But unfortunately, the WOA suffers from
several disadvantages, which are described as follows:

— The high exploration capability at the outset may waste a lot of iterations without any
beneficial or utilizing optimally for those the wasted iterations.

— After the first half of the iterations, the exploration capability will be terminated, and
subsequently, the possibility of finding a better solution if the current one is local min-
ima is impossible.

— In the second half of the iteration, the exploitation capability will dominate the whole
optimization process to explore most of the regions around the best-so-far solution, and
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subsequently, a lot of the iterations may be wasted if the current best solution is local
minima.

To overcome all those drawbacks, we used LCMA and RUM to help in improving the con-
vergence of the WOA and avoiding stuck into local minima problems within the optimiza-
tion process. The main advantages of our proposed are listed as:

— Our proposed has a high ability on the exploitation at the outset to increase the conver-
gence toward the best-so-far solution, and high ability on the exploration within the opti-
mization process to help in disposing of local minima problem.

— Utilizing each whale in the population as much as possible for reaching better outcomes.

— Also, it helps in exploiting optimally the individuals of the population within the opti-
mization process.

— Increase the convergence toward the best solution in a reasonable time.

— A small number of parameters for adjustment.

The main drawbacks of our proposed are listed as:

— Picking the value for the ER parameter accurately to adjust the performance of the pro-
posed for reaching a better solution.
— A little expensive for computational cost compared to some other algorithms.

How the segmented image will be generated under the threshold values obtained? Let’s
suppose that an original image is called A with a number of rows and columns of N and M,
respectively. And after finding the optimal threshold values under any threshold level, the
segmented image will be generated as shown in algorithm 4.

Algorithm 4 segmented image generation steps (GSI)

1: B: is a matrix of N x M to contain the pixels of the segmented image.
2: W* =1[0S* 255].

3: for i =0 to N do

4: for j=0to Mdo

5: for m = 0 to t-1 do // number of threshold values obtained
6: if A(i,j) > Wi, &&A(4,5) < Wy, o, then

7 B(i,j) = Wp;

8: end if

9: end for
10:  end for
11: end for
12: Return B;

5.6 Time complexity for the pseudo-code of IWOA
To show the speedup of the proposed algorithm, in this section, the time complexity in

big-O will be designed to see that. At the outset, the main factors that especially affect the
speedup of the proposed algorithm are:
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— The population size: N.
— The threshold level: n
— The maximum iteration: z,,, 1,

— The time complexity of algorithm 2.

In regards to the time complexity formula of the proposed, it is formulated as follows:
T(IWOA) = T(WOA) + T(LCMA) (23)

Where, the standard WOA is mainly relied only on the former first three factors and that is
aggregated in big-O according to algorithm 3 as follows:

T(WOA) = O@,,,uxtrer-NN) (24)

Regarding the running time of the LCMA, it also depends on the previous four factors
with exception of N, which is replaced by the number of worst whales K extracted using
the Quicksort algorithm. Since the Quicksort is utilized, its time complexity is of O(NV?) in
the worst case for iteration (Xiang 2011). In general, the time complexity of the LCMA is
formulated as follows:

T(LCMA) = O(Qicksort) + O(repalcingtheworstwhalesk) (25)

The time complexity of the quick sort for all iterations is of O(N?t,,,.;,.,) in the worst case,
meanwhile, the time complexity of replaing the worst whale is of O(Knt ). By com-

maxlter

pensating in Eq. (25), the time complexity of the LCMA strategy is as follows:

T(LCMA) = O(N*t

maxiter

) + O(Kntmaxlter) (26)

From Egq. (26), the expression that has the highest growth rate is of O(N?t,,,.;,,,)- Therefore,

the time complexity of the LCMA strategy in the worst case is of O(N?t,,,.,)- Likewise,
for Eq. (22), that is extended as follows:
T(IWOA) = O(ImuxlternN) + 0(N2[maxlter) (27)

From Eq. (27), in final. The time complexity of the IWOA in the worst case is of
O(N?t

max]rer)'

6 Experiments and discussion

Our experimental studies are performed on a desktop computer using Windows 7 ultimate
platform with a 32-bit operating system, Intel Core i3-2330M CPU @ 2.20 GHz, and 1 GB
of RAM. The proposed algorithm is tested using low memory capacity to validate working
under the most constraint conditions. We use the Java programming language for imple-
menting all algorithms used in our comparisons. In this section, we concern with illustrat-
ing the results of our experiments. This section organized as follows:

— Section 6.1 describes the test images used in our experiments.

— Section 6.2 shows the experimental Settings.

— Section 6.3 demonstrates valuation Metrics.

— Section 6.4 compares the performance Evaluation of IWOA and WOA.
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Fig.5 Description of the original images and their histograms
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Fig.6 Description of the original images and their histograms

— Section 6.5 investigates the performance Evaluation of our proposed algorithm with the
others.

— Section 6.6 displays the segmented Images produced by IWOA.

— Section 6.7 conducts the Wilcoxon rank-sum test.

6.1 Testimages description

The performance of our proposed algorithm is evaluated on nine test images taken from
the Berkeley Segmentation Dataset (BSDS500), and the identifiers (ID) of those images
are 61060, 105053, 181079, 232038, 277095, 299091, 157055, 108070, and 108082, in
addition to four common test images: Mandrill, Lena, Barbara, and airplane. We used 13
test images in our paper in the same range where the researches in the literature used, for
example, whale optimization algorithm (Abd El Aziz et al. 2017) was validated on eight
test images, equilibrium optimizer for multi-level thresholding image segmentation used
seven test images (Abdel-Basset et al. 2021), and Multi-Level Image Thresholding Based
on Modified Spherical Search Optimizer and Fuzzy Entropy Segmentation (Naji Alwerfali
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Table 2 Parameter setting for the

Parameter Value
proposed IWOA
Number of runs 30
Population size 30
The maximum number of iterations 150
X (the number of the redirected particles) 4
ER 0.99
thr 3
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(a) Observing under t=40, image ID=61060

(b) Observing under t=40, image ID=105053

Fig. 7 Depiction of the Boxplot for the outcomes obtained under different value for ER parameter

75 — — _ o — —
. — 784 : | 1 } I
- : I - - ‘ ! : I
— |
L 782 I |
745
g § 78
s T S
2 7 [ : ! T 7re I v :
8 I ! | ! g €L ! : €L I
S I | £ J‘_ ! S | | I I
w | w
I 776 L
7350 | - 1 : 1 -+
| L
1 N 774b L + +
73
N 772 N
0 1 2 3 4 5 0 1 2 3 4 5

X

(a) Observing under t=40, image ID=61060

(b) Observing under t=40, image ID=105053

Fig. 8 Depiction of the Boxplot for the outcomes obtained under different values for X parameter

et al. 2020) used ten test images. Figures 5, 6 depicts each original image out of the 13 test

images and its histogram.
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6.2 Parameter settings

Our proposed algorithm is compared with Sine cosine Algorithm (SCA) (Mirjalili 2016),
Firefly Algorithm (FFA) (Erdmann et al. 2015), Flower Pollination Algorithm (FPA)
(Yang 2012), and standard whale optimization algorithm (Abd El Aziz et al. 2017),
L-SHADE (Brest et al. 2016), improved marine predators algorithm (IMPA)(Abdel-Basset
et al. 2020), equilibrium optimizer (EO) (Abdel-Basset et al. 2021), crow search algorithm
(CSA) (Moses et al. 2019), hybrid WOA (WOA-DE) (Lang and Jia 2019), and salp swarm
algorithm (SSA) (Wang et al. 2020). The algorithm parameters are selected based on the
standard for these parameters. Also, for a fair comparison, an equal number of function
evaluations used with a maximum number of iterations equal 150 and population members
set to 30. Additionally, each algorithm runs 30 independently times. Table 2 summarizes
the values of the INOA parameters.

There are two parameters: ER and X in our proposed algorithm needed to be pick accu-
rately for exploiting optimally the performance of our proposed algorithm. Therefore,
extensive experiments are performed to extract the best value for those parameters, all
those experiments are demonstrated in Figs. 7 and 8 for ER and X parameters, respectively.
First, let’s move toward Fig. 7 that depicts the results of our experiments for extracting
the best value of the ER parameter. This figure shows the results obtained on two images:
61060 and 105053 with threshold level 40. And inspecting this figure tells us that the best
value for ER is 0.99 where it could outperform all the others in the lowest, Quartile-1 (Q,),
Quartile-2 (Q,), Quartile-3 (Q5), and the highest values over two images.

Concerning X parameter, an experiment with different values for this parameter involv-
ing: 0, 1, 2, 3, 4, and 5 is conducted to extract the best one for this parameter and its results
are pictured in Fig. 8 that shows that the best value obtained on two images: 61060 and
105053 with threshold level 40 was by a value of 4, but also for 61060 a value of 2 was
competitive with 4. Generally, within our experiments, we used a value of 4 for X param-
eter. Regarding thr, it is set to as recommended in (Abdel-Basset et al. 2021)

6.3 Evaluation Metrics

We use six criteria to evaluate the performance of the algorithms, including CPU time,
fitness values, Standard Deviation (STD), Peak Signal to Noise Ratio (PSNR), Universal
Quality Index (UQI), and Structured Similarity Index Metric (SSIM). We will explain
these criteria as follows:

— The CPU time is used to calculate the time in seconds taken by each algorithm.
— The fitness function is computed using the Kapur’s entropy mentioned above.
— The STD measures the variation and the dispersion of the data of a given algorithm.
— The PSNR (Hore and Ziou 2010) metric measures the quality of the segmented
images defined by the following formula:
2552
PSNR =101 —_—
0810 (MSE) (28)
where 255 determines the maximum pixel value of an image when we represent a pixel

in 8 bits, such that: 28 — 1 = 255. MSE is the mean squared error and is calculated as
follows:
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M N .. ..
MSE = Zi=1 2j=1]140(la15) =83, ) | 29)
%

where O(i, j), S(i, j) represent the original and segmented images, respectively. PSNR
is inversely proportional to MSE.

— The SSIM (Hore and Ziou 2010) metric calculates the difference between the struc-
ture of the segmented and original image. The mathematical formula of SSIM is
defined as follows:

Quyps + )20, + b)

SSIM(0, S) =
©.5 (2 + u? +a)(c? + 02+ b)

(30)

where p, and y, defined the average intensity for both original and segmented images,

respectively. o, and o, refers to the standard deviation of the original and segmented
image, also, o, stands for the covariance between them. The constant values a and b set
to 0.001 and 0.003, respectively.

— UQI (Egiazarian et al. 2006) is another metric utilized to determine the quality of the
segmented image compared to the original one based on three factors: loss of correla-
tion, brightness, and contrast distortion. Mathematically, this model is formulated as
follows:

40,5 U, 1y

veIO. 5 = o) + o7)

3D
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Fig.9 Comparison between IWOA, WOA, and WOA-DE based on PSNR
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Fig. 10 Comparison between IWOA, WOA, and WOA-DE based on fitness values

The higher value of PNSR and SSIM indicate better performance. PSNR metric work on
finding the ratio of the error between the original and the segmented images and don’t
focus on the structure of the image after the segmentation on the correlation, luminance
distortion, and contrast distortion that specifies the quality of the segmented images. As
a result, SSIM is used to pay attention to measure the difference between the structures of
the original image and segmented based on the following three factors: loss of correlation,
luminance distortion, and contrast distortion between the original and segmented images.
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Fig. 11 Average CPU time values on each threshold level
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6.4 The performance evaluation of IWOA, WOA, and WOA-DE

Here, we seek to prove the efficacy of the proposed algorithm in comparison with the
standard WOA and WOA-DE. We are interested in studying the effect of using the LCMA
technique on the performance of the proposed algorithm. Figure 9 compares the three algo-
rithms using different threshold values, including 2, 3, 4, 5, 10, 40, 60, 80, and 100. The
figure shows the average PSNR values obtained by running each algorithm 30 times for all
the test images for each threshold level. By observing the figure, we can see that WOA-
DE reaches better PSNR for threshold levels of 2, 3, 4, 5, and 10, higher than that, the
proposed algorithm could fulfill PSNR values significantly-better than the others. Conse-
quently, IIWOA obtains a higher quality segmented image than the other two WOA variants
when increasing the threshold levels. Another comparison is presented in Fig. 10 based on
the average fitness values of Kapur’s entropy. We use different threshold values, including
2,3, 4,5, 10, 20, 40, 60, 80, and 100, to show the consistency of the proposed algorithm
within various threshold levels. At first, we obtain the fitness values of running each algo-
rithm 30 times on a given threshold level. Then, we compute the average fitness value for
each threshold level as the summation of the fitness values through 30 runs divided by 30.
The figure shows that IWOA succeeds in obtaining better fitness values compared to WOA
and WOA-DE for all different threshold levels higher than 10 and equal with the rest. In
Fig. 11, unfortunately, IWOA couldn’t outperform the WOA and WOA-DE in CPU time
for threshold levels higher than 40. However, the proposed algorithm is better as it outper-
forms WOA based on PSNR and fitness values.

Regarding evaluating the convergence obtained by IWOA and WOA within the optimi-
zation process, Figure 12 is introduced to show that on all test images with a threshold level
(t) of 40. We selected this threshold level to measure how far each algorithm could perform
better with a high threshold level. After inspecting this figure, we found that IWOA could
outperform WOA in the convergence within the starting of the optimization process for
images: 61060, 105053, 181079, 277095, and 299091 and its superiority move on until the
ending. However, for the other images, the convergence curve for WOA appears to be the
best at the starting of the optimization process, afterward, this appearance deteriorates due
to the local minima problem and our proposed dramatically outperforms.

6.5 The performance evaluation of the proposed algorithm and other algorithms

Tables 3, 4, 5 presents a comparison among the algorithms based on the average PSNR val-
ues using different Threshold levels (n), including 2-n, 3-n, 4-n,5-n,10-n,20-n,30-n, 40-n,
60-n,80-n, and 100-n. For each threshold level, we compute the average PSNR as follows:

R

PSNR,,, = w,R =1,...,30 (32)
PSNR,,, is the summation of the PSNR computed for each run of an algorithm for a given
threshold level divided by the number of running the algorithm. R is the number of inde-
pendent runs for the algorithms, which is 30. Based on the results introduced in the table,
the proposed algorithm can outperform the other algorithms in the PSNR metric. For the
small threshold levels, we can see that IWOA could be competitive and superior to the
others in most of the test images. For the higher threshold values, the performance of the
other algorithms is degraded, while IWOA gets the maximum average PSNR for all the test
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images. Figure 13 shows the total average PSNR values for each algorithm for each thresh-
old level. The total average PSNR can be defined as:

IN
TotalpSNRy,, = 3 PSNRy,, ,IN = 1,...,9 (33)
J=1
where IN is the number of the used test images, which is 9. PSNRAvg/ is the j™ obtained
average PSNR value for an image for a given threshold level. IWOA achieves the best

results compared to the other algorithms, especially with the threshold level higher than
10. Also, Fig. 14 shows the summation of the total average PSNR values for all threshold

@ Springer
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Fig. 15 Comparison among algorithms of the SSIM values

levels. The figure demonstrates the superiority of the proposed algorithm compared with
the other algorithm in PSNR results. The higher PSNR values, the lower MSE values.

Tables 6, 7, and 8 provides the average SSIM values obtained by the algorithms on ten
different threshold levels for all the test images. The SSIM metric is employed for assessing
the structural similarity between the original image and the segmented image. According
to the results, the proposed algorithm can also outperform the other algorithms for most of
the test images on the different threshold values. Additionally, Fig. 15 inspects a compari-
son in terms of the total average SSIM for all the test images on each threshold level. The
figure proves the efficacy of the proposed algorithm compared to the other algorithms with
threshold levels higher than 10. With threshold levels smaller than 10, all algorithms seem
to be converged.

Tables 9, 10, and 11 provides the average UQI values obtained by the algorithms on
ten different threshold levels for all the test images. The UQI metric is also employed for
assessing the structural similarity between the original image and the segmented image.
According to the results, the proposed algorithm can also outperform the other algorithms
for most of the test images on the different threshold values. Additionally, Fig. 16 inspects
a comparison in terms of the total average SSIM for all the test images on each thresh-
old level. The figure proves the efficacy of the proposed algorithm compared to the other
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Fig. 16 Comparison among algorithms of the UQI values

algorithms with threshold levels higher than 10. With threshold levels smaller than 10, all
algorithms seem to be converged.

Here, we are interested in comparing the algorithms in terms of maximizing Kapur’s
entropy function (Eq. 4). Regarding the results, we can observe that the proposed algorithm
could be superior in most cases, especially cases with the high threshold levels, shown in
Tables 12, 13, 14 and competitive in the other cases. Additionally, Fig. 17 illustrates the
superiority of the proposed algorithm compared with the other algorithm in the Fitness val-
ues. The figure inspects the average fitness values for all the test images for each algorithm.
IWOA achieves the highest fitness value of 53.7909, while IMPA comes in the second rank
with 53.099. L-SHADE shows the lowest fitness value of 49.13.

Figure 18 demonstrates the average of the STD for the fitness values by running each
algorithm 30 times on all test images for all threshold levels. Based on those results, the
proposed algorithm could also outperform all the algorithms with an average value for
STD of 0.2493. Figure 19 shows a comparison among the algorithms in terms of the CPU
time. The figure provides the total CPU time for running each algorithm 30 using different
threshold values for all the test images. Although IWOA doesn’t obtain the minimum CPU
time, it can achieve the best results for PSNR, SSIM, fitness, and STD. IWOA takes CPU
time of 0.5385 seconds, while IMPA takes the most CPU time with a value of 0.9808. FFA
succeeds to attain less time in 0.3318 seconds. We can conclude that IWOA attains the best
results with less STD at a reasonable time when compared with other algorithms.
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Fig. 17 Comparison of the Fitness values results from each algorithm
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Fig. 18 Average STD for fitness values of all test images on all threshold levels
6.6 The segmented Images

Figure 20 presents the segmented images generated by the proposed algorithm using ten
different threshold levels. We can see that using more threshold levels makes the seg-
mented image to be better and close to the original one. For using a 100-threshold level,
we can see that the segmented image is the best compared to other threshold levels as it
succeeds to separate more objects.

6.7 Wilcoxon rank-sum test
In this section, the results obtained by our proposed algorithm are compared with the

results obtained by the other algorithms using the statistical test called the Wilcoxon
rank-sum test (Haynes 2013). This test is based on the null hypothesis and the alternative

@ Springer
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Fig.20 The segmented images were obtained by the proposed algorithm using threshold levels 2, 3.4,5,10,
20, 40, and 100, respectively
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hypothesis. In the null hypothesis, this test supposes that there is no difference between
the ranks of the results obtained by a pair of algorithms. On the other hand, the alterna-
tive hypothesis considers that there is a difference between the ranks obtained by a pair
of algorithms. The significant level used in our test is 5%. Tables 15, 16, and 17 show
the P and S values obtained by comparing the fitness values obtained by the proposed
algorithm with those of each compared algorithm on nine test images: 61060, 105053,
181079, 232038, 277095, 299091, 157055, 108070, and 108082. If P > 0.05 or (S = 0),
then the null hypothesis is true, whereas if P < 0.05 or (S = 1), then the alternative
hypothesis is true. Inspecting those tables appears that our proposed algorithm could be

@ Springer
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significantly different from the others for most test images under threshold levels greater
than 5 however, for threshold levels smaller than that, it could almost reach the same
outcomes of some compared algorithms. Based on that, our proposed algorithm can out-
perform all other algorithms for most of the threshold levels with all the test images.

7 Conclusion and future directions

Image segmentation is considered a significant problem that attracts many research-
ers those days. Due to using image segmentation in solving many problems in the real
world, researchers have been tried to find a better technique that enables them to extract
the required information from the image. Many techniques were proposed, such as
threshold-based, region-based, feature-based clustering, and, edge-based to resolve this
research challenge. The threshold-based segmentation is used for analyzing the image
segmentation due to its ease in use. To tackle the image segmentation problem using
the threshold technique, we proposed an improvement on the standard whale optimiza-
tion algorithm by proposing two strategies, namely linearly convergence increasing and
local minima avoidance strategy (LCMA), and ranking-based updating method (RUM)
that help the whale optimization algorithm (WOA) in accelerating the convergence
toward the best-so-far solution and avoiding local minima that fall into at the end of the
optimization process. LCMA moves the worst K particle towards the best so-far solu-
tion for accelerating the convergence and avoiding falling into local minima by updat-
ing them within the search space based on a certain probability. K starts with a small
value at the start of the optimization and increases gradually with the increasing num-
ber of the iteration even reaching the maximum at the end of the iteration. Meanwhile,
RUM utilizes each individual in the population as possible in an effective way that will
gradually explore the solutions around the best-so-far solution as an attempt to reach
better outcomes. The experiments are performed to observe the performance of IWOA
with thresholds level between 2 and 100: the first one is based on a set of the normal
images taken from Berkeley Segmentation Dataset (BSD). To see the superiority of
IWOA, through these two experiments, it was compared with other existing algorithms
like the standard whale optimization algorithm (WOA), sine-cosine algorithm (SCA),
slap swarm algorithm (SSA), flower pollination algorithm (FPA), and L-SHADE algo-
rithm, Firefly algorithm (FFA), Equilibrium optimizer (EO), and Crow search algorithm
(CSA). The quality of segmented images, fitness values, and STD metrics obtained from
each algorithm through these two experiments demonstrate that the proposed algorithm
outperforms all algorithms integrated with the comparison. Despite these promising
results, our algorithm could not outperform some algorithms in CPU time, as our main
limitation. Therefore, our future extensin will be applying the LCMA technique with
other evolutionary algorithms for reducing the running time and improving the quality
of results. In addition, a version of the IWOA for solving the multi-objective and single-
objective optimization problems is included in our future work. Moreover, a binary ver-
sion of IWOA for overcoming the feature selection problem will be given as a work in
the future.
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