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Abstract

Short-TE proton MRS is used to study metabolism in the human brain. Common analysis methods 

model the data as a linear combination of metabolite basis spectra. This large-scale multi-site 

study compares the levels of the four major metabolite complexes in short-TE spectra estimated by 

three linear-combination modeling (LCM) algorithms. 277 medial parietal lobe short-TE PRESS 

spectra (TE = 35 ms) from a recent 3 T multi-site study were preprocessed with the Osprey 

software. The resulting spectra were modeled with Osprey, Tarquin and LCModel, using the same 

three vendor-specific basis sets (GE, Philips and Siemens) for each algorithm. Levels of total N-

acetylaspartate (tNAA), total choline (tCho), myo-inositol (mI) and glutamate + glutamine (Glx) 

were quantified with respect to total creatine (tCr). Group means and coefficient of variations 

of metabolite estimates agreed well for tNAA and tCho across vendors and algorithms, but 

substantially less so for Glx and mI, with mI systematically estimated as lower by Tarquin. The 

cohort mean coefficient of determination for all pairs of LCM algorithms across all datasets 

and metabolites was R2 = 0.39, indicating generally only moderate agreement of individual 

metabolite estimates between algorithms. There was a significant correlation between local 

baseline amplitude and metabolite estimates (cohort mean R2 = 0.10).

While mean estimates of major metabolite complexes broadly agree between linear-combination 

modeling algorithms at group level, correlations between algorithms are only weak-to-moderate, 

despite standardized preprocessing, a large sample of young, healthy and cooperative subjects, 

and high spectral quality. These findings raise concerns about the comparability of MRS studies, 

which typically use one LCM software and much smaller sample sizes.
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1 | INTRODUCTION

Proton MRS allows in vivo research studies of metabolism.1,2 Single-voxel MR spectra from 

the human brain are frequently acquired using PRESS localization,3 and can be modeled 

to estimate metabolite levels. Accurate modeling is hampered by poor spectral resolution 

at clinical field strengths, and for short echo-time spectra, metabolite signals overlap with 

a broad background consisting of fast-decaying macromolecule and lipid signals. Linear-

combination modeling (LCM) of the spectra maximizes the use of prior knowledge to 

constrain the model solution, and is recommended by recent consensus.4 LCM algorithms 

model spectra as a linear combination of (metabolite and macromolecular [MM]) basis 

functions, and typically also include terms to account for smooth baseline fluctuations.

Several LCM algorithms are available to quantify MR spectra; Table 1 describes some 

of the most widely used: Osprey,5 INSPECTOR,6 Tarquin,7 AQSES,8 Vespa,9 QUEST10 

and LCModel.11 The implementations (open-source vs. compiled ‘black-box’), modeling 

approaches (modeling domain and baseline model), and their licensure practices are 

diverse. The most widely used algorithm is the LCModel implementation (accounting for 

approximately 90% of the citations in Table 1), often considered as the gold standard, apart 

from it being the prototype LCM algorithm for MRS quantification with a precompiled 

‘black-box’ implementation and a substantial price tag.

Surprisingly few studies have compared the performance of different LCM algorithms. 

Cross-validation of quantitative results has almost exclusively been performed in the context 

of benchmarking new algorithms against existing solutions. in vivo comparisons are often 

limited to small sample sizes, whether analyzing spectra from animal models7,12,13 or 

human subjects.7,8,12 To the best of our knowledge, two exceptions compared the LCM 

performance of different algorithms in rat brain14 and human body,15 respectively. Most 

studies report good agreement between results from different algorithms, inferring this 

from group-mean comparisons, or observing that differences between clinical groups are 

consistent regardless of the algorithm applied.14,16 Correlations of estimates from different 

algorithms are rarely reported; however, a high correlation between LCModel and Tarquin 

results was found in rat brain at ultra-high field.14

Despite the fact that LCM has been used to analyze thousands of studies (Table 1), a 

comprehensive assessment of the agreement between the algorithms is lacking, and the 

relationship between the choice of model parameters and quantitative outcomes is poorly 

understood. To begin to address this gap, we conducted a large-scale comparison of 

short-TE in vivo MRS data using three LCM algorithms with standardized preprocessing. 

While recent expert consensus recommends using measured MM background spectra, 

data for different sequences are not broadly available or integrated in LCM software. 

This manuscript investigates current common practice, and therefore all the models 

included simulated MM basis functions as defined in LCModel. We compared group-mean 

quantification results of four major metabolite complexes from each LCM algorithm, 

performed between-algorithm correlation analyses, and investigated local baseline power 

and creatine modeling as potential sources of differences between the algorithms.
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2 | METHODS

2.1 | Participants and acquisition

277 single-voxel short-TE PRESS brain datasets from healthy volunteers acquired in a 

recent 3 T multisite-study17 were included in this analysis. Data were acquired at 25 sites 

(with up to 12 subjects per site) on scanners from three different vendors (GE: eight 

sites with n = 91; Philips: 10 sites with n = 112; and Siemens: seven sites with n = 74) 

with the following parameters: TR/TE = 2000/35 ms; 64 averages; 2, 4 or 5 kHz spectral 

bandwidth; 2048–4096 data points; acquisition time = 2.13 min; 3 × 3 × 3 cm3 voxels in 

the medial parietal lobe (Figure 1A). The water suppression pulse bandwidth was 140 Hz 

for Philips, 50 Hz for Siemens and 150 Hz for GE. Reference spectra were acquired with 

similar parameters, but without water suppression and 8–16 averages. No more acquisition 

parameters were specified (for more details, please refer to17). Data were saved in vendor-

native formats (GE P-files; Philips .sdat; and Siemens .dat). In the initial study,18 written 

informed consent was obtained from each participant and the study was approved by local 

institutional review boards. Anonymized data were shared securely and analyzed at Johns 

Hopkins University with local IRB approval. Due to site-based data privacy guidelines, only 

a subset of these data (GE: seven sites with n = 79; Philips: nine sites with n = 100; and 

Siemens: four sites with n = 48) is publicly available.19

2.2 | Data preprocessing

MRS data were preprocessed in Osprey,5 an open-source MATLAB toolbox, following 

recent peer-reviewed preprocessing recommendations,2 as summarized in Figure 1B. First, 

the vendor-native raw data were loaded, including the metabolite (water-suppressed) 

data and unsuppressed water reference data. Second, the raw data were preprocessed 

into averaged spectra. Receiver-coil combination20 and eddy-current correction21 of the 

metabolite data were performed using the water reference data. Individual transients in 

Siemens and GE data were frequency- and phase-aligned using robust spectral registration.22 

The Philips data had been coil-combined by weighted combination with the complex 

coefficients obtained during the survey scan and averaged on the scanner without frequency 

and phase correction of the individual transients. After averaging the individual transients, 

the residual water signal was removed with a Hankel singular value decomposition (HSVD) 

filter.23 For Siemens spectra, an additional prephasing step was introduced by modeling the 

signals from creatine and choline-containing compounds at 3.02 and 3.20 ppm with a double 

Lorentzian model and applying the inverted model phase to the data. This step corrected a 

zero-order phase shift in the data arising from the HSVD water removal, likely because the 

Siemens water suppression introduced asymmetry to the residual water signal. Finally, the 

preprocessed spectra were exported in .RAW format.

2.3 | Data modeling

Fully localized 2D density-matrix simulations implemented in the MATLAB toolbox FID-

A24 with vendor-specific refocusing pulse information, timings and phase cycling were used 

to generate three vendor-specific basis sets (GE, Philips and Siemens) including 19 spin 

systems: ascorbate, aspartate, Cr, negative creatine methylene (-CrCH2), γ-aminobutyric 

acid (GABA), glycerophosphocholine (GPC), glutathione, glutamine (Gln), glutamate 
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(Glu), water (H2O), myo-inositol (mI), lactate, NAA, N-acetylaspartylglutamate (NAAG), 

phosphocholine (PCh), PCr, phosphoethanolamine, scyllo-inositol and taurine. The -CrCH2 

term is a simulated negative creatine methylene singlet at 3.95 ppm, included as a correction 

term to account for the effects of water suppression and relaxation. It is not included in the 

tCr model, which is used for quantitative referencing.

Eight additional Gaussian basis functions were included in the basis set to simulate 

broad macromolecules and lipid resonances25 (simulated as defined in section 11.7 of the 

LCModel manual26): MM0.94, MM1.22, MM1.43, MM1.70, MM2.05, Lip0.9, Lip1.3 and Lip2.0. 

The Gaussian amplitudes were scaled relative to the 3.02 ppm creatine CH3 singlet in each 

basis set (details in Supplementary Material 1; see the supporting information). Finally, to 

standardize the basis set for each algorithm, basis sets were stored as .mat files for use in 

Osprey and as. BASIS-files for use in LCModel and Tarquin. In the following paragraphs, 

each LCM algorithm investigated in this study is described briefly (for further details, please 

refer to the original publications5,7,11).

2.3.1 | LCModel v6.3—The LCModel (6.3–0D) algorithm11 models data in the 

frequency domain. First, time-domain data and basis functions are zero-filled by a factor 

of two. Second, frequency-domain spectra are frequency-referenced by cross-correlating 

them with a set of delta functions representing the major singlet landmarks of NAA 

(2.01 ppm), Cr (3.02 ppm) and Cho (3.20 ppm). Third, starting values for phase and 

line-broadening parameters are estimated by modeling the data with a reduced basis set 

containing NAA, Cr, PCh, Glu and mI, with a smooth baseline. Fourth, the final modeling of 

the data is performed with the full basis set, regularized lineshape model and baseline, 

with starting values for phase, line-broadening and lineshape parameters derived from 

the previous step. Model parameters are determined with a Levenberg–Marquardt27,28 

nonlinear least-squares optimization implementation that allows bounds to be imposed on 

the parameters. Metabolite amplitude bounds are defined to be non-negative, and determined 

using a non-negative linear least-squares (NNLS) fit at each iteration of the nonlinear 

optimization. Amplitude ratio constraints on macromolecule and lipid amplitude, as well as 

selected pairs of metabolite amplitudes (e.g. NAA + NAAG), are defined as in Osprey and 

Tarquin. The spline baseline is constructed from cubic B-spline basis functions, including 

one additional knot outside either end of the user-specified fit range, with the number 

of spline functions being defined by the knot spacing parameter. LCModel constrains the 

model with three additional regularization terms. Two of these terms penalize a lack of 

smoothness in the spline baseline and lineshape models using the second derivative operator, 

preventing unreasonable flexibility of the spline baseline and lineshape irregularity. The 

third term penalizes deviations of the metabolite Lorentzian line-broadening and frequency 

shift parameters from their expected values.

2.3.2 | Osprey—The Osprey (1.0.0) frequency-domain LCM algorithm5 adopts several 

key features of the LCModel and Tarquin algorithms. Osprey follows the four-step workflow 

of LCModel including zero-filling, frequency referencing, preliminary optimization to 

determine starting values, and final optimization over the real part of the frequency-domain 

spectrum. The model parameters are zero- and first-order phase correction, global Gaussian 
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line-broadening, individual Lorentzian line-broadening, and individual frequency shifts, 

which are applied to each basis function. The final model includes the full basis set, as 

well as unregularized lineshape and spline baseline models. The baseline knot spacing is 

set to 0.15 ppm for the preliminary modeling step with a reduced basis set and increased 

to 0.4 ppm for the final full model. Similar to LCModel, model parameters are determined 

with a Levenberg–Marquardt27,28 nonlinear least-squares optimization algorithm and an 

NNLS fit to determine the non-negative metabolite amplitudes at each step of the nonlinear 

optimization.

2.3.3 | Tarquin—Tarquin (4.3.10)7 uses a four-step approach in the time domain to 

model spectra. First, residual water is removed using singular value decomposition. Second, 

the global zero-order phase is determined by minimizing the difference between the 

magnitude and the real spectra in the frequency domain. Third, zero-filling to double the 

number of points and frequency referencing are performed, as in the other algorithms. 

This step also estimates a starting value for the Gaussian line-broadening used in the 

fourth step, the final modeling. The model includes common Gaussian line-broadening, 

individual Lorentzian line-broadening, individual frequency-shifts, and zero- and first-order 

phase correction factors applied in the frequency domain.

Optimization is performed in the time domain with a constrained nonlinear least-squares 

Levenberg–Marquardt solver, allowing bounds and constraints on the parameters. In 

addition, the range of time-domain data points is limited by removing the first 10 ms of the 

FID, so as to omit the fast-decaying macromolecule and lipid signals. Finally, the baseline is 

estimated in the frequency domain by convolving the model residual with a Gaussian filter 

with a width of 100 points.

2.3.4 | Model parameters—The parameters chosen for each tool are summarized in 

Figure 1C. The fit range was limited to 0.5 to 4 ppm in LCModel and Osprey to reduce the 

effects of differences in water suppression techniques. For the baseline handling, the default 

and most commonly used parameters were chosen, that is, bLineKnotSpace = 0.4 ppm for 

Osprey, DKNMNT = 0.15 ppm for LCModel, and an FID range from 10 ms to 50% of the 

FID for Tarquin.

2.4 | Quantification, visualization and secondary analyses

2.4.1 | Quantification—The four major metabolite complexes tNAA (NAA + NAAG), 

tCho (GPC + PCh), mI and Glx (Glu + Gln) were quantified as basis-function amplitude 

ratios relative to total creatine (tCr = Cr + PCr). Because the primary purpose was to 

compare performance of the core LCM algorithms, no additional relaxation correction or 

partial volume correction was performed.

Model visualizations were generated with the OspreyOverview module, which allows 

LCModel and Tarquin results files (.coord and .txt) to be imported. Foreach algorithm, 

the visualization includes site-mean spectra, cohort-mean spectra (i.e. the mean of all 

spectra), and site and cohort mean modeling results (complete model, spline baseline, spline 

baseline+MM components, and the separate models of the major metabolite complexes).
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2.4.2 | Visualization—As in the default visualizations for the LCModel and Tarquin 

software interfaces, inverse phase estimates were applied to the spectra and final models. For 

the visualization, spectra were normalized to the amplitude of the 3-ppm creatine singlet, 

and a DC offset was added to each site mean spectrum to align the mean frequency-domain 

amplitude between 1.85 and 4.0 ppm, to aid visual comparison between algorithms and sites.

2.4.3 | Secondary analyses—To investigate potential vendor differences in linewidth 

and SNR based on the different export formats of the data, mean and standard deviation 

(SD) of the NAA linewidth and SNR were determined.

To investigate baseline power variability unbiased by DC offsets, the MM + baseline models 

were first aligned vertically according to the frequency-domain minimum of the acquired 

spectra between 2.66 and 2.7 ppm (i.e. between the aspartyl signals, which is the region with 

the highest consistency between the baseline models). Baseline models were normalized 

to the frequency-domain amplitude of each metabolite spectrum between 2.9 and 3.1 ppm 

to account for differences in the scaling of the model outputs of LCModel and Tarquin. 

Baseline power within the frequency ranges was then defined as the range-normalized 

integral of the baseline model between 0.5 and 1.95, 1.95 and 3.6, and 3.6 to 4.0 ppm. 

The baseline power variability was then defined as the SD of the baseline power calculated 

across all subjects.

To similarly investigate potential interactions between baseline power and metabolite 

estimates, the baseline power beneath each major metabolite was then defined as the range-

normalized integral of the baseline model between 1.9 and 2.1 ppm for the tNAA baseline, 

3.1 and 3.3 ppm for the tCho baseline, 3.33 and 3.75 ppm for mI, and 1.9 to 2.5 and 3.6 to 

3.8 ppm for the Glx baseline.

The contribution of variance in modeling of the creatine reference signal to metabolite ratios 

was also investigated. To this end, each individual tCr model (Cr + PCr) was normalized 

to the frequency-domain amplitude of each metabolite spectrum between 1.9 and 2.1 ppm 

to account for differences in the scaling of the tCr model outputs of LCModel and Tarquin. 

Finally, the integral over the individual creatine model was calculated.

Additionally, water-referenced tCr concentrations were calculated as the ratio of the tCr 

and water amplitude of each algorithm. No further corrections were applied to these tCr 

estimates.

2.5 | Data analysis

Quantitative metabolite estimates (tNAA/tCr, tCho/tCr, mI/tCr, Glx/tCr) were statistically 

analyzed and visualized using R29 (version 3.6.1) in RStudio (version 1.2.5019, RStudio 

Inc.). The functions are publicly available.30 The supplemental materials with MATLAB- 

and R-files, example LCModel control files (one for each vendor), and Tarquin batch-files 

for this study are publicly available.31 The results from each LCM algorithm were imported 

into R with the spant package.32
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2.5.1 | Distribution analysis—The results are presented as raincloud plots33 and 

Pearson’s correlation analysis using the ggplot2 package.34 The raincloud plots include 

individual data points, boxplots with median and 25th/75th percentiles, a smoothed 

distribution, and mean ± SD error bars to identify systematic differences between the 

LCM algorithms. In addition, the coefficient of variation (CV = SD/mean) and the mean 

CV =
CV tNAA + CV tCho + CV Ins + CV Glx

4  across all four metabolites of each algorithm are 

calculated.

2.5.2 | Correlation analysis—The Pearson’s correlation analysis featured different 

levels, including pair-wise correlations between algorithms, as well as correlations 

between baseline power and metabolite estimates of each algorithm. The pair-wise 

coefficient of determination on the global level (black R2), as well as within-vendor 

coefficient of determination (color-coded R2) with different color shades for different 

sites are reported. Furthermore, mean R2 for each pair-wise coefficient of determination 

(e.g. Osprey vs. LCModel) and metabolite, estimated by row or column means (e.g.

R2 =
RtNAA

2 + RtCho
2 + RIns

2 + RGlx
2

4 ), and a cohort mean R2 (across all pair-wise correlations) 

are calculated. The correlations were Bonferroni-corrected for the number of correlation 

tests. The cohort mean R2 was used to identify global associations across all correlation 

analysis, while the mean R2 allowed the identification of algorithm-specific (row means) and 

metabolite-specific (column means) interactions across all correlation analysis. Associations 

between the outcomes of specific algorithms were identified by the pair-wise correlation 

analysis (R2). Vendor-specific effects were identified by differentiating between global level 

and within-vendor correlations.

2.5.3 | Statistical analysis—In the statistical analysis, the presence of significant 

differences in the mean and the variance of the metabolite estimates was assessed. Global 

metabolite estimates were compared between algorithms with parametric tests, following 

recommendations for large sample sizes.35 The data were not grouped by vendor or site, 

and the statistical tests were set up as paired without any further inference. Differences of 

variances were tested with Fligner-Killeen’s test with a post-hoc pair-wise Fligner-Killeen’s 

test and Bonferroni correction for the number of pair-wise comparisons. Depending on 

whether variances were different or not, an ANOVA or Welch’s ANOVA was used to 

compare means with a post-hoc paired t-test with equal or nonequal variances, respectively.

2.5.4 | Linear mixed-effects analysis—Linear mixed-effects models were set up 

as a repeated-measure analysis to determine variance partition coefficients to assess the 

contributions of algorithm-, vendor-, site- and participant-specific effects to the total 

variance. A log-likelihood statistic was used to calculate the goodness of fit. The probability 

of observing the test statistic was evaluated against the null hypotheses, which was simulated 

by performing parametric bootstrapping (2000 simulations).36
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3 | RESULTS

All 277 spectra were successfully processed, exported and quantified with the three LCM 

algorithms; no modeled spectra were excluded from further analysis.

3.1 | Summary and visual inspection of the modeling results

Figure 2 shows the 277 spectra, models and residuals for each algorithm (A-C) color-

coded by vendor. In general, the phased spectra and models agreed well between vendors 

for all algorithms. The most notable differences in spectral features are visible between 

0.5 and 1.95 ppm with each algorithm modeling the macromolecules and apparent lipid 

peaks as baseline or macromolecule basis function to a different degree. Similarly, the 

baseline between 3.6 and 4 ppm is estimated differently by each algorithm, which 

is changing the amplitude of the residual in this frequency range and potentially the 

metabolite estimates. Comparing the algorithms, notable differences in spectral features and 

intersubject variability in the estimated baseline models appeared between 0.5 and 1.95 ppm 

(SD baseline area: 0.45 [Osprey] > 0.36 [Tarquin] > 0.21 [LCModel]) and between 3.6 and 

4 ppm (SD baseline area: 0.15 [LCModel] > 0.13 [Osprey] > 0.10 [Tarquin]) (as shown in 

Figure 2A–C and calculated in the secondary analysis). A high agreement in the estimated 

baseline models was found between 1.95 and 3.6 ppm (SD baseline area: 0.04 [Osprey] > 

0.03 [LCModel] = 0.03 [Tarquin]).

A site-level averaged summary is shown in Figure 3A–C for analyses in LCModel, Osprey 

and Tarquin, respectively. The averaged data, models and residuals for each of the 25 sites 

are color-coded by vendor. The cohort mean of all analyses for each vendor is shown 

in Figure 3D–F (GE, Philips and Siemens, respectively). Data, models and residuals are 

color-coded by algorithm.

Cohort-mean spectra and models agreed well across all vendors and algorithms (Figure 

3D–F). The greatest differences in the spectral features of the baseline between algorithms 

occur between 0.5 and 1.95 ppm, with closer agreement between Osprey and Tarquin than 

with LCModel. The amplitude of the residual over the whole spectral range is highest for 

Osprey, and similar for Tarquin and LCModel.

The mean NAA linewidth was significantly lower (p < 0.001) for Philips (6.3 ± 1.3 Hz) 

compared with GE (7.3 ± 1.5 Hz), while no differences in the linewidth were found for 

the other comparisons (Siemens 6.6 ± 2.4 Hz). The mean SNR was significantly higher for 

Siemens (285 ± 72) compared with both other vendors (p < 0.001) and significantly higher 

(p < 0.001) for Philips (226 ± 58) compared with GE (154 ± 37).

3.2 | Metabolite level distribution

The tCr ratio estimates and CVs of the four metabolites are summarized in Table 

2. Distributions and group statistics are visualized in Figure 4, with the four rows 

corresponding to the three vendors and a cohort summary across all datasets.

Between-algorithm agreement was greatest for the group means and CVs of tNAA and tCho. 

The cohort-mean CV was lowest for Osprey (10.4%), followed by LCModel (12.6%) and 
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Tarquin (14.0%). Group means and CVs for tNAA are relatively consistent. Consequently, 

the cohort-mean tNAA/tCr was 1.45 ± 0.15 for LCModel, 1.50 ± 0.12 for Osprey and 

1.45 ± 0.14 for Tarquin, with significant differences between Osprey and both other LCM 

algorithms.

Cohort means for tCho showed high agreement between all algorithms. The global CV of 

tCho estimates was significantly higher for Tarquin compared with both other algorithms, 

and significantly lower for Osprey compared with LCModel. Global tCho/tCr was 0.18 ± 

0.02 for LCModel, 0.18 ± 0.02 for Osprey and 0.18 ± 0.04 for Tarquin.

For mI, group means and CVs were comparable for Osprey and LCModel, while Tarquin 

estimates were lower by about 25%. Global CVs were significantly lower for Osprey 

compared with Tarquin, while no significant differences in the CV were found for the other 

comparisons. Global mI/tCr was 0.83 ± 0.09 for LCModel, 0.84 ± 0.09 for Osprey and 0.60 

± 0.08 for Tarquin, with significant mean differences between all Tarquin and both other 

algorithms.

Group means and CVs for Glx were comparable between Osprey and LCModel, while 

estimates were about 30% higher in Tarquin. Global CV was significantly lower for Osprey 

compared with both other algorithms. Global Glx/tCr was 1.45 ± 0.15 for LCModel, 1.50 

± 0.12 for Osprey and 1.93 ± 0.24 for Tarquin, with significant differences between all 

algorithms. Mean CVs, estimated by the row mean, were between 9.0% and 13.8% for all 

algorithms and vendors.

3.3 | Correlation analysis: pair-wise comparison between LCM algorithms

The correlation analysis for each metabolite and algorithm pair is summarized in Figure 5. 

R2 each algorithm pair and metabolite are reported in the corresponding row and column, 

respectively.

The cohort-mean R2 = 0.39 suggests an overall moderate agreement between metabolite 

estimates from different algorithms. The agreement between algorithms, estimated by the 

row-mean R2, was highest for Tarquin versus LCModel R2 = 0.43 , followed by Osprey 

versus LCModel R2 = 0.38  and Osprey versus Tarquin R2 = 0.37 .

The agreement between algorithms for each metabolite, estimated by the column-ms highest 

for tNAA R2 = 0.50 , followed by tCho R2 = 0.44 , Glx R2 = 0.32  and mI R2 = 0.29 . The 

cohort-mean R2 for each vendor was higher for Siemens R2 = 0.45  than for GE R2 = 0.40

and Philips R2 = 0.40 .

While the within-metabolite mean R2 (average down the columns in Figure 5) are 

comparable between vendors, there is substantially higher variability of the R2 values 

with increasing granularity of the analysis. Supplementary Material 2 (see the supporting 

information) includes an additional layer of correlations at the site level.
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3.4 | Correlation analysis: baseline and metabolite estimates

The correlation analysis between local baseline power and metabolite estimates for each 

algorithm is summarized in Figure 6. The cohort-mean R2 = 0.10 suggests that overall there 

is an association between local baseline power and metabolite estimates that is weak but 

statistically significant. The influence of baseline on metabolite estimates differs between 

metabolites, as reflected by the column-mean R2, which was lowest for tCho R2 = 0.04  and 

tNAA R2 = 0.06 , and highest for mI R2 = 0.13  and Glx R2 = 0.18 . The global baseline 

correlations all had negative slope, except for tCho estimates of Tarquin.

The mean R2 across metabolites for each algorithm, calculated as the row mean, were 

low for all algorithms with LCModel R2 = 0.17 , showing a greater effect than Tarquin 

R2 = 0.08  and Osprey R2 = 0.06 . Comparing vendors, the cohort-mean R2 was higher for 

GE R2 = 0.15  and Siemens R2 = 0.14  than for Philips R2 = 0.05  spectra.

3.5 | Variability of tCr models

Mean tCr model spectra (± one SD) are summarized in Supplementary Material 3A (see the 

supporting information) for each vendor and LCM algorithm, along with distribution plots 

of the area under the model.

The agreement in mean and CV is greatest between Osprey and Tarquin for all vendors, 

while tCr areas for LCModel appear slightly higher. Differences in water suppression are 

accounted for with the -CrCH2 correction term, which is not included in the tCr model used 

for quantitative referencing.

Supplementary Material 3B (see the supporting information) shows the distribution of the 

water-referenced tCr concentrations with high agreement of CV between all algorithms and 

vendors. The agreement between the mean was higher between Osprey and Tarquin for 

GE and Siemens, while the mean concentrations were different for LCModel. The highest 

variation between algorithms was found for Philips.

3.6 | Linear mixed-effect models

The results from the linear mixed-effects model analysis are summarized in Table 3. The 

algorithm-specific effect ranged from 0.7% (tCho) to 58.7% (mI) and was significant for 

all metabolites. Significant vendor-specific effects were found for Glx (10.1%) and tCho 

(17.5%), while significant site-specific effects ranged from 3.8% (mI) to 21.7% (tNAA). The 

participant-specific effects ranged from 7.5% (Glx) to 40.4% (tNAA) and were significant 

for all metabolites. The metabolite distribution divided by algorithm, vendor, site and subject 

is shown in Figure 7.
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4 | DISCUSSION

We have presented a three-way comparison of LCM algorithms applied to a large dataset of 

short-TE in vivo human brain spectra. The aims at the onset were to compare metabolite 

estimates obtained with different LCM algorithms, as applied in the literature, and to 

identify potential sources of differences between the algorithms. The major findings are:

• Group means and CVs for tNAA and tCho agreed well across vendors and 

algorithms. For mI and Glx, group means and CVs were less consistent between 

algorithms, with a higher degree of agreement between Osprey and LCModel 

than with Tarquin.

• The strength of the correlations between individual metabolite estimates from 

different algorithms was moderate. In general, tNAA and tCho estimates from 

different algorithms agreed better than Glx and mI. With each sublevel of 

analysis, the variability of correlation strength increased (i.e. correlations grew 

increasingly variable when calculated separately for each vendor, or even each 

site).

• Overall, the association between metabolite estimates and the local baseline 

power was significant, with mI and Glx showing stronger associations than 

tNAA and tCho, and LCModel showing greater effects than Tarquin and Osprey.

• A large vendor-specific effect was found for Glx (49.3%) and mI (58.7%) by 

calculating variance partition coefficients using linear mixed-effects modeling. 

For tNAA and tCho, the participant-level effect was largest with 40.4% and 

28.8%, respectively.

The strong agreement of group means and CVs for metabolites with prominent singlets 

(tNAA/tCho) and inconsistency for lower intensity coupled signals (mI/Glx) are in line with 

previous two-tool comparisons of simulated data7,15 and in vivo studies with smaller sample 

sizes.7,14,16

While previous work highlighted group means and SDs, the between-algorithm agreement 

of individual metabolite estimates has not been extensively studied. Our results suggest that 

substantial variability is introduced by the choice of the analysis software itself, indicated by 

only moderate between-algorithm correlation strength (between-algorithm mean R2 < = 0.5
for all investigated metabolites), even for the well-established LCM algorithms LCModel 

and Tarquin (R2 between 0.27 and 0.59 for all metabolites). This finding raises concerns 

about the generalizability and reproducibility of MRS study results. MRS studies typically 

suffer from low sample sizes (approximately 20 per comparison group is common). 

Considering the moderate between-tool correlation of individual estimates, it is likely that 

marginally significant group effects and correlations found with one analysis tool will not 

be found with another tool, even if exactly the same dataset is used. This is exacerbated 

by the substantial variability of correlation strengths at vendor or even site level, and 

is even more likely to be the case for ‘real life’ clinical data, given the relatively high 

quality of the ‘best case scenario’ dataset in this study (standardized preprocessing; large 

sample size; high SNR; low linewidth; young, healthy, cooperative subjects). While two 
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previous studies found that some differences between clinical groups remained significant 

independent of the LCM algorithm,14,16 this is questionable as a default assumption. The 

lack of comparability arising from the additional variability originating in the choice of 

analysis tool is rarely recognized or acknowledged. If choice of analysis tool is a significant 

contributor to measurement variance, it could be argued that modeling of data with more 

than one algorithm will improve the robustness and power of MRS studies. It should also be 

investigated whether the reduction of the degrees of freedom by improving MM and baseline 

models (e.g. by using acquired MM data) increases between-tool agreement and consistency 

between sites and vendors.

4.1 | Sources of variance

In order to understand the substantial variability introduced by the choice of analysis tool, 

the influence of modeling strategies and parameters on quantitative results needs to be 

better understood. Previous investigations have shown that, within a given LCM algorithm, 

metabolite estimates can be affected by the choice of baseline knot spacing,37,38 the 

modeling of MM and lipids,37,39 and SNR and linewidth.40–43 In this study, we focused 

on the comparison of each LCM with their default and commonly used parameters, and 

observed differences resulting both from the default parameters and from differences in 

the core algorithm. Minor differences in spectral quality (SNR and linewidth) were found 

between vendors. The agreement between vendors was high for the mean metabolite levels 

and the cohort-mean correlations. Further vendor-specific effects on the LCM estimation of 

this dataset are described elsewhere.17

LCM relies on the assumption that broad background and baseline signals can be separated 

from narrower metabolite signals. This is true to a limited degree, and the choice of MM and 

baseline modeling influences the quantification of metabolite resonances.4 Our secondary 

analysis of the relationship between baseline power and metabolite estimates showed a 

stronger interaction for the broader coupled signals of Glx and mI than the singlets. tCho 

showed the weakest effect, and the three LCMs showed the highest agreement between 

the MM + baseline models around 3.2 ppm. The higher variance of Glx and mI estimates 

may at least partly be explained by the absence of MM basis functions for frequencies of 

greater than 3 ppm in the model. MM signal must therefore either be modeled by metabolite 

basis functions or the spline baseline. This also emphasizes that any LCM implementation 

requires a baseline model to account for broad background and baseline signals, with the 

disadvantage of this being a main source of variance between algorithms. This is also 

implied by the large algorithm-level effect for mI and Glx in the linear mixed-effects model. 

Comparing the variance partition coefficients of this study with the prior single LCModel 

analysis17 shows a high agreement in the variance partition for tNAA and tCho. A lower 

agreement is found for mI and Glx, as the estimates of those metabolites strongly differ 

between algorithms, introducing a high algorithm-level effect. Including experimental MM 

acquisitions into studies may reduce the degrees of freedom of modeling, but introduce other 

sources of variance, such as age dependency44 or tissue composition.39,45 While consensus 

is emerging that such approaches are recommended, many open questions must be resolved 

before the recommendations can be broadly implemented,25 and the default LCModel MM 

basis functions are still commonly used in studies applying MRS. A literature review of 
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the 30 most recent LCModel11 citations (Google Scholar, 10 November 2020) in short-TE 

3 T MRS application studies revealed that 24 of these studies used the default MM basis 

functions, one was performed without MM basis functions at all, and only one employed a 

measured MM spectrum. The remaining four studies did not report sufficient details, and the 

authors did not respond to our inquiries.

For all three LCM algorithms, optimization between the model and the data is solved by 

local optimization. Algorithms could converge on a local minimum, if the search space of 

the nonlinear parameters is of high dimensionality, or if the starting values of the parameters 

are far away from the global optimum.46 The availability of open-source LCM such as 

Tarquin and Osprey will allow further investigation of the relationship between optimization 

starting values and modeling outcomes.

The inherent differences between frequency-domain modeling, which is normally restricted 

to a specific frequency range, and time-domain modeling, which includes the full spectrum, 

are a potential source of variance, as the approaches differ in their susceptibility to the 

residual water peak. In this study, Tarquin’s internal default SVD water removal was 

included in addition to the HSVD filter in Osprey’s processing pipeline to reduce this effect 

and to follow Tarquin’s default approach. A secondary analysis confirmed that the effect 

of Tarquin’s SVD on the metabolite estimates was negligible.31 Further standardization 

between Tarquin and the frequency-domain modeling approaches could be achieved by 

restricting the frequency range of the basis set accordingly.

Because this study focused on reporting tCr ratios, it is important to consider the variance 

of the creatine model of each algorithm. With MRS only quantitative in a relative sense, 

separating the variance contribution of the reference signal is a challenge. While mean tCr 

model areas were slightly higher for LCModel than for Osprey and Tarquin, there was no 

generalizable observation of lower tCr ratios from LCModel. CVs of the tCr model areas 

were comparable across LCM algorithms for each vendor. This is also the case for the 

water-referenced tCr concentrations, which showed no systematic differences in the mean 

or CV between algorithms. Vendor differences in the water suppression were minimized 

by limiting the analysis range to 0.5–4 ppm, and by including a -CrCH2 correction term 

(omitted from calculations of the tCr ratios and the secondary analysis of the tCr models). 

The contribution of the reference signal to the variance of metabolite estimates is unclear 

and hard to isolate. Nevertheless, tCr referencing was preferred in this study, because water 

referencing is likely to add additional tool-specific variance resulting from water amplitude 

estimation.

4.2 | Limitations

First, as mentioned in greater detail above, there is currently no widely adopted consensus 

on the definition of MM basis functions, and measured MM background data are not widely 

available to nonexpert users. To reflect common practice in current MRS applications, the 

default MM basis function definitions from LCModel were adapted for each algorithm in 

this study. These basis functions only included MMs for frequencies smaller than 3.0 ppm, 

which is likely insufficient for the modeling of MM signals between 3 and 4 ppm,47 and will 

have repercussions for the estimation of tCho, mI and Glx.
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Second, standard modeling parameters were chosen for each LCM, which ensured a broader 

comparability with the current literature, but may not be ideal.

Third, there is obviously no ‘gold standard’ of metabolite level estimation to validate MRS 

results against. The performance of an algorithm is often judged based on the level of 

variance, but low variance clearly does not reflect accuracy and may indicate insufficient 

responsiveness of a model to the data. Therefore, while comparing multiple algorithms, a 

higher degree of correlation in the results does not necessarily imply higher reliability, but 

it could equally be the case that shared algorithm-based sources of variance increase such 

correlations. Efforts to use simulated spectra as a gold standard, including those applying 

machine learning,48,49 can only be successful to the extent that simulated data are truly 

representative of in vivo data.

Fourth, another criterion to judge the performance of an algorithm is the residual. For 

example, a small residual indicates higher agreement between the complete model and the 

data for LCModel, but it does not imply a better estimation of individual metabolites, and 

may result from the higher degree of freedom in the baseline of LCModel (higher number of 

splines) compared with Osprey and Tarquin. This is emphasized by the higher agreement of 

the mean mI models, but lower agreement of the baseline models around 3.58 ppm between 

LCModel and Osprey.

Fifth, this study was limited to the two most widely used algorithms, LCModel and 

Tarquin, as well as the Osprey algorithm, which is currently undergoing development in 

our group. While including additional algorithms would increase the general understanding 

of different algorithms, the complexity of the resulting analysis and interpretation would be 

overwhelming and beyond the scope of a single publication.

5 | CONCLUSION

This study presents a comparison of three LCM algorithms applied to a large-scale multi-

site short-TE PRESS multi-vendor dataset. While different LCM algorithms’ estimates of 

major metabolite levels agree broadly at group level, correlations between results are only 

weak-to-moderate, despite standardized preprocessing, a large sample of young, healthy 

and cooperative subjects, and high spectral quality. The variability of metabolite estimates 

that is introduced by the choice of analysis software is substantial, raising concerns about 

the robustness of MRS research findings, which typically use a single algorithm to draw 

inferences from much smaller sample sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Voxel position and overview of the MRS analysis pipeline. A, Representative voxel 

position in the medial parietal lobe extracted with ‘OspreyCoreg’. B, Preprocessing pipeline 

implemented in Osprey including ‘OspreyLoad’ to load the vendor-native spectra, and 

‘OspreyProcess’ to process the raw data and to export the averaged spectra. C, Modeling of 

the averaged spectra with details of the basis set and parameters of each LCM (LCModel, 

Osprey, and Tarquin)
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FIGURE 2. 
Summary of the individual modeling results. A–C, Individual residuals, data, models, MM 

models + baseline, baseline and MM models for each LCM algorithm, color-coded by 

vendor
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FIGURE 3. 
Summary of the modeling results. A–C, Site-level averaged residual, data, model, MM 

model + baseline, baseline and MM model for each LCM algorithm, color-coded by vendor. 

D–F, Cohort-mean residual, data, model, MM model + baseline, and metabolite models for 

each vendor, color-coded by LCM algorithm
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FIGURE 4. 
Metabolite level distribution. Raincloud plots of the metabolite estimates of each LCM 

algorithm (color-coded). The four metabolites are reported in the columns, and the three 

vendors in rows, with a cohort summary in the last row. The coefficient of variation is 

reported for each distribution, as well as a mean CV reported in the last column, which is 

calculated across each row. Asterisks indicate significant differences (adjusted p < 0.001 = 

***)
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FIGURE 5. 
Pair-wise correlational comparison of algorithms. LCModel and Osprey are compared in 

the first row, Tarquin and Osprey in the second row, and LCModel and Tarquin in the 

third row. Each column corresponds to a different metabolite. Within-vendor correlations are 

color-coded; global correlations are shown in black. The R2 values are calculated along each 

dimension of the grid with mean R2 for each metabolite and each correlation. A cohort-mean 

R2 value is also calculated across all 12 pair-wise correlations. Asterisks indicate significant 

correlations (adjusted p < 0.01 = ** and adjusted p < 0.001 = ***)
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FIGURE 6. 
Correlation analysis between metabolite estimates and local baseline power for each 

algorithm, including global (black) and within-vendor (color-coded) correlations. The 

mean R2 values are calculated along each dimension of the grid for each metabolite and 

each algorithm. Similarly, a cohort-mean R2 value is calculated across all 12 pair-wise 

correlations. Asterisks indicate significant correlations (adjusted p < 0.05 = *, adjusted p < 

0.01 = **, adjusted p < 0.001 = ***)
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FIGURE 7. 
Metabolite level distribution by site. Boxplots of the metabolite estimates of each LCM 

algorithm and vendor (color-coded). Each site is represented as a single box with individual 

data points. The four metabolites are reported in the rows and the three vendors are 

represented in the columns. The fourth column represents the vendor-collapsed distributions
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TABLE 1

Overview of linear-combination modeling algorithms. The domain (time [TD] or frequency [FD]) of modeling 

and the baseline model approach are specified

Name Modeling domain, baseline approach Cost Code availability Published Number of citations
*

Osprey FD, spline baseline free open 2020 1

INSPECTOR FD, first-order polynomial free closed 2018 0

Tarquin TD, smooth baseline free open 2011 264

AQSES (jMRUI) TD, spline baseline free closed 2007 143

Vespa FD, wavelet baseline free open 2006 75

QUEST (jMRUI) TD, spline baseline free closed 2004 35

LCModel FD, spline baseline $13,300 closed 1992 3518

*
Citations reported from Google Scholar on 26 October 2020.
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TABLE 2

Metabolite level distribution. Mean, standard deviation and coefficient of variation (CV) of each metabolite-to-

creatine ratio, listed by algorithm and vendor as well as global summary values. Asterisks indicate significant 

differences (adjusted p < 0.01 = ** and adjusted p < 0.001 = *** or ### or “’) in the mean (for the metabolite 

ratios) or the variance (for the CV) compared with the algorithm in the next row (LCModel vs. Osprey = ** or 

***, Osprey vs. Tarquin = ###, and Tarquin vs. LCModel = “’)

[metabolite] / [tCr] (mean ± SD)

tNAA tCho mI Glx

GE

LCModel 1.48 ± 0.12 0.19 ± 0.02 0.85 ± 0.10 1.75 ± 0.25

Osprey 1.47 ± 0.10 0.18 ± 0.02 0.78 ± 0.09 1.42 ± 0.17

Tarquin 1.48 ± 0.11 0.22 ± 0.03 0.57 ± 0.07 2.05 ± 0.22

Philips

LCModel 1.38 ± 0.10 0.17 ± 0.02 0.81 ± 0.08 1.46 ± 0.14

Osprey 1.50 ± 0.12 0.18 ± 0.02 0.86 ± 0.10 1.34 ± 0.16

Tarquin 1.40 ± 0.12 0.16 ± 0.03 0.60 ± 0.09 1.78 ± 0.19

Siemens

LCModel 1.52 ± 0.19 0.19 ± 0.02 0.83 ± 0.09 1.65 ± 0.31

Osprey 1.54 ± 0.12 0.19 ± 0.02 0.89 ± 0.06 1.45 ± 0.14

Tarquin 1.50 ± 0.15 0.18 ± 0.03 0.65 ± 0.07 2.04 ± 0.19

global

LCModel 1.45 ± 0.15*** 0.18 ± 0.02 0.83 ± 0.09 1.45 ± 0.15***

Osprey 1.50 ± 0.12### 0.18 ± 0.02 0.84 ± 0.09### 1.50 ± 0.12###

Tarquin 1.46 ± 0.14 0.18 ± 0.04 0.60 ± 0.0800’ 1.93 ± 0.2400’

CV (SD/mean)

tNAA tCho mI Glx

GE

LCModel 7.9% 12.9% 11.8% 14.2%

Osprey 6.9% 9.7% 11.1% 11.8%

Tarquin 7.5% 11.7% 11.2% 10.8%

Philips

LCModel 7.2% 10.6% 9.9% 9.7%

Osprey 8.0% 10.0% 11.8% 11.9%

Tarquin 8.8% 19.8% 15.2% 10.7%

Siemens

LCModel 12.4% 13.4% 10.8% 18.7%

Osprey 8.0% 11.1% 6.9% 10.0%

Tarquin 10.1% 14.3% 10.5% 9.3%

global

LCModel 10.0% 13.2%** 10.9% 16.4%***

Osprey 7.8% 10.4%### 11.7%### 11.8%###

Tarquin 9.3% 20.5%”‘ 13.6% 12.3%

NMR Biomed. Author manuscript; available in PMC 2022 March 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zöllner et al. Page 28

TABLE 3

Variance partition coefficients for algorithm-, vendor, site-, and participant-level effects for the metabolite 

levels (shown as percentage). The residual represents the part of the total variance which is not explained by 

the linear mixed-effect model. Asterisks indicate significant effects based on linear mixed-effect modeling (p < 

0.05 = * and p < 0.01 = **)

[tNAA] / [tCr] [tCho] / [tCr] [mI] / [tCr] [Glx] / [tCr]

Algorithm 3.2%** 0.7%* 58.7%* 49.3%*

Vendor 6.4% 17.5%* 3.0% 10.1%**

Site 21.7%** 9.9%** 3.8%** 10.7%**

Participant 40.4%* 28.8%* 15.4%** 7.5%*

Residual 28.2% 43.2% 22.3% 19.1%
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