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Abstract
ATP1A1 encodes the α1 subunit of the sodium-potassium ATPase, an electrogenic cation pump
highly expressed in the nervous system. Pathogenic variants in other subunits of the sameATPase,
encoded by ATP1A2 or ATP1A3, are associated with syndromes such as hemiplegic migraine,
dystonia, or cerebellar ataxia.Worldwide, only 16 families have been reported carrying pathogenic
ATP1A1 variants to date. Associated phenotypes are axonal neuropathies, spastic paraplegia, and
hypomagnesemia with seizures and intellectual disability. By whole exome or genome se-
quencing, we identified 5 heterozygous ATP1A1 variants, c.674A>G;p.Gln225Arg, c.1003G>T;
p.Gly335Cys, c.1526G>A;p.Gly509Asp, c.2152G>A;p.Gly718Ser, and c.2768T>A;p.Phe923Tyr,
in 5 unrelated children with intellectual disability, spasticity, and peripheral, motor predominant
neuropathy. Additional features were sensory loss, sleep disturbances, and seizures. All variants
occurred de novo and are absent from control populations (MAF GnomAD = 0). Affecting
conserved amino acid residues and constrained regions, all variants have high pathogenicity in
silico prediction scores. InHEK cells transfected with ouabain-insensitiveATP1A1 constructs, cell
viability was significantly decreased in mutants after 72h treatment with the ATPase inhibitor
ouabain, demonstrating loss of ATPase function. Replicating the haploinsufficiencymechanism of
disease with a gene-specific assay provides pathogenicity information and increases certainty in
variant interpretation. This study further expands the genotype-phenotype spectrum of ATP1A1.
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Table 1 Patient Overview and Phenotype Characterization

ID, sex, age at examination 1, M, 2y 2, M, 9y 3, M, 15y 4, M, 14y 5, M, 18y

Country of origin The Netherlands Poland Italy USA USA

Age at onset neonatal early infancy infancy early childhood infancy

Symptoms at onset developmental
delay, obstipation

developmental delay developmental delay developmental delay, autism developmental delay

Intellectual disability yes yes yes yes yes

Speech development limited to a few words nonverbal limited to ;100 words borderline to normal delayed, hypophonic

Epileptic seizures no, but EEG abnormal no no no yes

Hyperactivity NA* yes yes yes NA*

Motor milestones delayed delayed delayed normal delayed

Ambulatory capacities ambulant uses a wheelchair,
never been ambulant

ambulant ambulant Uses a wheelchair, motor
regression since the age of 7y

Fine motor skills MD impaired impaired normal impaired

Foot deformities yes, pes equinus yes, valgus feet
(Figure 1B/C)

yes, flat feet no yes, pes planovalgus

Self-mutilation no yes no no no

Scoliosis no yes no no no

Muscle atrophies no diffuse in arms and legs no no no

LL distal weakness (MRC) NA* yes (2) yes (4) no (5) no (5)

UL distal weakness (MRC) NA* yes (4) no (5) no (5) yes (4)

LL tendon reflexes brisk brisk normal normal brisk

UL tendon reflexes normal normal normal normal brisk

Spasticity increased muscle tone increased muscle tone no no increased muscle tone, foot
clonus, positive Babinski sign

Sensory deficits NA* yes no no no

Brain MRI hypomyelination,
hydrocephalus e vacuo

hypomyelination low cerebellar tonsils normal demyelination

EMG/NCS ND ND ND ND borderline low sensory nerve
action potentials (median and
sural nerves), normal motor
NCS and EMG

Serum magnesium levels normal normal normal normal normal

Serum potassium levels MD MD normal normal normal
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ATP1A1 encodes the α1 unit of a sodium-potassium ATPase
being highly expressed in the nervous system. With an
autosomal-dominant inheritance, associated phenotypes
comprise Charcot-Marie-Tooth disease (CMT)1,2, hereditary
spastic paraplegia (HSP)3, and intellectual disability4, hypo-
magnesemia, hypokalemia, and seizures.5 Heterozygous mis-
sense mutations lead to a reduced ATPase function, indicating
haploinsufficiency.1

We aimed at showing the pathogenicity of 5 newly identified
heterozygous missense variants and broadening the known
genotype-phenotype spectrum1-3,5 of ATP1A1.

Methods
All patients or legal representatives gave written informed
consent. Clinical examinations were performed by experi-
enced child neurologists. Using site-specific protocols,
ATP1A1 variants were identified by whole exome or genome
sequencing. In both children and parents, variants were vali-
dated by Sanger sequencing. Cosegregation analyses con-
firmed that all 5 variants occured de novo.

To assess variant pathogenicity, HEK cells were transfected
with ouabain-insensitive ATP1A1 plasmids encoding either
the wildtype (wt) or mutants in replicates of 8. As a negative
control, we used wt-ATP1A1 plasmids that are not in-
sensitive to ouabain. 24 hours after transfection, cells were
treated with the ATPase inhibitor ouabain at a concentration
of 0.5μM. After 72 hours, cell survival was measured by
luciferase (CellTiter-Glo) assay. For normalization, we cal-
culated the viability ratio of treated and untreated cells, each
transfected with the same plasmid. For statistical analyses,
we used a 1-way ANOVA to compare all mutants with wt,
wt-ouabain, and untransfected cells, using the Tukey post-
test for α-error correction.

Results
Phenotype Description
All 5 children were male and of Caucasian origin. First symp-
toms were observed in early childhood or even neonatally
(Table 1). At the time of examination, the patients were 2–18
years old. A variable degree of intellectual disability was present
in all patients (Figure 1A). Speech development ranged from
absent to borderline normal. Motor milestones were delayed in
4 of 5 children. At current age, spasticity and distal muscle
weakness were the leading motor symptoms (3/4) and foot
deformities occurred in all examined patients (4/4). Deep
tendon reflexes were brisk in 3 of 4 cases. Additional sensory
deficits were reported in one patient (patient 2), who had a
tendency to self-mutilation and distal muscle atrophies (Figure
1B, C) as well. This and one other patient (patient 5) were
using a wheelchair by the time of examination. One patient
(patient 5) had epileptic seizures. Brain MRIs had shown signs
of hypomyelination or demyelination in 3 of 5 patients, and lowTa
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cerebellar tonsils were reported in one patient (patient 3).
Serum magnesium and potassium levels were normal in all
examined patients. Additional findings were sleep disturbances
and gastrointestinal reflux in 2 patients.

Molecular Genetics
We identified 5 de novo missense variants in ATP1A1
(ENST00000295598.10; NM_000701.8; Figure 2A) that are all
absent from control populations (GnomAD): c.674A>G;
p.Gln225Arg, c.1003G>T;p.Gly335Cys, c.1526G>A;p.Gly509Asp,
c.2152G>A;p.Gly718Ser, and c.2768T>A;p.Phe923Tyr (Table 1).
All variants affect conserved (GERP scores: 4.82–5.33) and con-
strained amino acid positions (Figure 2B). The variants
p.Gly335Cys and p.Phe923Tyr are located within transmembrane
domains, whereas p.Gln225Arg, p.Gly509Asp, and p.Gly718Ser lie
in intracellular loops, the latter affecting the metal binding site
(Figure 2A). In silico pathogenicity predictions (CADD scores:
23.9–29.9, median: 29.0) were deleterious for all exchanges.

Functional Assessment
Compared with the ouabain-insensitive wt, cell viability was
significantly reduced for all variants (Figure 2C). In the
presence of the pathogenic mutant, the otherwise resistant
plasmid led to cell death when treated with the unselective
ATPase inhibitor ouabain, demonstrating the expected loss of
function. To show that cell death was not an effect of trans-
fection, we normalized each treated mutant to untreated cells
transfected with the same plasmid.

Discussion
In this work, we describe a complex but consistent phenotype
(Figure 1A) not adhering to distinct disease patterns such as

neuropathy, spastic paraplegia, or intellectual disability that have
all been described in associationwith pathogenicATP1A1 variants
before,1-5 (eTable 1, links.lww.com/WNL/B742) but combining
those and other clinical features in a broader spectrum. In a linear
protein model (Figure 2A), the variant positions do not correlate
with the distinct subphenotypes. Why a certain variant causes one
specific clinical syndrome and what determines disease severity is
therefore not clear today. Although it is often challenging to de-
termine pathogenicity of single variants in large proteins, the
availability of a specific bioassay allowed us to show hap-
loinsufficiency of each variant. All herein reported missense vari-
ants occurred de novo, and other genetic causes more likely to be
causative were ruled out by whole exome or genome sequencing.

We conclude that the ATP1A1-associated disease spectrum is
broader than previously thought. Our results show each variant’s
pathogenicity and expand the genotype–phenotype spectrum.
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Figure 1 Clinical Phenotypes Associated With Novel ATP1A1 Variants

(A) Graphic depiction of distinct and overlapping phenotypes in 5 patients. (B) Diffusemuscle atrophies, increasedmuscle tone, and pes valgus in patient 2. (C)
Pes planovalgus in patient 2, aggravated by neuropathy.
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Figure 2 Functional Characteristics of Novel ATP1A1 Variants

((A) Schematic depiction of the ATP1A1 protein showing the localization of previously reported and novel variants, sorted by phenotypes. Blue: ATP1A1
mutations associated with neuropathy: Leu48Arg, Ser207Phe, Ile592Thr, Ala597Thr, Pro600Ala, Pro600Thr, Asp601Phe, Asp811Ala, Gly877Ser. Yellow:
ATP1A1mutations associatedwith intellectual disability (and renal hypomagnesemia): Leu302Arg, Gly303Arg, Pro333Arg, Met859Arg, Gly864Arg, Asp933Asn.
Rose: ATP1A1mutation associatedwith spastic paraplegia: Leu337Pro. Red: Novel ATP1A1mutations described in this article: Gln225Arg (patient 1), Gly335Cys
(patient 2), Gly509Asp (patient 3), Gly718Ser (patient 4), Phe923Tyr (patient 5). (B) ATP1A1 variants aremapped to highly constrained coding regions (CCRs) of
the gene.6 High constraint means that the disruption of this region would most likely cause haploinsufficiency. (C) Luminescence-based ouabain survival
assay inHEK cells transfectedwith ouabain-insensitive ATP1A1plasmids for all 5mutants andwildtype (oua-wt), aswell aswt-ATP1A1 (not ouabain-insensitive)
in comparison with untransfected cells. After ouabain (0.5uM) treatment for 72h, cell viability is shown as a ratio with untreated cells (mean) transfected with
the same plasmid. N, 8 Statistics: One-way ANOVA, α-error correction: Tukey posttest.
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