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ABSTRACT
Multiple vaccines have recently been developed, and almost all the countries are presently vaccinating 
their population to tackle the COVID-19 pandemic. Most of the COVID-19 vaccines in use are administered 
via intramuscular (IM) injection, eliciting protective humor and cellular immunity. COVID-19 intranasal (IN) 
vaccines are also being developed that have shown promising ability to induce a significant amount of 
antibody-mediated immune response and a robust cell-mediated immunity as well as hold the added 
ability to stimulate protective mucosal immunity along with the additional advantage of the ease of 
administration as compared to IM injected vaccines. By inducing secretory IgA antibody responses 
specifically in the nasal compartment, the intranasal SARS-CoV-2 vaccine can prevent virus infection, 
replication, shedding, and disease development, as well as possibly limits virus transmission. This article 
highlights the current progress, advantages, prospects, and challenges in developing intranasal COVID-19 
vaccines for countering the ongoing pandemic.
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Introduction

The ongoing coronavirus disease 2019 (COVID-19) pan
demic caused by severe acute respiratory syndrome coro
navirus-2 (SARS-CoV-2) has till date (February 8, 2022) 
affected hundreds of millions of people while leading to 
>5.7 million deaths worldwide.1 A very rapid global spread 
of COVID-19 posed an international health emergency as 
a devastating pandemic of the 21st Century. Though several 
drugs, therapies, and immunomodulatory regimens such as 
remdesivir, ivermectin, dexamethasone, convalescent 
plasma therapy, antibody-based immunotherapies, and 
monoclonal antibodies (MAbs) have been identified and 
used in emergency purposes for reducing the disease sever
ity in patients with COVID-19 as well as others are being 
investigated; however, the choice of effective curative drugs 
and medicines are yet to be identified.2–7

Various research advances paved the way for developing 
multiple COVID-19 vaccines in less than a year by exploring 
several vaccine platforms and advances. After very high efforts, 
researchers have developed COVID-19 vaccines such as 
mRNA vaccine, DNA vaccine, viral vector vaccine, virus-like 
particles (VLPs), recombinant vaccine, protein subunit-based 
vaccines, live attenuated and inactivated virus vaccines that are 
being used for vaccinating people across the globe under 

different vaccination programs that are in progress in several 
countries. A few vaccines have been approved for use, and 
vaccination programs are currently underway in various 
countries8–12 while others newer and versatile vaccine produc
tion platforms including recombinant vaccines, plant-based 
vaccine, immunoinformatics-based multi-epitope subunit vac
cine, artificial intelligence, and CRISPR/Cas technology-based 
vaccine, nanotechnology-based vaccines (nano-vaccine) and 
others are also under high progress and currently in the pipe
line for developing appropriate vaccine candidates to counter 
SARS-CoV-2.11–18

Different kinds of vaccines in use have shown a high degree 
of efficacy with variable protective levels of up to 95% (70–95% 
range) in vaccinated individuals against COVID-19.2,3,12,19–21 

In the era of various advances in developing vaccines, few 
issues of concerns, debates, and challenges related to vaccines 
include induction of variable protective levels, defining booster 
doses, the feasibility of virus re-infection and outcome of dis
ease course in vaccinated individuals particularly amidst emer
ging variants and mutants, need for further modifying the 
vaccines as per main mutants/variants, levels of herd immunity 
developed, separate clinical trials in elderly, pregnant women 
and children or need same/special vaccine for these, vaccine 
hesitancy, diplomacy, and equitable access to the worldwide 
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population and completing vaccination process at the earliest 
of worldwide population, these need to be addressed 
adequately.22–33

Currently, all available COVID-19 vaccines are adminis
tered by intramuscular (IM) injection, which is an invasive 
method, while many researchers are focusing on developing 
an effective vaccine that can be administered through nasal or 
oral routes. For instance, in mucosally transmitted illnesses like 
influenza and SARS-CoV-2 viruses, administering immuniza
tions through the nasal route is regarded as extremely appeal
ing since it induces a dual systemic and a robust local mucosal 
immune response. Since there is no need for trained medical 
personnel to deliver IN dosage, the nasal vaccines would have 
greater ease to administer and render desired efficacy. This is 
advantageous, particularly in developing nations, and therefore 
nasal vaccination provides a more cost-effective and conveni
ent approach to administering vaccinations during disease 
outbreaks.34,35

COVID-19 approved vaccines delivered intramuscularly 
elicit antibody mediated and cell-mediated immunity in order 
to avoid viral replication and to provide resistance against the 
development of COVID-19. However, existing IM vaccinations 
are meant to induce systemic immune response without gen
erating mucosal protection. Therefore, protections offered by 
IM vaccines may not be sufficient to deal with virus replication 
and shedding in the upper respiratory and so may not stop 
nasal SARS-CoV-2 infection. The absence of a local secretory 
IgA (sIgA) antibody immune response could pose a risk of 
SARS-CoV-2 transmission from vaccinated people as they still 
can be infected and therefore could spread the infection36 

(Figure 1).
Recently, good progress has been made to develop vaccines 

and drugs which can be given via intranasal route that have 
benefits of ease of administration as being noninvasive route, 
and especially generating mucosal immunity apart from 
humoral and cellular immunity to render protection against 
COVID-19.34,37–41 Despite significant progress in developing 
a safe and reliable vaccine; there is still a need to discover better 
vaccine candidates that are safe and efficient for the great 
majority of the population. In this context, few of the novel 
intranasal COVID-19 vaccines are being developed, with 
encouraging preclinical findings in non-human primates and 
other animal models.35,39,42–46 An IM dosage followed by an 
internasal vaccination might lead to a robust immune 
response, which might be a reliable approach to attain herd 
immunity in the population.34 Furthermore, IN vaccines can 
elicit a substantial amount of B cells mediated and T cell- 
mediated immune response along with desired mucosal immu
nity. This article presents an overview of the efforts and pro
gress being made in designing and developing vaccines that 
could be administered through nasal route and as nasal spray 
to counter SARS-CoV-2/COVID-19.

Intranasal COVID-19 vaccines

The primary entry portal for coronaviruses (CoVs) in the 
human body is constituted by oral and nasal mucosal surfaces, 
and the nasal compartment is the first-line barrier to SARS- 
CoV-2 entry that needs to be breached by the virus, after which 

the virus spread and disseminate to the lungs, therefore muco
sal (IN) vaccination can render a safe and effective way for the 
generation of long-lasting systemic and humoral immune 
responses as well as mucosal immunity (sIgA) in both upper 
and lower respiratory tracts to bestow defense against SARS- 
CoV-2 infection.34,37,38,41 Intranasal (IN) administration of 
SARS-CoV-2 vaccines can prevent from virus infection, repli
cation, shedding, and disease development as well as possibly 
limits virus transmission.34 Priming with IM vaccine and 
a booster with IN vaccination may likely lead to superior 
immune responses while preventing or sturdy dropping of 
viral replication in respiratory tracts.34 A variety of intranasal 
COVID-19 vaccines are currently under development, and 
these have shown attractive and promising avenues in counter
ing COVID-19, which are discussed briefly in this section 
(Table 1).

An intranasal vaccine, namely AdCOVID, has been devel
oped to induce a robust and concentrated immune response to 
SARS-CoV-2 receptor-binding domain (RBD) by inducing 
mucosal IgA, serum neutralizing antibodies, and T cells (CD4 
+ and CD8+) along with the expressions of cytokines belong
ing to Th1 cells. By potentially enhancing both the systemic 
and local mucosal immunity, AdCOVID is considered 
a reliable and efficient IN vaccine candidate against COVID- 
19.43

Recently, a comparative study of IN and IM administration 
of a chimpanzee adenovirus-vectored vaccine expressing a pre- 
fusion stabilized S protein (ChAd-SARS-CoV-2-S) was con
ducted. IM vaccination produced a strong antibody-mediated 
immune response capable of neutralizing the SARS-CoV-2 
infection, whereas immune response was greater in hamsters 
receiving IN vaccine. Further, the immunized hamsters were 
protected from SARS-CoV-2 exposure, and viral infection was 
unable to cause weight loss in the hamsters. In addition, lower 
viral load in both intranasal and pulmonary swabs was 
observed along with decreased transcripts levels of inflamma
tory genes and improved disease conditions. The vaccine 
offered greater protection from SARS-CoV-2 infection and 
inflammation by IN vaccination and reduced the dissemina
tion of viral particles.42 Moreover, receptor-binding domain 
(RBD)-specific immune responses in mice inoculated with 
recombinant SARS-CoV-2-RBD-based subunit vaccine admi
nistered through IN inoculation and IM injection were com
pared in another recent study. The IN immunization resulted 
in a strong antibody-mediated immune response with the 
increased levels of IgG antibodies and also a considerable 
amount of mucosal immune response. As a result of these 
findings, noninvasive IN vaccines should be considered for 
SARS-CoV-2 vaccine development in the coming time.44

Immunization triggered by transduction of respiratory tract 
cells of mice with a Lentiviral vector (LV) though elicited 
neutralizing antibodies with high levels of serum neutralizing 
activity against S (spike) glycoprotein of SARS-CoV-2 but 
provided only partial protection. Intranasal stimulation of the 
immune system in the respiratory system, on the other hand, 
results in a reduction in lung infection rates and local inflam
mation. In addition, in golden hamsters, which are normally 
restrictive to SARS-CoV-2 replication and closely mimic 
COVID-19 physiopathology in humans, both integrative and 
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non-integrative LV systems revealed strong clinical effective
ness and impeded detrimental damage of lungs. The findings 
have shown that SARS-CoV-2 LV-based vaccination approach 
has a significant prophylactic effect, and IN vaccination against 
COVID-19 is an effective strategy.45 Furthermore, to stimulate 
mucosal immunity as well as systemic immunity, the trimeric 
or monomeric spike protein was combined with a liposomal 
STING agonist as an adjuvant in an IN subunit vaccination. 
A strong antibody-mediated immune response was observed 
along with a higher concentration of IgA in the lung and nasal 
compartments. Despite strong B cell-mediated response, 
a substantial amount of T cell-mediated immune response 
was observed in the lungs of the immunized mice with this 
vaccine. Simultaneous activation of both antibody-mediated 

and cell-mediated immune responses in a germinal center- 
like manner was observed within the nasal-associated lym
phoid tissues (NALT), supporting the significance of this 
approach for the achievement of long-lasting immunity.60

Another study generated a cold-adapted live-attenuated 
vaccine by changing SARS-CoV-2 growth in Vero cells from 
37°C to 22°C, which could be given as a nasal spray in humans. 
In intranasally inoculated K18-hACE2 mice that are highly 
susceptible to SARS-CoV-2 infections, a single dose of vaccine- 
elicited a significant B and T cell-mediated immune response 
as well as mucosal IgA antibodies. The vaccinated mice were 
fully protected against SARS-CoV-2 infection, with minor 
bodyweight loss, fewer deaths, and slight viral expression in 
numerous vital organs, such as the brain and kidneys.61 These 

Figure 1. The schematic differentiation of immune response elicited by intranasal vaccine to intramuscular vaccine which is substantially efficient in reduction of the 
viral shedding as in case of intramuscular vaccination the shedding of viral particles is comparatively higher and possess the greater risks of transmission. the generation 
of secretory IgA in upper respiratory tract along with generation of IgG and effector T cells has been linked with the efficient and robust immune response against SARS- 
CoV-2. the robust mucosal immune response elicited by in vaccine lead to reduced spread of viral particles. Abbreviations: DC, dendritic cells; NALT, nasal-associated 
lymphoid tissues; BALT, Bronchus-associated lymphoid tissue; Ig., Immunoglobulin; Th, T helper cells. the figure was designed by Biorender.Com program (https:// 
biorender.com/, accessed on 15 August 2021).
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findings imply that nasal vaccination could be a viable method 
for eliciting a robust immune response.9,61 Furthermore, the 
SARS-CoV-2 nucleocapsid (N) protein has been recom
mended as a viable vaccine target. Mice injected with 
N protein had a significant number of T cells as well as an 
antibody-mediated immunological response. The majority of 
vaccination methods have concentrated on inducing 
a considerable B cell driven immune response; however, it is 
critical to discover the T cell responses generated by SARS- 
CoV-2 N protein. In this regard, IN vaccination has been 
proposed to elicit a protective T cell-mediated immune 
response, which is generally minimal when immunized with 
SARS-CoV N protein intradermally. In BALB/c mice immu
nized intranasally with recombinant adenovirus type-5 expres
sing SARS-CoV-2 N protein, a significant amount of T cell 
mediated immune response was reported in the lungs. 
Moreover, a substantial amount of CD4 T cells mediated 
immune response was recorded in the spleen, which was linked 
with enhanced antibody-mediated immune response. These 
findings lend credence to the idea that the IN vaccines are 
efficient and reliable in inducing the immune response.39

In addition, whereas most vaccination techniques have con
centrated on systemic immunization, the preventive effect of 
two adjuvanted subunit vaccines, including an IM-primed 
/boosted vaccine and an IM-primed/IN-boosted mucosal vac
cine, was examined. The IM vaccination with alum caused 
a strong antibody-mediated immune response, while the IN 
vaccine with nanoparticles such as IL-15 and TLR agonists 
generated lower T cell and antibody responses, yet greater 
dimeric IgA and IFN-alpha production. Nonetheless, upon 
SARS-CoV-2 exposure, no subject had detectable sub- 
genomic RNA in the upper or lower respiratory system, prov
ing adequate immunity against viral infection. In all instances, 
both vaccinations have been shown to protect against respira
tory SARS-CoV-2 exposure.46

Designing a molecular vaccine based on nanotechnology 
advancements has been proposed by utilizing nanoconjugate 
containing inorganic nanoparticle layered double hydroxide 
intercalated with shRNA-plasmid possessing a sequence target
ing viral genome or viral mRNA. This vaccine could be used as 
a nasal spray for delivering shRNA-plasmid to the target site, 
having the advantages of being biocompatible, facilitating 
stable knockdown to the target cells, and considered stable in 
the nasal mucosa.62

In collaboration with Codagenix (United States), the Serum 
Institute of India has initiated manufacturing COVI-VAC as 
a live-attenuated intranasal COVID-19 vaccine that is presently 
undergoing Phase 1 clinical trial (NCT04619628) with regard to 
safety and immunogenicity against SARS-CoV-2.63,64 Bharat 
Biotech has also initiated the phase 1 trial (NCT04751682) of 
single-dose IN vaccine in India (BBV154, replication-deficient 
adenovirus vectored vaccine) against COVID-19.65,66

In several recent studies, the IN route of vaccination has 
been an efficient way to decrease viral shedding while generat
ing a significant immune response.67,68 Hassan et al. reported 
that IM injections of ChAd-SARS-CoV-2-S stimulate vigorous 
humoral and cell-mediated immunity and helps in providing 
protection against lung infection and inflammation but do not 
render sterilizing immunity, as indicated by viral RNA 

detection and activation of anti-nucleoprotein antibodies 
upon SARS-CoV-2 infection. On the other hand, in both 
upper and lower respiratory tracts, a single IN dosage of ChAd- 
SARS-CoV-2-S generated large amounts of neutralizing anti
bodies, enhanced systemic and mucosal immunoglobulin 
A (IgA) and T cell responses, and nearly provided complete 
prevention from SARS-CoV-2 infection.68 The same research 
group recently released a follow-up study in which Rhesus 
macaques were inoculated with ChAd-control or ChAd-SARS- 
CoV-2-S and then challenged with SARS-CoV-2 through 
a combination of intranasal and intrabronchial methods one 
month later. After the SARS-CoV-2 infection, a single IN 
dosage of ChAd-SARS-CoV-2-S generated neutralizing anti
bodies and T cell immunity and limited or prevented viral 
infection in the upper and lower respiratory tracts. Because 
ChAd-SARS-CoV-2-S protects nonhuman primates against 
SARS-CoV-2 infection and transmission, it is a good option 
for minimizing SARS-CoV-2 infections and transmission in 
people.69 In another study, employing a SARS-CoV-2 virus 
with D614 G mutation in its S protein, the intranasally deliv
ered ChAdOx1 nCoV-19 was found to lower virus dissemina
tion as observed by a reduction in viral shedding. In both 
a direct challenge and a transmission scenario, the viral load 
in nasal swabs of vaccinated hamsters was observed to be much 
lower than controls. Any viral RNA or infectious virus was not 
identified in lung tissues. Intranasal immunization of rhesus 
macaques lowered the viral load in bronchoalveolar lavage and 
lower respiratory tract tissues, and decreased viral shedding. 
The IN vaccination decreased viral shedding as observed in two 
separate SARS-CoV-2 animal models, indicating that it should 
be investigated further as a possible immunization route for 
COVID-19 vaccines.67

For COVID-19 vaccination, a recombinant type 5 adeno
virus vector carrying gene for the SARS-CoV-2 S1 subunit 
antigen (Ad5.SARS-CoV-2-S1) was utilized to immunize 
mice through the IN route. A single Ad5.SARS-CoV-2-S1 
vaccination delivered by IN route elicited potent antibody 
and cellular immune responses. Considerable levels of S1- 
specific immunoglobulins (IgGs), including IgG1 and IgG2a 
endpoint titers, were seen after two weeks of vaccination, and 
the antibodies produced were long-lasting. In comparison to 
unvaccinated control groups, Ad5.SARS-CoV-2-S1 injection 
resulted in S1-specific B cells as well as antigen-specific T cell 
responses. The IN administration has been shown to be 
a potential method for triggering cellular immune responses.70

The potential of nanoparticles (NPs) synthesized with inulin 
acetate (InAc) (InAc-NPs) as an IN-vaccine delivery strategy to 
produce both mucosal and systemic immunity has been 
reported. Compared to PLGA (Poly lactic-co-glycolic acid)- 
NPs as a delivery strategy, IN vaccination with antigen-loaded 
InAc-NPs resulted in 65-fold and 19-fold greater serum IgG1 
and IgG2a titers, respectively. InAc-NPs also enhanced the pro
duction of sIgA at numerous mucosal locations, including nasal- 
associated lymphoid tissues (NALTs), the lungs, and the colon, 
resulting in a significant memory response suggestive of both 
humoral and cellular immune system activation. Studies with 
InAc-NPs provided the groundwork for a prospective IN deliv
ery strategy for mucosal immunization by simultaneously acti
vating both systemic and mucosal immunity.71
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In a recent study, N, N, N-trimethyl chitosan nanoparticles 
(TMC NPs) were incorporated with RBD (receptor-binding 
domain) of SARS-CoV-2 S-protein and tested for their ability 
to induce an immune response when administered through 
the intranasal route. The presence of IgG and IgA responses 
in BALT (Bronchus-associated lymphoid tissue) and the 
lungs of vaccinated mice demonstrated that intranasal admin
istration of RBD-TMC NPs to mice generated significant local 
mucosal immunity. In addition, rodents given this immuno
gen substrate intranasally produced a robust systemic anti
body mediated immune response, comprising serum IgG, 
IgG1, IgG2a, IgA, and neutralizing antibodies. Furthermore, 
compared to animals given soluble RBD immunogen, these 
immunized mice showed considerably more significant num
bers of activated splenic CD4+ and CD8+ cells. Such data, 
taken together, point to an alternate vaccination pathway that 
closely resembles the natural path of SARS-CoV-2 infection. 
Not only did this mode of delivery activates local mucosal 
responses, but it also activated the immune system’s systemic 
component.72

Immune responses generated by mucosal homologous plas
mid and a heterologous vaccination method, combining 
a plasmid vaccine and a Modified Vaccinia Ankara (MVA) 
expressing SARS-CoV-2 S and N antigens, revealed that only 
the heterologous IN vaccination technique resulted in neutra
lizing antibodies against SARS-CoV-2 in mice’s serum. 
Neutralizing antibodies against SARS-CoV-2 were also 
reported in the bronchoalveolar lavage of mice which sug
gested significant levels of efficiency and reliability of this 
vaccination as compared to IM vaccination. In the lungs and 
spleens of immunized mice, the same prime/boost method 
resulted in the production of type 1 and type 17 T cell 
responses and polyfunctional T cells producing various type 1 
cytokines (e.g., IFN-alpha, TNF, IL-2). The plasmid homolo
gous vaccination method, on the other hand, resulted in the 
production of local mono and polyfunctional T cells that 
secrete IFN-gamma. The findings of this investigation suggest 
that QAC-nano vaccines and intranasal immunization can 
generate significant mucosal immune responses toward 
respiratory coronaviruses.73

Potential advantages of intranasal COVID-19 vaccines 
over the intramuscular vaccines

Several of the experiments described above have demonstrated 
the efficacy of IN immunization and attracted scientists’ curi
osity in learning more about the potential of intranasal vacci
nations against COVID-19. In this regard, various research 
groups have emphasized certain benefits of intranasal vaccina
tions over intramuscular immunization.34,67,68,74 

● A single dose of an effective SARS-CoV-2 vaccine candi
date via IN route may induce the substantial amount of 
neutralizing antibodies, boosts mucosal IgA and T cell 
responses, and almost completely protects viral infection 
in both the upper and lower respiratory tracts (Figure 1).

● Intranasal immunization can be an effective approach to 
minimize viral shedding and spread, which might be 
advantageous over IM vaccines.

● The viral load in the upper and lower respiratory tract 
tissues can be reduced by IN immunization.

● Nasal vaccinations are appealing as an alternative to 
injectable vaccinations since they may allow for a lower 
dosage than IM administration.

● The IN vaccine can be administered at the appropriate 
region, such as nasal-associated lymphoid tissues 
(NALT), to induce a substantial amount of mucosal 
immunity.

● Owing to ease of administration, nasal vaccinations may 
not always need to be given by a health-care professional.

● It is indeed a better option for infants who do not like 
injections in nature. Additionally, nasal vaccinations may 
be administered using simple devices, which eliminates 
the requirement for sterilized settings during vaccination, 
which is particularly beneficial for immunization pro
grams in developing nations.

● Dry powder nasal vaccines have been created, which may 
allow the easy storage and transportation of the vaccines. 
In addition, IN vaccinations permit self-administration 
and may be manufactured to persist at room temperature, 
easing transportation and storage procedures. This 
approach can be highly advantageous in developing 
countries such as India. However, the preliminary studies 
are yet to be approved in the coming time.

The potential strengths associated with the use of an IN vaccine 
to boost a subject previously immunized systemically with IM 
vaccines include induction of a robust immune response in terms 
of significant protective humoral and cellular immunity, activa
tion of mucosal immunity (IgA production) in both the upper and 
lower respiratory tracts, which could inhibit viral multiplication 
and decrease virus shedding via nasal mucosa that acts as the first- 
line barrier to the virus entrance before dissemination into the 
lungs, thus preventing the transmission and spread of SARS-CoV 
-2 as well as to attain herd immunity in the population. The early 
restriction of viral replication in the nasal mucosa and clearance of 
SARS-CoV-2 infection via robust protective immunity including 
mucosal immune responses reflects the potency of intranasal 
COVID-19 vaccines in the mitigation of the rising cases of virus 
reinfection during the pandemic.75–77

Challenges in developing COVID-19 intranasal 
vaccines

Determining immunization platforms, the number of doses 
required, route of delivery, and time to acquire maximal pro
tection have been discussed in recent conversations on vacci
nation tactics against SARS-CoV-2. The VSV-SARS2-EBOV 
vaccine, fast-acting vesicular stomatitis virus-based vaccine 
produced from licensed Ebola virus (EBOV) vaccine that 
expresses SARS-CoV-2 S protein and the EBOV glycoprotein, 
when given in a single dose via IM route to rhesus macaques, 
showed protection over ten days with no symptoms of 
COVID-19 pneumonia. It’s IN immunization resulted in 
reduced immunogenicity and increased COVID-19 pneumo
nia as compared to control animals. While both the IM and IN 
vaccination resulted in the induction of neutralizing antibody 
titers, only the IM vaccine elicited a strong cellular 
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immunological response. These findings were corroborated 
with RNA sequencing data, indicating strong activation of 
innate and adaptive immune transcriptional markers in the 
lungs of only IM-vaccinated animals. Such findings show that 
injecting VSV-SARS2-EBOV into the bloodstream provides 
fast protection.78 These findings, however, contradict with 
those of other researchers suggesting the potentialities of IN 
vaccines.

Moreover, there is scarcity of concrete evidences about the 
effectiveness of IN vaccines, however preliminary data has 
shown that the IN immunization can protect the host from 
illness. The effectiveness of an IN vaccination may be influ
enced by the dose or vaccine platform used. Nasal immuniza
tion, on the other hand, could be a successful route to acquire 
herd immunity in the vast majority of the population since it 
can offer sterilizing immunity, blocking interhuman 
transmission.79 While clinical trials of various intranasal vac
cines are now underway, including AdCOVID (Altimmune, 
Gaitersburg, USA), further research is needed to establish the 
best effective vaccination method.80 Furthermore, elaborative 
studies should discover the most efficient routes of vaccine 
administration based on the different vaccine platforms being 
potentially explored, as well as the processes that underpin the 
efficacy of various delivery routes.81 In addition to the debata
ble efficacy of IN vaccines, there are a number of challenges 
and shortcomings that must be addressed. These are described 
below:

● Recently, the inability of IN vaccine to induce effective 
and long-lasting immunity has been considered a serious 
concern; this might lead to the waning of protection 
rapidly. This has been associated with the sticky mucus 
in the respiratory system, which acts as a barrier for 
pathogens that may obstruct vaccine accessibility and 
immune activation, resulting in low immunogenicity 
and rapid loss of protective immunity.82

● IN vaccines may be created using a variety of platforms, 
including viral vectors and protein subunit vaccinations. 
The safety of IN vaccines is a critical factor to consider. 
Whole pathogen-based vaccinations have raised some 
concerns due to the likelihood of reverting to 
a replicating form.82,83 This condition has also been 
found with the oral polio vaccination; however, it is 
quite unusual. The safety of live attenuated vaccines 
must be proven over a lengthy period of time. Berna 
Biotech, a Swiss firm, canceled an intranasal flu vaccina
tion because it was related to a greater incidence of Bell’s 
palsy.82,84

● Despite the fact that IN vaccines can induce both IgA and 
IgG antibodies in the upper and lower respiratory tract 
and provide a substantial amount of humoral immune 
response. However, it is to be considered that some IN 
vaccines are not effective in generating IgG antibodies in 
the lower respiratory tract,82 which can lead to the 
reduced protectiveness of IN vaccines.

● Moreover, the likelihood of retrograde transport to the 
brain via olfactory nerves, which has been reported pre
viously in live attenuated adenovirus, is a serious concern 
associated with IN vaccines.83,85,86

● Adjuvants, on the other hand, are critical for significant 
immune responses, particularly with protein subunit vac
cines. However, because of their immunomodulatory 
qualities, adjuvants might cause complications in terms 
of the safety of IN vaccines.83 In the following section, we 
will shed some light on the possible roles of adjuvants in 
the development of IN vaccine and any possible concerns 
associated with them.

Adjuvants in the development of intranasal vaccines 
against COVID-19

The inclusion of immunostimulatory adjuvants to vaccines 
may be required to enhance the immune reaction, particularly 
as an integral component in most of the inactivated and sub
unit vaccine formulations, vaccinations containing purified 
protein- or antigen-based vaccines, including component or 
recombinant vaccines. As vaccine components, adjuvants acti
vate the innate immune system- and trigger-specific adaptive 
immune responses, and enhance the magnitude, breadth, and 
durability of the immune response.87–89 Alum, chitosan, and 
bacterial toxins like cholera toxin (CT), as well as inactivated 
viral envelopes like recombinant adenoviruses, liposomes, 
cytokines, CpG oligodeoxynucleotides, Toll-like receptor-4 
(TLR) agonists, nanoparticles, and others have been utilized 
as potential adjuvants for the mucosal vaccines including IN 
vaccines.90–94 After the use of bacterial toxins in nasal vaccina
tions, certain adverse consequences have been recorded.95 

Moreover, allergic reactions have been reported in the subjects 
administered with a registered IN vaccine, namely tetravalent 
cold-adapted live-attenuated influenza vaccine (LAIV). The 
allergic reactions have been correlated with the utilization of 
eggs in LAIV vaccine production process, which causes pro
blems in asthma patients.96 Various scientific advances in 
gaining knowledge about innate immunity and systems vacci
nology are paving ways to design and develop different kinds of 
novel adjuvants, including molecular adjuvants for use in vac
cines against infectious diseases, challenging pathogens includ
ing coronaviruses, tackling COVID-19, and future 
pandemics.88,89,94,97–102 Incorporation of effective adjuvants 
in IN vaccines would enhance the protective immune 
responses of these vaccines and aid in fighting COVID-19 in 
a better way. SARS-CoV-2 virus has been reported to enter the 
brain by a transneural pathway into the olfactory epithelium 
(where ACE2 is expressed) and then spreads.103 It is yet not 
established that the recombinant vectors harboring the 
S-protein-producing gene are able to penetrate the olfactory 
region and cause significant side effects. Adenovirus has been 
used to transfer medications from the nose to the brain, 
although it has not been proven that the adenovirus directly 
penetrated the brain, just like medicine action mechanisms.104 

Nanoparticles (NPs) entering the olfactory tissues through 
tight junctions must be less than 20 nm, but particles entering 
via the transcellular pathway into olfactory tissue cells or olfac
tory neuron cells need to ideally be less than 100 nm.105,106 

Many NPs used for COVID-19 intranasal vaccines have 
a diameter of around 90 nm, and it is critical to remember 
that the endocytosis process is also influenced by particle 
features such as charge and surface attributes as well as particle 
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size. Additionally, there is a difference between SARS-CoV-2 
virus particles that enter the nasal cavity by normal inhalation 
and vaccines’ particles injected with greater power into the 
cavity. As a result, unless a sophisticated nasal delivery system 
is utilized, a nasal spray reaching the olfactory area at the top of 
the nasal cavity is exceedingly difficult. Hence, it’s hard to 
ascertain whether immunization carriers will penetrate the 
olfactory tissues or whether any harmful occurrences will 
appear as a result of this entry. Toxicological findings will be 
required in accordance with standard regulatory requirements 
prior to the nasal SARS-CoV-2 vaccines are approved for 
vaccination purposes.34

Conclusion and future prospects

Almost all available vaccines against COVID-19 are delivered 
by IM administrations. IM injected vaccines are primarily 
intended to generate both antibody mediated and T cell 
mediated immune responses. These IM vaccines have shown 
high levels of effectiveness by eliciting a significant amount of 
immune response. Still, it has been found that these vaccines 
are inefficient in stimulating IgA secretion in mucosal cells, 
which may not be efficient in controlling the shedding of viral 
particles in the upper respiratory tract. Preclinical results in 
numerous animal models have demonstrated the promising 
potentials of IN COVID-19 vaccination, which can induce 
a significant amount of protective humoral antibody immune 
response, cellular immunity (T cell mediated) as well as muco
sal immune response (IgA production) in the respiratory tract, 
and can prevent or reduce viral multiplication, viral particle 
shedding, and transmission. A range of IN vaccines have been 
generated by clinical investigations in mouse models and rhe
sus macaques, which have demonstrated activation of the 
mucosal immunity (sIgA) in both the upper and lower respira
tory tracts along with a significant degree of humoral and cell 
mediated immune responses that can inhibit viral reproduc
tion and transmission/spread. The intranasal vaccine is an 
exciting method for preventing COVID-19 since the nasal 
mucosa provides the first-line barrier to SARS-CoV-2 entrance 
before dissemination into the lungs. Hence, developing effec
tive and reliable intranasal vaccines is crucial at this time.

There is no doubt that IN vaccines have their own set of 
potential advantages over the IM vaccine. However, the short
comings associated with them cannot be ignored. The overall 
immunostimulatory effectiveness of a vaccine is determined by 
the immunization type chosen, functional ingredients such as 
vaccine adjuvants, and vaccine carriers such as NPs (nanoparti
cles), surface-modified NPs, and virus-like particles. Large-scale 
production, in-process quality control, and satisfying regulatory 
standards are all challenges in manufacturing the IN vaccine at 
the commercial level. Hopefully, the availability of intranasal 
vaccines may be made feasible in the coming future after further 
evaluation of such vaccines being developed with large-scale 
clinical studies and trials to incorporate them in worldwide 
vaccination programs. According to current statistics, more 
than 10 pharmaceutical companies are developing intranasal 
vaccinations, with five of them having reached the early phases 
of clinical trials. Nonetheless, we believe that an intranasal 
COVID-19 immunization may be available soon. Moreover, in 

our opinion, the second generation IN vaccines could signifi
cantly increase the capacity of several developing countries to 
restrain the deleterious consequences of COVID-19, where 
immunization is still a significant concern for the government.
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