Skip to main content
. Author manuscript; available in PMC: 2023 Feb 21.
Published in final edited form as: Phys Med Biol. 2022 Feb 21;67(5):10.1088/1361-6560/ac5297. doi: 10.1088/1361-6560/ac5297

Table 1:

VGG-16 Architecture. For this study, block 6 is removed and features are extracted after the final max pooling layer.

Block Layer Size Filter Size

1 Convolution-1 224×224×64 3×3
Convolution-2 224×224×64 3×3
Max pooling 112×112×64 -

2 Convolution-1 112×112×128 3×3
Convolution-2 112×112×128 3×3
Max pooling 56×56×128 -

3 Convolution-1 56×56×256 3×3
Convolution-2 56×56×256 3×3
Convolution-3 56×56×256 3×3
Max pooling 28×28×256 -

4 Convolution-1 28×28×512 3×3
Convolution-2 28×28×512 3×3
Convolution-3 28×28×512 3×3
Max pooling 14×14×512 -

5 Convolution-1 14×14×512 3×3
Convolution-2 14×14×512 3×3
Convolution-3 14×14×512 3×3
Max pooling 7×7×512 -

6 Flatten 25,088
Dense 4,096
Dense 4,096
Dense 1,000