Table 3:
Learning Model | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
SVM1 | 0.596±0.032 | 0.566±0.033 | 0.385±0.055 | 0.735±0.044 |
SVM2-Stacked | 0.717±0.022 | 0.659±0.030 | 0.565±0.052 | 0.747±0.037 |
SVM3-Stacked | 0.734±0.017 | 0.676±0.041 | 0.585±0.058 | 0.761±0.032 |
SVM2-Pseudo | 0.750±0.043 | 0.699±0.036 | 0.665±0.064 | 0.731±0.028 |
SVM3-Pseudo | 0.756±0.042 | 0.704±0.035 | 0.676±0.061 | 0.731±0.028 |