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Abstract 

Background:  The progression of Biliary Atresia (BA) is associated with the number of reactive ductular cells (RDCs) 
whose heterogeneity in origin and evolution in humans remains unknown. SOX9-positive liver progenitor-like cells 
(LPLCs) have been shown to participate in RDCs and new hepatocyte formation during cholestatic liver regeneration 
in an animal model, which implies the possibility that hepatocyte-reprogrammed LPLCs could be a source of RDCs in 
BA. The present study aimed to elucidate the characteristics of SOX9-positive LPLCs in BA for exploring new possible 
therapeutic targets by manipulating the bi-differentiation process of LPLCs to prevent disease progression.

Methods:  Twenty-eight patients, including 24 patients with BA and 4 patients with Congenital Choledochal Cyst as 
the control group, were retrospectively recruited. Liver biopsy samples were classified histologically using a 4-point 
scale based on fibrosis severity. LPLCs were detected by SOX9 and HNF4A double positive staining. Single immuno-
histochemistry, double immunohistochemistry, and multiple immunofluorescence staining were used to determine 
the different cell types and characteristics of LPLCs.

Results:  The prognostic predictors of BA, namely total bile acid (TBA), RDCs, and fibrosis, were correlated to the 
emergence of LPLCs. SOX9 and HNF4A double-positive LPLCs co-stained rarely with relevant markers of portal hepatic 
progenitor cells (portal-HPCs), including CK19, CK7, EPCAM, PROM1 (CD133), TROP2, and AFP. Under cholestasis 
conditions, LPLCs acquired superior proliferation and anti-senescence ability among hepatocytes. Moreover, LPLCs 
arranged as a pseudo-rosette structure appeared from the periportal parenchyma to the portal region, which implied 
the differentiation from hepatocyte-reprogrammed LPLCs to RDCs with the progression of cholestasis.

Conclusions:  LPLCs are associated with disease progression and prognostic factors of BA. The bipotent characteris-
tics of LPLCs are different from those of portal-HPCs. As cholestasis progresses, LPLCs appear to gain superior prolifera-
tion and anti-senescence ability and continually differentiate to RDCs.
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Introduction
Biliary atresia (BA) is a typical obstructive chronic choles-
tatic liver disease that has been the most common indica-
tor for pediatric liver transplantation for several decades 
[1–3]. Diverse reactive ductular cells (RDCs) accompany-
ing the cholestatic progression of BA are associated with 
the development of liver fibrosis and decreased native 
liver survival [4–6]. Though RDCs have been considered 
to participate in liver regeneration in animals [7–12], the 
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heterogeneity underlying either the origin or evolution of 
RDCs in humans remains unknown.

Because RDCs are morphologically diverse, histo-
pathologists speculate that RDCs could originate from 
many cell sources under certain conditions of injury 
[13–16]. Typical RDCs that are confined to the hepatic 
portal region with an intact arrangement of the lumen 
show positive staining for cholangiocyte and hepatic 
progenitor cell markers such as cytokeratin-19 (CK19), 
cytokeratin-7 (CK7), epithelial cell adhesion molecule 
(EPCAM), and sex-determining region Y-box 9 (SOX9). 
In contrast, atypical RDCs present discrete distribution 
with poorly defined lumen in parenchyma and co-stain 
with the hepatocyte markers albumin (ALB) and hepato-
cyte nuclear factor 4 alpha (HNF4A). Additionally, flat-
tened cylinders of atypical RDCs are quite similar to 
hepatic muralia under three-dimensional anatomy obser-
vation [17]. These hepatobiliary bi-phenotypical atypical 
RDCs suggest the possibility of bipotent hepatic progeni-
tor cells (HPCs) as their origin [18, 19]. Subsequent his-
tological and animal lineage tracing studies indicated the 
bipotent status of the cells, which were the portal hepatic 
progenitor cells (portal-HPCs) derived from the Canal 
of Hering [19] and liver progenitor-like cells (LPLCs) 
derived from mature hepatocyte reprogramming [20, 21]. 
However, because the known HPC markers such as CK7, 
EPCAM, and SOX9 mostly overlap with markers of chol-
angiocytes, conventional single antibody staining using 
either of these antibodies cannot precisely differentiate 
these bipotent cells in human specimens [11, 22]. Thus, 
the relationship between portal-HPCs or LPLCs and 
patients’ prognosis predictors including atypical RDCs in 
BA needs further confirmation.

Oval cells as the most representative portal-HPCs that 
positively stain for the hepatoblast marker α-fetoprotein 
(AFP) were thought to differentiate into functional hepat-
ocytes in hepatoxic rats [23, 24] and were found to be 
associated with the severity of some diseases in humans 
[25, 26]. Nonetheless, recent lineage tracing studies in 
mice have shown a limited contribution of oval cells to 
hepatocyte regeneration during the cholestatic condition 
[27–30]. On the other hand, SOX9-positive LPLCs sub-
tly participated in new hepatocyte formation in chronic 
liver injury models [20, 21, 31]. LPLCs were found to be 
activated more frequently in the cholestatic injury model 
(DDC, BDL) than in the hepatocyte injury (CCl4, TAA) 
or hepatectomy model [21, 32–34]. During chronic 
cholestatic liver injury, hepatocytes resisted the envi-
ronment by reprogramming to LPLC status within the 
periportal region and continued their differentiation into 
RDCs. As the injury subsided, LPLCs differentiated back 
to compensate for new hepatocytes. Moreover, those 
RDCs derived from LPLCs were proved to be functional 

and sustained after the cholestatic injury was reversed 
in a cholestatic disease Alagille syndrome mimic mice 
model [35], which is in accordance with trans-differen-
tiation. Because lineage tracing techniques cannot be 
performed in humans, these cholestasis resistance prop-
erties of LPLCs and their contribution to liver regenera-
tion in human cholestatic liver disease remain unknown.

In the present study, we determined that LPLCs were 
associated with disease progression and prognostic fac-
tors of BA. By evaluating the bipotent identity of LPLCs, 
our study elucidated the cholestasis resistance char-
acteristics of LPLCs in BA, which could be the mecha-
nism for the emergence of atypical RDCs. In future, 
interrupting hepatocyte reprogramming to LPLCs or 
the differentiation of LPLCs to RDCs may be a novel 
therapeutic approach to prevent disease progression in 
BA. Our study lays the foundation for this theory, which 
sheds new light on the treatment of BA.

Materials and methods
Human specimen collection
A total of 28 patients from Children’s Hospital of Fudan 
University, National Children’s Medical Center, Shang-
hai, China, were retrospectively analyzed. Eighteen liver 
biopsy samples were obtained from patients with extra-
hepatic BA during Kasai portoenterostomy (median age 
1.9 ± 0.7  months, range 0–4  months). Another six liver 
biopsy samples were collected from patients with BA at 
the time of liver transplantation without previous Kasai 
portoenterostomy (median age 5.8 ± 1.1  months, range 
4–7  months). For the control group, four liver biopsy 
samples obtained during the radical surgery of Congeni-
tal Choledochal Cyst in children aged 1 to 8 years were 
studied.

Histopathological analysis
Liver fibrosis was assessed based on the modified Ishak 
staging system [36], which classifies liver fibrosis on 
a four-point scale with stage 4 being defined as cirrho-
sis. Histopathological slides were examined in a blinded 
and nonsequential manner and were re-evaluated by the 
same pathologist in this study.

Immunohistochemistry and immunofluorescence analysis
The specimens were fixed with 4% paraformaldehyde 
(PFA) and embedded in paraffin after tissue processing. 
Standard hematoxylin and eosin staining was performed. 
The following primary antibodies were used in immu-
nohistochemical staining: anti-CK19 (1:100; Gene Tech, 
Chengdu, China), anti-SOX9 (1:1000; Millipore), anti-
HNF4A (1:400; Santa Cruz), anti-HepPar1 (1:10; Santa 
Cruz), anti-PKCζ (1:100; Santa Cruz), and anti-MRP2 
(1:200; Gene Tech).
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Single immunohistochemical staining was per-
formed using the Elite ABC kit (Vector Laborato-
ries). After deparaffinization, rehydration, and antigen 
retrieval, 2-µm-thick sections were blocked with 10% 
normal donkey serum for 1 h at room temperature and 
stained with primary antibodies. Biotinylated anti-
rabbit (Vector Laboratories) and anti-mouse (Vec-
tor Laboratories) antibodies were used as secondary 
antibodies according to the manufacturer’s protocol. 
Biphenyl-3,3′,4,4′-tetrayltetraammonium tetrachlo-
ride (Dako) was used as a chromogen according to the 
manufacturer’s protocol. Double immunohistochemi-
cal staining was performed using the ImmPRESS Duet 
Double Staining Polymer Kit (HRP Anti-Rabbit IgG/
AP Anti-Mouse IgG) (Vector Laboratories). Sections 
were pretreated in the same manner as that for single 
immunohistochemical staining as described above. 
After blocking, the sections were incubated with pri-
mary antibodies overnight, and the process was fol-
lowed according to the manufacturer’s instructions.

For immunofluorescence analysis, the Opal™ 4-Color 
Manual IHC Kit (PerkinElmer) was used according to 
the manufacturer’s protocol. The following additional 
primary antibodies were used: anti-Ki67 (1:1000; 
Leica Biosystems), anti-CK7 (1:200; Abcam), anti-
AFP (1:300; Dako), anti-CD133 (1:700; Cell Signaling), 
anti-p21 (1:1000; Abcam), and anti-PanCK (1:100; 
Abcam). All slides were incubated with primary anti-
body overnight, which was diluted with 10% normal 
donkey serum after 1-h serum blocking. After DAPI 
(4′,6-diamidino-2-phenylindole) staining, images were 
acquired using an Olympus BX51 microscope.

Statistical analysis
Statistical analysis was performed using SPSS (Statisti-
cal Package for Social Sciences) software version 26.0. 
For the quantification of sections, four or more random 
periportal fields of each liver sample, unless otherwise 
specified, were imaged and then quantified using ImageJ 
software. Independent Kruskal–Wallis test was used to 
determine significant differences between the groups. 
Spearman’s correlation coefficient was used for the analy-
sis of correlation. All data are presented as mean ± SEM. 
Differences were considered to be significant at P < 0.05. 
All experiments were performed with at least two techni-
cal replicates and repeated at least three times.

Results
LPLCs correlate with cholestatic progression in BA
In our study, hepatocytes, cholangiocytes, and LPLCs 
were marked with HNF4A + SOX9−, SOX9 + HNF4A−, 
and SOX9 + HNF4A+, respectively, following multiple 
immunofluorescence staining, and the cell count was 
estimated. RDCs were determined by immunohisto-
chemical staining for CK19 in which typical and atypical 
RDCs were counted separately. Liver functions assessed 
by direct total bilirubin (DBIL), alkaline phosphatase 
(ALP), gamma-glutamyl transferase (GGT), aspar-
tate aminotransferase (AST), alanine aminotransferase 
(ALT), and total bile acid (TBA) indices were significantly 
different between fibrosis severity (P < 0.05) (Table  1). 
The count of LPLCs and RDCs gradually increased as the 
disease progressed (Fig. 1A).

To elucidate the relationship between LPLCs and 
cholestatic progression in BA, we compared the number 
of LPLCs with factors associated with cholestasis, includ-
ing liver function, fibrosis stage, and emergence of RDCs. 
The serum level of TBA in patients with BA significantly 

Table 1  Comparison of patient characteristics between the fibrosis groups

For the BA sample, 18 specimens were obtained from the Kasai procedure, and 6 specimens were obtained from liver transplantation without Kasai surgery. Four 
Congenital Choledochal Cyst specimens were collected as controls

*P < 0.05

Variables CCC​ 
Fibrosis stage 0
n = 4

BA 
Fibrosis stage 1
n = 6

BA 
Fibrosis stage 2 + 3
n = 12

BA 
Fibrosis stage 4
n = 6

P value

Demographic data

Age, months 55 ± 28 1.4 ± 0.4 2.2 ± 0.7 5.8 ± 1.1

Male gender, % 0 (0) 3 (50) 3 (50) 2 (33.3)

Laboratory data

DBIL, µmol/L 3.2 ± 0.8 127.5 ± 37.3 128.8 ± 15.5 173.5 ± 66.6 0.005*

ALP, IU/L 228.5 ± 67.8 591.5 ± 189.6 721.6 ± 180.3 431.5 ± 124.9 0.02*

GGT, IU/L 98.2 ± 91.9 191.4 ± 105.4 440.0 ± 319.3 501.7 ± 471.3 0.033*

ALT, IU/L 42.6 ± 32.2 144.7 ± 97.7 155.1 ± 51.4 304.7 ± 137.2 0.003*

AST, IU/L 35.85 ± 15.3 190.5 ± 85.1 242.5 ± 82.5 502.7 ± 229.8 0.001*

TBA, µmol/L 4.5 ± 5.5 77.7 ± 6.9 137.1 ± 65.6 246.8 ± 106.4 0.000*
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correlated with LPLC formation (P < 0.05) (Fig.  1B), but 
not with other liver function indices. The progression of 
fibrosis also showed a positive correlation with LPLCs 
(P < 0.05) (Fig.  1C). Regarding the emergence of RDCs, 
atypical RDC significantly correlated with the number 
of LPLCs (P < 0.001), while no relationship was observed 
between LPLCs and typical RDC (Fig.  1D). However, 
atypical RDC showed inconsistent emergence in the 
cirrhosis stage, while typical RDC showed a significant 
increase (Fig.  1E). Taken together, these results suggest 
an association between LPLCs and cholestatic progres-
sion in the liver with BA.

Bipotent characteristics of LPLCs differ from those 
of portal‑HPCs
As previous studies have elucidated the bipotent traits of 
LPLCs from HPCs, we questioned whether these bipo-
tent cells belonged to the same cell clusters. To determine 
the identity of LPLCs, we performed multiple immuno-
fluorescence staining of LPLCs with portal-HPC-related 
markers used in previous human and rodent studies.

We first used an epithelial cell marker panCK to deter-
mine the epithelial features of LPLCs. As expected, panCK 
was expressed in hepatocytes, LPLCs, and cholangiocytes, 

but a stronger expression was observed in SOX9-positive 
cells (Fig. 2A). AFP as a hepatoblast marker is expressed 
during liver bud development, which normally shows 
a high level in a newborn’s liver and gradually decreases 
after 3–6 months of age. In our cohort, the age of all BA 
patients was under 6 months because of the difficulty in 
collecting specimens from older children. Therefore, the 
expression of physiological AFP might present overlap-
ping with some hepatocytes in our patients. Indeed, our 
data showed that AFP co-stains with some hepatocytes 
alone in children within 6 months of age. However, AFP 
did not co-stain with LPLCs (Fig. 2B). The hepatic progen-
itor markers EPCAM seems to increasingly overlap with 
LPLCs as cholestasis progresses, especially in the adjacent 
central vein (Fig. 2C). Another hepatic progenitor mark-
ers PROM1 (CD133) showed low co-staining with LPLCs 
in our cohort (< 1%) (Fig. 2D). TROP2, a recently reported 
liver progenitor marker found in the scRNA-seq of the 
normal human liver [37, 38], also rarely overlapped with 
LPLCs (< 1%) (Fig.  2E). The most common markers that 
indicate RDCs, namely CK7 and CK19, rarely co-stained 
with LPLC (< 1%) (Fig.  2F). Interestingly, although the 
above-mentioned HPC and RDC markers were mostly 
expressed in the portal and periportal regions, we found 

Fig. 1  Correlation of LPLCs with cholestatic progression in BA. A Histological staining of LPLCs and RDCs for the different fibrosis progression 
groups. B–D Correlation analyses showing a positive relationship between LPLCs and cholestatic-related factors for BA: B, TBA; C, fibrosis; and 
D, RDCs. E Correlation analyses showing a correlation between the fibrosis stage and different types of RDCs. Atypical RDCs were inconsistently 
observed in the cirrhosis stage
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Fig. 2  Bipotent characteristics of LPLCs differ from those of portal-HPCs. LPLCs co-stained with the relevant markers of portal-HPCs, including (A) 
epithelial cell marker (panCK), (B) hepatoblast marker (AFP), (C–E) hepatic progenitor markers (EPCAM, PROM1, and TROP2), and (F) RDCs markers 
(CK7 and CK19)
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that these markers can also be expressed in the adjacent 
central vein in two of our BA cases. In these cases, CK7 
and CK19 almost completely overlapped with TROP2 in 
the portal region and the adjacent central vein (Additional 
file 1: Figure S1A-B). However, SOX9 is widely expressed 
beyond the portal region, which resulted in only par-
tial overlap with TROP2 in the adjacent central vein but 
almost complete overlap with TROP2 in the portal region 
similar to CK7 and CK19 (Additional file 1: Figure S1C). 
In addition, co-staining of LPLC with portal-HPC and 
RDC markers was found mostly in these two cases. These 
zonation differences in the expression of HPC and RDC 
markers might further imply the heterogeneity of bipo-
tent cells during cholestatic injury. Taken together, these 
observations indicate that the bipotent characteristics 
between LPLCs and portal-HPCs might be different.

LPLCs exhibit superior proliferation and anti‑senescence 
abilities as compared to SOX9‑negative hepatocytes 
as cholestasis progressed
For better understanding of the unique characteristics of 
LPLCs during cholestatic injury, the proliferation (Ki67) 
(Fig.  3A) and anti-senescence (p21) (Fig.  3B) abilities of 
LPLCs and hepatocytes were evaluated.

During fibrosis stages 0–3, SOX9-negative hepatocytes 
showed increasing Ki67 positivity from 0.61 to 3.73%, 
while their Ki67 positive staining decreased to 0.94% 
in the cirrhosis stage. In contrast, the Ki67 positivity of 
LPLCs showed less fluctuation with the progression in 
cholestasis and was less than 0.2% in all fibrosis stages 
(Fig. 3C). However, the Ki67 positivity of the LPLC clus-
ter gradually increased and reached 1.15% in the cirrhosis 
stage, which was higher than that of the SOX9-negative 
hepatocyte cluster (1.09%) (Fig. 3D).

The anti-senescence ability of SOX9-negative hepato-
cytes, as determined by p21 staining, increased to 10.68% 
in the initial stage of cholestasis (fibrosis stage1) and then 
gradually decreased as cholestasis progressed. In the cir-
rhosis stage (fibrosis stage 4), the p21 positivity of SOX9-
negative hepatocytes was almost at the same level as that 
of LPLCs, i.e., 0.94% and 0.74%, respectively (Fig.  3E). 
Although the p21 positivity of LPLCs in each fibrosis 
stage was less than 0.2%, a prominent increase in the p21 
staining of the LPLC cluster in fibrosis stage 4 might indi-
cate that LPLCs undergo some changes in the cholestatic 
cirrhosis stage (Fig. 3F).

These data preliminarily show the superior prolifera-
tion and anti-senescence characteristics of LPLCs dur-
ing cholestasis, although the proportion of LPLCs among 
overall hepatocytes was much less, resulting in no signifi-
cant differences between the different fibrosis groups.

LPLCs transform into RDCs within the periportal region 
during cholestasis progression
To investigate the cell plasticity of LPLCs during 
cholestasis progression, double immunohistochemi-
cal staining was performed for better morphological 
observation in our study. As both HNF4A and SOX9 
are expressed in the nucleus, other markers that are 
specifically detected in the cytoplasm and apical mem-
brane of hepatocytes (HepPar1 and MRP2) and the api-
cal side of bile ducts (PKCζ) [32] were used to co-stain 
with SOX9.

In our study, LPLCs stained by SOX9 and HNF4A 
double-positive staining histologically appeared as a 
pseudo-rosette formation in periportal parenchyma. A 
pseudo-rosette formation is observed in dilated canali-
culi surrounded with hepatocytes, and it is considered to 
be beneficial for draining excessive bile by forming new 
bile ductules adjacent in periportal parenchyma dur-
ing cholestatic injury [39]. To further investigate LPLCs 
with a pseudo-rosette formation, we co-stained SOX9 
with other hepatocyte markers, including HepPar1snd 
MRP2, as well as the bile duct marker PKCζ. The results 
showed SOX9 co-staining phenotype in the pseudo-
rosette formation (Fig. 4A). Thus, we found that the bipo-
tent phenotype of LPLCs partially overlapped with its 
pseudo-rosette formation characteristic.

Through histological observation from the fibrosis to 
cirrhosis stage, we also found that bi-phenotypical SOX9 
co-staining HepPar1 cells emerged from the parenchyma 
to the portal region. During fibrosis stages 1–3 (fibrosis 
stage), the pseudo-rosette formation in the parenchyma 
showed positive HepPar1 staining but had weak SOX9 
staining (Fig.  4B), while the formation showed higher 
SOX9 staining within the ductular-like structure when it 
appeared toward the boundary between the parenchyma 
and the portal region (Fig. 4C). In stage 4 fibrosis (cirrho-
sis stage), this SOX9 + HepPar1 + pseudo-rosette forma-
tion occurred inside the portal region and was lined with 
the ductular structure surrounded by collagen deposi-
tion (Fig. 4D). The change in the location of the SOX9-
positive bi-phenotypical pseudo-rosette formation might 
suggest the possible trans-differentiation from hepato-
cytes to RDCs through the bi-phenotypic LPLC status.

Discussion
In our present study, we clarified the correlation between 
LPLCs and disease progression of BA. Bipotent char-
acteristics of LPLCs differ from portal-HPCs. Regard-
ing cholestasis resistance characteristics, LPLCs present 
superior proliferation and anti-senescence ability and 
further differentiate into RDCs with the progression of 
cholestasis.
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There have been sporadic reports that the transcription 
factor SOX9 is associated with the prognostic factors of 
BA [40, 41]; however, the identity of these SOX9-pos-
itive cells was unclear. As we have mentioned earlier, 

SOX9 as one of the HPC markers has a certain degree 
of overlap with cholangiocyte markers. To better eluci-
date SOX9-positive LPLCs, multiple immunofluores-
cence staining was used to determine SOX9 and HNF4A 

Fig. 3  LPLCs exhibit superior proliferation and anti-senescence abilities as compared to SOX9-negative hepatocytes with the progression of 
cholestasis. Multiple immunofluorescence staining of LPLCs with (A) proliferation marker (Ki67) and (B) anti-senescence marker (p21). Overall 
percentage (C) and cell cluster percentage (D) of Ki67+ LPLCs and Ki67+ SOX9-negative hepatocytes in different fibrosis stages. Overall percentage 
(E) and cell cluster percentage (F) of p21+ LPLCs and p21+ SOX9-negative hepatocytes in different fibrosis stages
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double-positive LPLCs in our study. We previously 
indicated that BA-related prognosis predictors such as 
TBA, RDCs, and fibrosis [5, 6, 42] are associated with 
the emergence of LPLCs. LPLCs correlated with atypical 
RDC, which agrees with previous literature that LPLCs 
could be a possible source for atypical RDC [43–45]. The 
progression of fibrosis seems to correlate with the emer-
gence of LPLCs, while the number of active LPLCs was 
quite different in the six cirrhotic samples. We speculate 
that hepatocytes might undergo some irreversible dam-
age in the cirrhosis stage, resulting in the deactivation of 
LPLCs.

LPLCs defined as Sox9 + Hnf4a + cells were first pro-
posed as EpCAM- cells to highlight their hepatocyte lin-
eage in mice [46]. Likewise, we first determined SOX9 
and HNF4A double-positive cells and then co-stained 
them with other portal-HPC-associated markers. We 

found that LPLCs rarely show co-staining with the clas-
sic cholangiocyte and hepatic stem/progenitor markers 
CK19, CK7, TROP2, EpCAM, PROM1 (CD133), and 
AFP, even in cases of prominent emergence of LPLCs. 
TROP2-positive progenitor cells were selected from the 
EpCAM + population, which predicted its cholangio-
cyte lineage in human liver single-cell analysis [37, 38]. 
Among TROP2low/–, TROP2int, and TROP2high compart-
ments, the TROP2low/– cluster upregulated the hepato-
cyte markers [38]. Based on our data, TROP2 rarely 
co-stained with LPLCs but showed a similar emerging 
trajectory to the ductular markers CK7 and CK19, which 
is in accordance with the above scRNA-seq finding. The 
heterogeneity of bipotent characteristics implies that 
LPLCs differ from portal-HPCs.

To elucidate the possible resistance characteristics 
of LPLCs during cholestatic injury, we assumed that 

Fig. 4  LPLCs differentiated into RDCs in the periportal region with the progression of cholestasis. A Pseudo-rosette formation in the periportal 
parenchyma appears to have bipotent characteristics during cholestatic liver damage, which co-stains with the LPLC markers SOX9 and HNF4A and 
with other hepatocyte and cholangiocyte markers, namely HepPar1, MRP2, and PKCζ. Pseudo-rosette hepatocytes (HepPar1-positive) appeared 
(B) in the periportal parenchyma with weak SOX9 staining and (C) in the adjacent portal region with increasing SOX9 staining and ductular-like 
structure in the fibrosis stage and (D) occurred inside the portal region with SOX9-positive ductular structure in the cirrhosis stage



Page 9 of 11Lin et al. Stem Cell Research & Therapy          (2022) 13:114 	

SOX9-negative hepatocytes acquire superior prolifera-
tion and anti-senescence ability as they transform into 
SOX9-positive LPLCs. As expected, the Ki67 positivity of 
LPLCs increased gradually from the fibrosis stage to the 
cirrhosis stage, while the Ki67 co-staining was decreased 
in SOX9-negative hepatocytes in the cirrhosis stage. This 
finding suggests that SOX9-negative hepatocytes might 
not sustain its proliferation ability in a cirrhosis environ-
ment. p21 as a universal cell cycle inhibitor appeared to be 
more striking in our studies. p21 uniquely promotes G1 
cell cycle arrest when the p53/p21 G1 checkpoint is trig-
gered [47]. Thus, p21 is required for cellular response to 
stresses such as DNA damage and nutrient deprivation, 
which trigger the checkpoint and cause growth arrest. 
In our present study, p21 seemed to be activated in both 
SOX9-negative and SOX9-positive hepatocytes at the 
initial cholestatic progression stage in order to respond 
to cholestasis stress. As cholestasis became chronic, p21 
co-staining hepatocytes gradually decreased. Hence, we 
presumed that the cell cycle might reactivate during the 
ongoing cholestatic injury; this assumption requires fur-
ther studies for confirmation. Nevertheless, p21 co-stain-
ing SOX9-positive LPLCs emerged unexpectedly in the 
cirrhosis stage in their own cell cluster. The ability of p21 
to promote the emergence of RDCs and the development 
of cirrhosis has been indicated previously [48]. Numerous 
studies have also shown that p21 is associated with tum-
origenesis and metastasis of various cancers, including 
brain, lung, and colon cancer [49]. However, it remains to 
be further elucidated whether LPLCs are associated with 
hepatic tumorigenesis in liver cirrhosis.

During cholestatic injury, hepatocytes acquire SOX9 
positivity and undergo ductal metaplasia into LPLCs 
[20, 32], which express mRNAs similar to those found in 
cholangiocytes rather than in hepatocytes [20, 50]. Sub-
sequent lineage tracing studies revealed the bi-differenti-
ation process of LPLCs during cholestatic injury [21, 31]. 
The animal experiments established the scientific theory 
that RDCs originate from hepatocyte-reprogrammed 
LPLCs during the disease progression of BA. Thus, we 
hypothesized that LPLCs differentiate continually to 
RDCs in order to escape from cholestatic injury. By co-
staining SOX9 with other hepatocyte and ductular apical 
side markers, we found that the bipotent characteristics of 
LPLCs are consistent with those in the pseudo-rosette for-
mation. Although the reason for this architectural appear-
ance in chronic bile retention is not well understood, the 
pseudo-rosette formation is thought to provide some pro-
tection from injury caused by abnormal bile constituents 
[39], which is similar to our assumption. By observing the 
static location changes in the SOX9-positive rosette for-
mation from fibrosis to cirrhosis, we found that the SOX9-
positive rosette structure showed a gradual increase in the 

SOX9 expression level and changed to ductular-like struc-
ture from the periportal parenchyma to the portal region, 
which might imply the possibility that LPLCs differentiate 
to RDCs during cholestasis progression.

Though the rapid aggravation of liver fibrosis in BA is a 
consequence of multiple effects, it has proven to be asso-
ciated with the emergence of numerous RDCs [4–6]. In 
contrast, along with the formation of RDCs is restricted 
in Alagille syndrome, another cholestatic liver disease 
with dysplasia of bile ducts, the progression of liver fibro-
sis appears slowly [4]. These phenomena indicate that 
RDCs as an indicator of liver regeneration in diverse dis-
eases should be a key intervention target for future liver 
fibrosis therapy in BA. By disrupting the differentiation 
process of LPLCs, it is possible that the formation of 
RDCs will be reduced and further restrain the develop-
ment of liver fibrosis.

Conclusion
LPLCs as a possible source of atypical RDCs are associ-
ated with disease progression and prognostic factors of 
BA. Regarding bipotent characteristics, LPLCs are dif-
ferent from portal-HPCs. In terms of resistance charac-
teristics during cholestatic injury, LPLCs show superior 
proliferation and anti-senescence ability and continually 
differentiate to new RDCs. Our present study revealed 
those characteristics of SOX9-positive LPLCs during 
cholestatic liver regeneration, which could provide a new 
avenue to manipulate the bi-differentiation process of 
LPLCs to prevent the emergence of RDCs and moderate 
the prognosis of BA.
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