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A B S T R A C T   

Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on 
the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, 
the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while 
vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the 
phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nano-
particle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in 
development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. 
Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a 
significant accomplishment. However, widespread production and global availability of mRNA-based vaccina-
tions to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually 
occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID- 
19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also 
highlighted a detailed description of mRNA delivery technologies and the application potential in controlling 
other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into 
mRNA therapy for broader audiences.   

1. Introduction 

The continuous spread of Novel Coronavirus Disease 2019 (COVID- 
19) poses a serious threat to human health and the global economy. The 
strategy of isolating infected individuals and tracing the close contacts- 
quarantining seems to be working in some parts of the world. However, 
the strategy seems difficult to implement in various countries [1–3]. The 
COVID-19 pandemic affected the economic condition of the people, and 
the individuals are in a state of the puzzle [4–7]. The difficulty in con-
taining the virus and the lack of appropriate therapy and vaccines have 

led to this situation. At first, the COVID-19 pandemic caused serious 
concerns and confusion about the future, and people thought it would 
end the same way as the Severe Acute Respiratory Syndrome (SARS) 
caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 
in 2003 [8–12]. The virus has spread to all countries and continents 
around the globe having 453 million confirmed cases and 6.03 million 
deaths and still counting [13]. Initially, social distancing, wearing masks 
and isolation/quarantine strategies were employed to curb the spread 
[14–16]. These actions limited the spread of the disease but did not 
provide immunity against Severe Acute Respiratory Syndrome 
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Coronavirus 2 (SARS-CoV-2) in the general population [17,18]. How-
ever, scientists suggested that the pandemic might persist, and vaccines 
are urgently needed if no proper treatment is available [19–22]. 

Soon after the initial outbreak, the coronavirus Ribonucleic acid 
(RNA) sequence was reported by Chinese scientists in early January 
2020. The scientists studying genetic-based vaccines turned their efforts 
to the novel and extremely contagious pathogen causing COVID-19 
[23–27]. Generally, the mRNA is used by the living cells to make pro-
teins from the gene sequence inside Deoxyribonucleic acid (DNA) 
[28–30]. These proteins then serve as a building block of all the essential 
structures. Generally, the DNA segments are transcribed into small 
mRNA, which is then read by the cell tools and hence proteins are 
synthesized [31]. In the case of mRNA vaccines for COVID-19, the 
message is copied from the coronavirus itself and used to produce pro-
tein such as spike protein (S protein). The coronavirus uses the S protein 
to enter the human cell and causes COVID-19 [32–36]. In general, the 
protein alone does not cause the disease. Instead, it stimulates an im-
mune response for future recognition of the virus [37–39]. 

Right after 66 days of the outbreak, the first clinical trial for mRNA 
vaccine (mRNA-1273) began in the United States (US) against SARS- 
CoV-2 [40]. The mRNA-1273 was co-developed by Moderna, Inc., and 
the National Institute of Allergy and Infectious Diseases (NIAID). 
Another mRNA-based vaccine developed by BioNTech and Pfizer also 
got impressive results in phase I and II clinical trials in the United States. 
After encouraging results in phase I and II clinical trials, both the mRNA- 
1273 and BNT162b2 started phase III trials in late July 2020. Around 
60,000 volunteers were enrolled for phase III clinical trials. This was the 
first time in history that a vaccine was developed in such a short period 
of time. According to the Director of National Institutes of Health (NIH) 
of the United States, “The milestone came at a remarkably rapid pace 
compared to the usual pace for vaccine preparation” [41]. At the end of 
the year 2020, both the mRNA-based vaccines developed by Pfizer and 
Moderna respectively got Emergency Use Authorization (EUA) in the 
United States (Fig. 6.). After the success in clinical trials and effective-
ness of approximately ~95%, both vaccines were inoculated in the 
general population. Various other vaccine platforms and strategies were 
also encouraged for the development of the COVID-19 vaccine including 
protein subunit, virus-vectored, live attenuated virus and inactivated 
virus. 

According to clinical trials and subsequent data, the two most widely 
used mRNA vaccines have been found to be safe and highly effective 
against SARS-CoV-2 and its various mutations. The mRNA vaccines 
retain distinctive advantages such as; flexibility, efficient delivery, use of 
the protein translational machinery of the host, and short developmental 
time. Therefore, in this review, we discussed the biology of SARS-CoV-2 
and its mutations and the progress of mRNA-based vaccines. Moreover, a 
detailed description of the potential of mRNA vaccines for other life- 
threatening diseases is also provided. Various potential delivery tech-
nologies for mRNA are also described in detail. In addition, we also 
summarized updated clinical trials data on mRNA vaccines for cancer 
and other life-threatening diseases. Therefore, this review provides a 
broader view and multidisciplinary insights of mRNA vaccines for im-
munization against COVID-19 and its variant of concern and other in-
fectious diseases in the future. 

2. Biochemical and molecular roadmap of SARS-CoV-2 

The international committee on Taxonomy of virus established the 
terminology RNA virus as SARS-CoV-2 due to its general homology to 
SARS coronavirus [42–45]. The SARS-CoV-2 coronavirus belongs to the 
sub-family of Coronavirinae, having the lengthy genome among all the 
RNA viruses and comprised of six Open Reading Frames (ORFs) [46]. 
The SARS-CoV-2 shows the genomic structure (+)ss-RNA of 30 kb in 
length comprising a 5′-cap structure and 3’poly-A tail. Polyprotein 
1a.1ab (ppla/pplab) is synthesized from the viral RNA in the host, and 
16 non-structural proteins are formed, which arranges the Replication 

Transcription Complex (RTC) in double-membrane vesicles. Finally, 
minus-stranded sub-genomic RNAs (sgRNA) are synthesized discontin-
uously by resultant n-RTC. During the ORFs, the transcription dismisses, 
and ultimately the attainment of a lead of RNA occurs [47,48]. In the 
above process, the sgRNAs are needed by the sub-genomic mRNAs as the 
pattern and/or templates. Approximately six ORFs exist for a typical 
coronavirus, including SARS-CoV-2 [49–52]. 

There are at least 16 non-structural proteins (nsps) encoded in the 
first ORFs, which is over 65% of the whole genome length. The main 
structural protein, including S protein, membrane protein, envelope 
protein and nucleoside protein are encoded in the ORF (35% of the 
genome length). All the above structural as well as non-structural pro-
teins are translated from sub-genomic RNA [52,53]. Till the end of 
January 2022, there are 7,711,789 genomic sequences of SARS-CoV-2, 
including complete and partial, have been decoded and deposited in 
the Global Initiative on Sharing All Influenza Data (GISAID) database 
[54]. 

According to the phylogenetic studies, the SARS-CoV-2 closely re-
sembles bat-SL-CoVZC45 and bat-SL-CoVZXC21 (two SARS-like viruses 
in bats). Moreover, the SARS-CoV-2 is 88% identical and 79% homolo-
gous to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 
and 50% with Middle East Respiratory Syndrome (MERS-CoV) [55]. 
Interestingly, the virus also has a high genome sequence identity with 
pangolin coronavirus, especially in the receptor-binding domain (RBD), 
which shows some differences to Bat coronavirus (RaTG13). The ho-
mology analysis also revealed that the SARS-CoV and SARS-CoV-2 have 
a similar RBD structure [56]. This sequence identity at the RBD is a key 
factor for some groups postulating a recombination event that might 
occurred in pangolins, or other animal species as an intermediate, before 
infecting humans. However, the biochemical and molecular roadmap of 
the SARS-CoV-2 suggested that the virus causing COVID-19 emerged 
from a single animal source. 

3. SARS-CoV-2 structure 

The SARS-CoV-2 is spherical in shape, positive sense and enclosed 
single-stranded RNA virus. There are mainly four structural proteins 
such as spike (S), envelope (E), membrane (M), and nucleocapsid (N) 
[57], as shown in Fig. 2. The role of the E protein is not clear, and it is 
expressed during replication [46]. 

As E protein is not present in recombinant viruses, it exhibits 
condensed viral titers and retracted viral maturation. This suggests that 
the E protein is essential for viral replication as well as maturation [49]. 
Similarly, the M protein is the amplest structural protein, covering the 
membrane bilayer three times. The M protein presents both the NH2- 
terminal domain and COOH-terminus from outside and inside the virus. 
The N protein is responsible for RNA packaging as well as viral release 
following infection [58]. The S protein exhibits immense importance as 
it facilitates the entry of virus to the host cell followed by pathogenesis. 
The S1 domain of the S protein containing the RBD is mostly needed for 
receptor binding, whereas cell membrane fusion is the responsibility of 
the S2 domain [59]. Moreover, the host uses furin and transmembrane 
protease serine 2 (TMPRSS2) to further cleave the S protein. The S 
protein and the RBD of the SARS-CoV-2 and SARS-CoV are extremely 
similar, revealing that the cell entry mechanism of both shall be the 
same. 

3.1. SARS-CoV-2 spike protein, a target for mRNA-based vaccine 
development 

As discussed above, the SARS-CoV-2 makes its entry into the cell 
using spike protein, leading to cell membrane fusion and finally 
releasing RNA inside the cytoplasm (Fig. 1). The development of mRNA- 
based vaccines needs a suitable target, and therefore the S protein is 
considered the best target. Briefly, the S1 subunit separates from S2 due 
to trimeric instability when the S1 binds to the host cell receptor. The 
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Fig. 1. Spreading of COVID-19 in general population. Generation of thousands of small droplets containing SARS-CoV-2 after an infected person sneezes or coughs. 
The spike protein of SARS-CoV-2 play an important role in binding with high affinity to the mucins of the mucus that line the airways. “Created with BioRender.com”. 

Fig. 2. The S glycoprotein of the virus causing COVID-19 is comprised of S1 and S2 (Subunits). These subunits are generally characterized as a sword-like spike. 
Using crystallography, the exact structure of this protein can be observed. The Protein Data Bank (PDB) model suggested that, the subunits of this glycoprotein are 
composed of various regions that are essential to the infection process. The essential bridge, which linked S1 and S2 together is termed as poly-basic amino acid 
bridge. This bridge is very important to understand viral targeting. “Created with BioRender.com”. 
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separation of S1 from S2 subunit makes a highly stable structure and is 
perfect for cell membrane fusion. The high homology of RBD of SARS- 
CoV-2 and SARS-CoV suggested that the virus uses angiotensin- 
converting enzyme (ACE2) as a binding site. Thus the S protein helps 
the virus to target the ACE2 and then enters the cell. Therefore, the 
vaccine development involved targeting the S protein leading to the 
inhibition of membrane fusion [58–60]. Accordingly, the vaccine targets 
the S protein and thereby prevents S-protein activation, resulting in the 
blockade of its binding with ACE2. Moreover, the SARS-CoV-2 cell entry 
is also blocked by TMPRSS2 inhibitors in cell lines, which are expressed 
with TMPRSS2. 

3.2. Viral Mutation and effect of mRNA vaccines on the variants of 
concern 

Since the mutation is a natural phenomenon associated with viruses 
and sometimes, the mutation makes the virus weaker and less infective. 
However, the mutation also benefits the virus and makes it more in-
fectious and highly transmissible. Mutation occurs in the genetic ma-
terials (RNA or DNA) of the viruses at a different rate, depending on the 
virus type. The mutation rate of an RNA virus is higher than DNA virus. 
For example, the Human immunodeficiency virus (HIV) and influenza 
virus (flu) are the two RNA viruses with high mutation rates [61,62]. 
Generally, once the virus enters the host cell, it uses polymerase to copy 
the genetic material, and these copies are used to infect new cells. Since, 
without perfection, the polymerase mistakes the copying process and 
result in mutation. Mostly, a mutation either harms the virus or does 
nothing. However, sometimes a mutation gives a newly produced virus 
an advantage. It provides the virus to evade the immune system or bind 
tightly to a host cell, which makes them highly transmissible. Since the 
COVID-19 pandemic has progressed for a long time, many mutations 
have occurred in SARS-CoV-2, and now different variants are infecting 
people in various parts of the world. However, some variants are 
considered “Variants of Concern” because they are believed to be highly 
transmissible and can evade the immune response of vaccinated in-
dividuals [63]. 

The variants of concern are discussed below: 

3.2.1. Alpha (lineage B.1.1.7) 
The B.1.1.7 variant, first detected in the United Kingdom (UK), was 

highly transmissible compared to the original variant first detected in 
Wuhan, China. According to a study conducted in the UK, a high viral 
load has been linked with B.1.1.7 variant; therefore, a high risk of death 
is associated with this variant. The World Health Organization (WHO) 
preliminary studies revealed that the mRNA vaccine candidate main-
tained efficacy against the B.1.1.7 variant. The mRNA vaccines have 
retained antibody neutralization against B.1.1.7 variant [64]. Early re-
ports also suggested that the BNT162b2 & mRNA-1273 vaccines protect 
against this variant [65,66]. 

3.2.2. Beta (lineage B.1.351) 
In October 2020 in South Africa, the B.1.351, known as Nextstrain 

clade 20H, was first detected and believed to be 50% more transmissible 
than the original variant. Early studies revealed that due to the presence 
of E484K mutation in the spike protein, the antibodies produced from 
vaccination or past infection might be less effective against this variant. 
One of the main concerns about this variant is the ability of immune 
evasion. Preliminary studies reviewed by the WHO indicated that the 
Pfizer–BioNTech vaccine demonstrates reduced efficacy/effectiveness 
against the infection; yet, there is no data available for other vaccines 
[67]. Moreover, early data from Pfizer revealed that the neutralizing 
activity for this version had been lowered by two-thirds [68]. Several 
studies eventually verified that sera from patients inoculated with the 
Moderna and Pfizer-BioNTech vaccines against B.1.351 variant had 
lower neutralizing activity [69]. A recent trial of the Pfizer/BioNTech 
vaccine against the B.1.351 variant revealing that the vaccine had been 
100% successful thus far. (i.e., there was no infection in vaccinated 
participants), Beta variants were found in six of nine infections in the 
placebo control group [70]. Recently, data from Qatar and Israel au-
thorities revealed that the two mRNA vaccines prevent severe cases from 
COVID-19, including severe pneumonia leading to death caused by 
B.1.351 [71]. 

3.2.3. Gamma (lineage P.1) 
This variant was first identified in Brazil and Japan. Like Beta vari-

ants, it appeared to be able to evade the immune system at first. The P.1 

Fig. 3. Comparative analysis of highly mutated Omicron with Delta variant. There are 32 mutations in the spike protein. Copyrights bioRxiv preprint [190].  
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variant contains 17 unique mutations, including some of the key S 
protein mutations as B.1.1.7, B.1.351 variants, and some other key 
mutations. As with the other two variants, P.1 showed low trans-
missibility. Multiple exploratory trials assessed by the WHO have shown 
slightly reduced antibody neutralization with Pfizer–BioNTech and 
Moderna (minimal to moderate reduction) [72]. 

3.2.4. Delta (lineage B.1.617) 
This variant emerged during the surge of COVID-19 cases in India 

and has since spread globally. It is nearly twice as infectious as previous 
variants. Several studies examined by the WHO indicated that the Pfi-
zer–BioNTech and Moderna vaccines have remained effective against 

the Delta variant. They have also shown reduced antibody neutraliza-
tion against Delta with Pfizer–BioNTech. Spike protein mutations 
D111D (synonymous), G142D, P681R, E484Q, and L452R, are among 
the 15 characteristic mutations (Fig. 3), whereas the later two mutations 
are responsible for evading antibodies up to some extent [73,74]. 

3.2.5. Lambda (C.37 lineage) 
A study has been conducted in the United States revealed that the 

vaccines used for COVID-19 are effective against the C.37 lineage of 
SARS-CoV-2. The lambda variant was first found in Peru in August 2020 
and is currently prevalent in the South American region and various 
other countries. 

Fig. 4. The cell entry mechanism of SARS-CoV-2. Using the spike protein, the virus gets its entry to the human cell by attachment to the Angiotensin-converting 
enzyme (ACE) 2 receptors. After development of protein by the host cell, the antibodies are produced against ACE2, which helps the body’s immune system to 
recognize real infection. “Created with BioRender.com”. 

Fig. 5. Various delivery technologies for mRNA vaccines are shown: lipid-based particles, virus-like replicon particle, polymer-based delivery, cationic nano-
emulsion, naked mRNAs, and peptide-based delivery. 
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Fig. 6. Schematic representation of two mRNA vaccines for human. The composition of BNT162b2 and mRNA-1273. Both containing mRNA encoding spike protein 
surrounded by lipid materials. 

Fig. 7. How mRNA vaccines work- Training the immune system for a real infection.  
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The study found that the pseudotyped virus expressing the C.37 S 
protein was less susceptible to vaccine-provoked neutralizing anti-
bodies. The study also revealed that the neutralizing antibodies reduc-
tion is very less. The results further suggested that the vaccines in 
current use against lambda variant remain protective [71]. 

3.2.6. Omicron (B.1.1.529) 
Recently, a new variant of SARS-CoV-2 named Omicron (B.1.1.529) 

was identified in Africa. The Omicron variant contains at least 32 mu-
tations in the S protein alone compared to 16 mutations in the already 
highly infectious delta variant (Fig. 3) and other proteins such as NSP12 
and NSP14 that are crucial for viral replication [75]. The Omicron 
variant is thought to be at least three times more infectious than the 
original SARS-COV-2 and possibly more contagious than the Delta 
variant. More importantly, it may be partly resistant to existing vaccines 
[76]. Patients infected with Omicron was continually reported all over 
the world. The global prevalence of the Omicron variant remains to be 
closely monitored and controlled. Several research institutes and/or 
companies have announced that they have started developing new 
vaccines against the Omicron variant. The most recent study revealed 
that a booster dose of BNT162b2 & mRNA-1273 vaccines are effective 
against the variant. This study at Ragon Institute of MGH, MIT and 
Harvard involved the construction of a harmless version of Omicron 
called pseudovirus [77]. They evaluate the effectiveness of mRNA 
COVID-19 vaccines using this harmless version of the Omicron variant. 

The study also suggested that the fast and rapid spread of the Omicron 
variant is partial because of these mutations. During the study, blood 
samples were collected from 239 people vaccinated from either 
BNT162b2 or mRNA-1273. Among these 239 participants, there were 70 
individuals got booster doses of mRNA vaccines. They found that in-
dividuals vaccinated with mRNA vaccines have low neutralization of the 
pseudovirus. However, significant neutralization was found against the 
Omicron variant in individuals who received a booster dose of the 
mRNA vaccine. The findings suggested that a possibility exists that the 
booster might induce antibodies to bind firmly to the S protein. More-
over, this additional dose of either of the mRNA vaccine produce anti-
bodies targeting common regions in the S protein of all the variants of 
SARS-CoV-2 [77]. 

4. SARS-CoV-2 cellular entry and life cycle 

Recent reports revealed that the S protein facilitates SARS-CoV-2 to 
recognize the ACE2 receptor that enables the virus to enter the cells. The 
reports also suggested that once the virus engages with the host cell 
membrane, the complex ACE2/SARS-CoV-2 or the viral RNA alone en-
ters the cytosol (Fig. 4) [78,79]. In the case of ACE2/SARS-CoV-2, the 
entire virus is endocytosed, and the virus’s membrane is fused with the 
luminal side of the endosome. This allows the viral RNA to enter the host 
cells’ cytosol. Some reports suggested that the SARS-CoV-2 infects cells 
with ACE2 expression more effectively than those deficient in ACE2 

Fig. 8. Viruses causing diverse diseases. Possible targets (Red dot) and strategies (Sky blue dot) for mRNA vaccines. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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expression. Besides ACE2, the TMPRSS2 also act as an important protein 
[80,81]. 

Similarly, other reports suggested that the TMPRSS2 protein also has 
a key role in the viral entry into the host cell. The S protein is primed by 
the TMPRSS2 (serine protease) crucial to the pathogenesis of the virus 
(Fig. 4) [82]. The ACE2 is located mostly in the tissues of major organs, 
including the kidney, heart, lung, heart, testes, and brain. That is the 
reason that the infection of SARS-CoV-2 created problems in these major 
organs of the human body [83]. 

A comparative study was conducted to analyze the presence of ACE2 
expression in a mouse model, non-human and human. The study results 
revealed that both the TMPRSS2 and ACE2 are highly expressed in nasal 
cellular goblets, gut enterocytes and specifically in the lung type II 
pneumocytes [84]. This suggested that as the S protein binds with the 
ACE2, it facilitates the conformational alteration, leading to the stimu-
lation of viral envelope fusion with the host cell membrane. Once inside, 
the virus releases the RNA into the cell, and replication occurs. 

Inside the cell, the RNA genome is translated into important viral 
replica polyproteins called pp1a and pp1b, which are then cleaved by 
viral proteinases into tiny products. As a result, a series of sub-genomic 
mRNAs are produced through discontinuous transcription via poly-
merase activity and finally translated into key viral proteins. Conse-
quently, the viral protein and genomic RNA get assembled into virions in 

the endoplasmic reticulum. The resultant virions are then transported in 
the form of vesicles and released into the cytoplasm [25]. 

5. mRNA-based vaccines 

The mRNA does not intermingle with the host genome, as it is a safe, 
nominal and transient information carrier. Interestingly, the mRNA can 
be designed and manufactured rapidly as compared to other conven-
tional vaccines. This rapid preparation potential of mRNA offers broad 
flexibility to develop a broad range of vaccines for other major infectious 
diseases. In simple words, the immunogens of interest are translated 
from input vaccine transcript by a conventional mRNA vaccine [85]. The 
mRNA shall be encapsulated in a specific liposome as well as a com-
plexing agent. The suitable liposome and complexing agent in turn 
enhance the cellular uptake, and the higher cellular internalization 
brings about higher therapeutic delivery into the cytoplasm translation 
machinery. The liposomes also help to minimize the degradation of 
mRNA before it reaches the cytoplasm of the cell [85]. 

The clinical translation of mRNA-based vaccines is taking mo-
mentum as it is more advantageous in terms of efficacy, safety, economic 
production, and great perspectives in large-scale production. These ad-
vantages made mRNA-based vaccines a promising alternative to con-
ventional vaccines. Moreover, the chimeric mRNAs that contain ORF 

Fig. 9. In vivo tumor modulation by mRNA: various startegies includes, (1) Induction of cell death e.g. mRNA encoding mixed lineage kinase domain like pseu-
dokinase induce cells death in an immunogenic way. (2) Tumor-associated dendritic cells (TADC) modulation e.g. mRNA encoding for cluster of differentiation 40 
ligand, cluster of differentiation 70 ligand & constitutive active toll like receptor 4 (TriMix) can be combined to stimulate immature TADC to mature TADC. (3) 
Suppressive cell types e.g. the tumor-associated macrophages can be genetically reprogrammed by mRNA encoding inhibitor of nuclear factor kappa-β kinase. (4) 
Cytokine milieu e.g. mRNA encoding IFN-β fused to the ectodomain of the TGF-β receptor II (Fβ2). (5) Induction of cancer-specific T cells e.g. mRNA can be used to 
genetic engineer T cells to express cancer-specific T cell receptors. Reprinted with permission from, Copyright Springer Nature [191]. 
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viral sequences can be expressed in the cytoplasm and hence possess 
great potential in blocking chromosomal integration. Briefly, the im-
mune cells process the injected mRNA to produce targeted protein via 
direct translation and further activate the immune system to detect and 
recognize viral protein to produce antibodies [86]. The first and 
important step of reaching the cytoplasm is to cross or penetrate the 
lipid membrane (Fig. 7) [87–90]. However, the lipid nanoparticle 
encapsulation made the mRNA-based vaccines as a promising alterna-
tive to traditional-based vaccines due to better penetration and inter-
nalization. As reported, the SARS-CoV-2 is a (+)ss-RNA virus that has 
high replication inside cytosol. Furthermore, the virus’s transmissibility 
is extremely high, which needs prompt prevention. Therefore, the 
development of mRNA-based vaccines played a vital role in protection 
against COVID-19. However, mRNA-based vaccines have to prove safety 
and efficacy in human beings at large since the early results of two 
mRNA-based vaccines developed for COVID-19 showed promising re-
sults in terms of safety and efficacy [91,92]. 

5.1. Advantages of mRNA-based Vaccines 

Various prophylactic and therapeutic fields have been bridged by 
mRNA due to its versatility from the first-ever breakthrough in 1990 
when the exogenous proteins were expressed in mice using in vitro 
transcribed (IVT) mRNA [93–96]. To date, different strategies were 
employed and developed to deliver mRNA to treat infectious diseases 
and cancer [97]. 

Some of the advantages of in-vitro transcribed mRNA are given 
below; 

a) During the recent pandemic of COVID-19, the first-ever mRNA vac-
cine was inoculated in humans after the presentation of the viral 
genome before ten weeks. This shows that the time required to 
develop mRNA vaccines is very short [98].  

b) Most importantly, the IVT reaction is easy and quick, and a high yield 
can be obtained for scale-up manufacturing [97]. Having an 
advanced manufacturing setup, the manufacturing can be as large as 
kilograms [99].  

c) Due to the in-situ synthesis of antigen protein’s stability, the mRNA 
vaccine excludes the need for protein purification. Moreover, it 

excludes the need for long-term stabilization, which is challenging 
for some antigens.  

d) If the protection of mRNA against RNases is ensured, then the 
transportation and storage of mRNA might become easier than 
protein-based vaccines because of low degradation chances 
compared to protein [100,101]. 

The above advantages certainly help to manufacture, store and 
transport mRNA vaccines in response to outbreaks and infectious disease 
outbreaks. 

5.2. Disadvantages of mRNA-based Vaccines 

Despite various advantages, the field of mRNA delivery faces some 
challenges such as:  

a) There is still concern regarding the instability of mRNA due to the 
enzymatic degradation by the natural RNases in the body [27].  

b) There are hundreds to thousands of nucleotides in mRNA, and these 
nucleotides must reach in full length to the cytosol for active trans-
lation. Therefore, due to degradation by RNases, the in vivo delivery 
of mRNA is a major concern. 

6. mRNA Delivery technologies 

Due to the instability of mRNA, the introduction of mRNA vaccines at 
large further needs some delivery strategies such as carrier molecules. 
Therefore, scientists have made efforts to develop various kinds of car-
rier molecules to prevent the degradation of mRNA from RNases as well 
for better transportation of mRNA to the target site in the body. Exam-
ples of such carrier molecules are; Lipid-based delivery, polymer-based 
delivery, peptide-based delivery, virus-like replicon particle delivery, 
cationic nano-emulsion delivery and inoculation of naked mRNA [102]. 
This review section highlighted different delivery technologies associ-
ated with mRNA (Fig. 5 and Table 1). 

6.1. Lipid-based delivery 

Lipid nanoparticles (LNP) are negatively charged mRNA delivery 

Table 1 
Various delivery technologies for mRNA delivery.  

System RNA Disease/Condition Composition Ref 

Lipids HxB-2 HIV-1 Gag 
antigen mRNA 

HIV DOTAP/DOPE [192] 

eGFP mRNA N/A DOPE/DC-Cholesterol [2:1] [193] 
HSV I Thymidine 
kinase mRNA 

Cancer DOTAP/Cholesterol [1:1] liposome with DSPE-PEG and DSPE- 
PEG-AA 

[194] 

EPO mRNA N/A C12-200:Cholesterol: DOPE:C14-PEG2000 [111] 
Ovalbumin mRNA Malenoma A18 [195] 
HER2 antibody mRNA Cancer cKK-E12 [196] 
Human erythropoietin N/A MC3, DSPC, cholesterol, and PEG2000-DMG [197] 
HIV-1 antigen Gag mRNA HIV DOTAP/DOPE [1:1] [192] 
eGFP mRNA N/A DC-Cholesterol)/DOPE (1:2) [193] 

Polymers Erythropoietin (EPO) mRNA Anemia and 
myelodysplasia 

Poly(glycoamidoamine) [122] 

HIV-1 gag mRNA HIV Polyethyleneimine [198] 
eGFP mRNA N/A Poly(β-amino ester) (PBAE) [199] 
eGFP and ovalbumin N/A Triblock copolymer [200] 
Luciferase-encoding mRNA N/A DEAE-Dextran [201] 

Peptides and peptide-polymer 
hybrids 

eGFP mRNA Ovarian Cancer PepFect14 [202] 
eGFP mRNA& OVA mRNA N/A RALA [132] 
eGFPmRNA & FLuc mRNA N/A RALA-PLA [203] 

Lipid polymer hybrid NPs Firefly luciferase (FLuc) mRNA 
and  
eGFP mRNA 

N/A TT3:DOPE:Cholesterol:DMG-PEG2000 with PLGA core [204] 

FLuc mRNA N/A PBAE:C14-PEG2000 [205] 
Ovalbumin mRNA N/A PBAE:EDOPC/DOPE/DSPE-PEG [206] 
eGFP mRNA N/A PBAE: DOPC, DOTAP, and DSPE-PEG [207]  
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vehicles, categorized as ionizable amino lipids, phospholipids, poly-
ethylene glycol (PEG) and cholesterol (chol). The LNPs have been 
extensively studied as delivery vehicles for mRNA and emerged as the 
first-ever clinically tested platform to date [103–106]. The PEG facili-
tates prolong circulation during systemic circulation and hinders the 
binding of plasma proteins to mRNA. While the essential ionizable lipids 
facilitate the endosomal escape of mRNA, the phospholipids and 
cholesterol bring stability to the LNP structure [107,108]. Moreover, as 
an mRNA vaccine vector, the LNP has two advantages: protecting the 
mRNA from degradation by endosomal enzymes and better biocom-
patibility, which helps efficient delivery of mRNAs for expression of 
proteins [109]. 

Multiple lipid components and modifications in lipids decides the 
efficient delivery of LNPs [110]. Cationic or ionizable lipids are the 
primary substance to deliver RNA such as (i) 1,2-dioleoyl-sn-glycerol-3- 
phosphoethanolamine (DOPE) [111], (ii) N-[1-(2,3-dioleoyloxy) pro-
pyl]-N,N,N-trimethylammonium chloride (DOTMA) [112], (iii) N1,N3, 
N5-tris(3-(didodecylamino)-propyl)benzene-1,3,5-tricarboxamide 
(TT3) [113], (iv) dilinoleylmethyl-4-dimethylaminobutyrate (Dlin- 
MC3-DMA), (v) N,N-Dimethyl-2,3-bis[(9Z,12Z)-octadeca-9,12-dien-
yloxy]propan-1-amine (DLinDMA) [114] and (vi) 1,2-dioleoyloxy-3-tri-
methylammonium propane chloride (DOTAP) [115]. At certain pH, 
these lipids are positively charged and thus feasible for the mRNA to 
interact electrostatically, and easily fused with cellular membrane 
[116]. After endocytosis, the ionizable cationic lipid becomes more 
positively charged due to proton-pump mediated pH reduction [117]. 
Once inside, the cationic lipids are removed by the endogenous anionic 
lipids and resulting in the release of mRNA in to the cytoplasm [118]. 
Currently, the LNP is a prospective mRNA delivering vector due to better 
biocompatibility and high delivery efficiency [119,120]. 

6.2. Polymer-based delivery 

Clinically, the polymeric-based materials are less explored as 
compared to ionizable LNPs. However, the mRNA has been successfully 
coated by polymeric-based materials to prevent its degradation leading 
to the expression of proteins of interest. In order to address the disad-
vantages associated with the polymeric materials, various researchers 
added lipid chains, enlarged branch structures, and built biodegradation 
enhancing domains to improve polydispersity and enhance clearance of 
large molecules [121–123]. 

Various cationic polymers such as polyamidoamine (PAMAM) den-
drimer, polyethylenimine (PEI) and polymerand polysaccharide are 
used [124–127]. For example, PEIpolyplex was used to coat mRNA 
encoding hemagglutinin of influenza virus and nucleocapsid. The 
cytosolic composite enables mRNA translation and encourages both 
humoral and cellular responses [128]. Moreover, the dendrimer is 
considered a possible delivery vehicle due to the presence of multiple 
functional groups with high tolerability [129]. For example, the 
PAMAM dendritic polymers containing NH2 and OH functionalities 
enter A549 human lung epithelial carcinoma cells faster than the 
hyperbranched polymers [130]. The polymer-based delivery material is 
a hopeful platform for the delivery of mRNA. However, it is in the early 
pre-clinical stage of investigation and needs further research. 

6.3. Peptide-based delivery 

Due to the electrostatic interaction, the negatively charged mRNA 
can be carried via cationic peptide. The presence of amino groups, such 
as arginine and lysine, makes the peptide positively charged. This pos-
itive charge enables the negatively charged mRNA to adsorb onto the 
cationic peptide [131]. However, the negative and positive ratios 
determine the loaded mRNA amount [132]. Two aspects make prot-
amines one of the prospective cationic peptides to deliver mRNA, such as 
it protects mRNA from the degradation of RNase in the serum [132]. On 
the other hand, the protamine acts as an adjuvant. The latter one is 

evident from a study, which suggested that a formulation containing 
protamine delivering mRNA activated both dendritic cells (DCs) and 
monocytes, resulting in TNF-α and IFN-α secretion. Moreover, the 
formulation also activated immune cells by recognizing protamine and 
mRNA [133]. Another study was conducted in the glioma animal model, 
which revealed that the protamine and mRNA formulation had a higher 
antitumor effect than naked nucleic acid adjuvants [134]. As a result, 
only the protamine is undergoing clinical trials among all the peptide- 
based delivery carriers [135,136]. 

Similarly, cationic cell-penetrating peptides (CPPs) are another kind 
of small peptide, comprised of approximately 8 to 30 amino acids, and 
are considered to be an excellent carrier. These CPPs are furnished with 
low charged densities as well as capable of disrupting membrane during 
the endosomal escape. The ability to disrupt membranes is valuable for 
protein synthesis [137]. Additionally, the anionic peptides became 
efficient once conjugated with a positively charged substance [138]. 

6.4. Virus-like replicon particles (VRPs) 

The VRPs are like a virus-infecting method where the antigen- 
encoding saRNA is encapsulated for efficient delivery into the cytosol. 
Generally, the in-vitro synthesis of viral structural protein is performed 
first, and then antigen-encoding saRNA is encapsulated [139]. The lipid 
inorganic nanoparticles (LIONs) are recently prepared to encapsulate 
the alphavirus-derived replicon RNA encoding the SARS-CoV-2 S pro-
tein. The resultant LIONs were administered to primates and mice. As a 
result, a high amount of anti-SARS-CoV-2 S protein IgG antibody was 
produced [140]. Similarly, in another study, the VRPs were loaded with 
mRNA derived from HIV encoding clade C envelope glycoprotein. As a 
result, the formulation triggered a complex immune response in the 
rhesus [141]. A concise summary is presented by Lundstrom comprising 
VRPs-saRNA against viral diseases, bacterial diseases, and cancer. 
Although the VRPs demonstrated excellent therapeutic effect against 
most viral diseases, bacterial diseases, and cancer, there are still few 
limitations which hiners its clinical translation. Moreover, the combi-
nation involving VRPs are believed to endorse anti-vector antibodies, 
which hamper the ongoing clinical trials [142]. 

6.5. Cationic Nano-Emulsion (CNE) 

CNE is a non-viral delivery platform, which enhances the efficiency 
of mRNA vaccines by binding to saRNAs. The cationic lipid 1,2-dioleoyl- 
sn-glycero-3-phosphocholine (DOTAP) is an essential component of 
CNE. Comparatively, the cellular-immune response induced by CNE 
derived from saRNA is believed to be robust compared to saRNA-derived 
VRPs. Similarly, studies also demonstrated robust protective immuno-
genicity against the Zika virus and Venezuelan equine encephalitis virus, 
followed by the saRNA vaccine delivered by CNE [143]. CNE showed 
great potential to be evaluated clinically based on the above preclinical 
studies. 

6.6. Naked mRNA vaccines 

The naked-mRNAs are delivered directly by injecting mRNA using 
Ringer’s and lactated Ringer’s solutions. Since the naked-mRNA is un-
able to cross the membrane, scientists hypothesized the cell uptake 
mechanism, such as the involvement of DC-mediated macro-pinocytosis. 
They further suggested that it diminishes the mRNA as the DCs mature 
[144]. Some researchers suggested that the uptake of mRNA can be 
brought by the disruption of the membrane, such as the direct pene-
tration and permeability, including microinjection and mechanical 
membrane disruption or electroporation, respectively [145,146]. How-
ever, the degradation of mRNA in the serum by RNase hinders its further 
clinical progress and needs extensive evaluation. 
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7. mRNA vaccines for COVID-19 

mRNA therapeutics is currently an emerging technology for the 
prevention of infectious diseases. In the mid of 2019, fifteen mRNA- 
based vaccines were developed against infectious diseases, but unfor-
tunately, none entered phase III trials. Therefore, it was believed that the 
mRNA-based technology might take another 5 to 6 years to reach the 
market. Fortunately, the COVID-19 pave the way for mRNA-based 
vaccines to be the ultimate test for the first time in humans at large. 
Till the end of 2021, there were around 200 vaccine candidates in pre- 
clinical trials. In addition, more than 100 vaccine candidates are 
already in the clinical trials, of which around 20 candidates are mRNA- 
based vaccines. Only two of them (Fig. 6) got emergency approval from 
the United States Food & Drug Administration (US FDA). The two 
mRNA-based vaccines, BNT162b2 & mRNA-1273, are approved for 
large inoculation in humans worldwide. 

The BNT162b2 mRNA-based COVID-19 vaccine is co-developed by 
Pfizer and BioNTech [147]. They started to develop five candidates 
encoding the S protein of SARS-CoV-2. Two of their lead candidates 
named BNT162b1 and BNT162b2 were encapsulated in LNPs. The 
ionizable lipid, ALC-0315, and a nucleoside-modified mRNA in which 
N1-methylpseudouridine was used as a replacement of uridines for 
enhanced mRNA translation [148]. A secreted type of the S protein’s 
RBD, trimerized, was encoded in the BNT162b1, whereas a full-length of 
SARS-CoV-2 S protein along with proline replacements in the S2 subunit 
was encoded in the BNT162b2 type. During pre-clinical studies, two 
doses of BNT162b2 (100 μg each) were given to rhesus macaques 21 
days apart. The results were impressive as the two doses triggered 
neutralizing antibodies 10.2 to 18.0 times more compared to a conva-
lescent patient serum. Furthermore, the doses also elicited CD4+ and 
CD8+ T cell responses [149]. 

Moreover, during the phase I trials, both neutralizing antibodies and 
robust CD4+ and CD8+ were recorded with two doses of 30 μg at 21 
days apart with mild to moderate adverse effects [150–153]. As both the 

lead candidates showed promising outcomes during phase I trials, the 
BNT162b2 was further tested for phase II/III trials because of the mild 
adverse effects both locally and systemically compared to BNT162b1. 
Overall, 95% efficacy (Table 3) was shown by BNT162b2 in preventing 
COVID-19, while 90–100% was recorded across subgroups defined by 
ethnicity, BMI, age, sex as well as co-existing conditions [154]. 
Furthermore, in a trial conducted in Israel, recruiting 3,159,136 in-
dividuals was inoculated with BNT162b2 with 94% efficacy in pre-
venting COVID-19 and preventing hospitalization at a rate of 87% as 
92% effective to prevent severe symptoms of COVID-19 [155]. 

Similarly, another mRNA-based COVID-19 vaccine, known as 
mRNA-1273, was developed by Moderna in collaboration with the Na-
tional Institute for Allergy and Infectious Diseases at the National In-
stitutes of Health and the Biomedical Advanced Research and 
Development Authority. The mRNA-1273 also uses LNPs comprising an 
ionizable lipid, SM-102, in which N1- methylpseudouridine-modified 
mRNA was encapsulated [156]. 

During the pre-clinical trial, mice were injected with two doses (1 μg, 
primer dose and booster dose), resulting in both neutralizing the virus 
and a potent response of CD4+ and CD8+ T cell [156]. Moreover, it was 
also noted that the mRNA-1273 prevents airway infections for up to 3 
months. A potent humoral and cellular immune response was also noted 
after two doses (100 μg) in rhesus macaques [157]. In a comparative 
study, the serum from vaccinated macaque demonstrated 15-folds more 
neutralizing antibodies, potent spike-ACE2 inhibition activity of 348- 
folds and virus-neutralizing activity of 12-folds as compared to the 
serum from COVID-19 recovered patients [157]. These promising results 
paved the way for mRNA-1273 in clinical trials where it showed 
acceptable tolerability and exceptional efficacy. In phase III trials, the 
mRNA-1273 showed 94.1% efficacy (Table 3) against COVID-19 infec-
tion after two doses (100 μg). There were no obvious side effects 
recorded except the local pain at the injection site. However, fatigue, 
muscle pain and joint pain were noticed in volunteers after the second 
dose of mRNA-1273, but these side effects were subsided after 48 h 

Table 2 
In-progress clinical trials of mRNA vaccines for COVID-19.  

Type of vaccine Developers Route of 
administration 

Schedule Ref 

Phase IV  
mRNA-1273 Moderna + National Institute of Allergy and Infectious Diseases (NIAID) IM Day 0 + 28 [208] 
BNT162b2 (LNP-mRNAs) Pfizer/BioNTech + Fosun Pharma IM Day 0 + 21 [209]  

Phase III 
SARS-CoV-2 (ARCoV) Academy of Military Science (AMS), Walvax Biotechnology and Suzhou Abogen 

Biosciences 
IM Day 0 + 14 or Day 0 + 28 [210] 

CVnCoV Vaccine CureVac AG IM Day 0 + 28 [211]  

Phase II/III 
ARCT-021 Arcturus Therapeutics IM ND [212] 
MRT5500 Sanofi Pasteur and Translate Bio IM Day 0 + 21 [213] 
mRNA-1273.211 ModernaTX, Inc. IM Day 0 [214]  

Phase I/II  
DS-5670a Daiichi Sankyo Co., Ltd. IM ND [215] 
EXG-5003 Elixirgen Therapeutics, Inc ID Day 0 [216] 
mRNA-1283 ModernaTX, Inc. IM Day 0 + 28 [217] 
ChulaCov19 Chulalongkorn University IM Day 0 + 21 [218] 
PTX-COVID19-B Providence Therapeutics IM Day 0 + 28 [219]  

Phase I 
HDT-301 SENAI CIMATEC IM Day 0 + 28 [220] 
mRNA-1273.351 Moderna + National Institute of Allergy and Infectious Diseases (NIAID) IM Day 0 or Day 0 + 28 or Day 

56 
[221] 

LNP-nCOV saRNA-02 
vaccine 

MRC/UVRI and LSHTM Uganda Research Unit IM Day 0 + 28 [222] 

CoV2 SAM (LNP) GlaxoSmithKline IM Day 0 + 30 [223] 
LNP-nCoVsaRNA Imperial College London IM ND [222]  
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[158]. Some severe adverse reaction following the two mRNA vaccines 
are discussed in the next section. Other mRNA based COVID-19 vaccines 
candidates are in different stages of development, summarized in 
Table 2. 

8. COVID-19 mRNA vaccines and adverse effects 

Millions of mRNA COVID-19 vaccines have been inoculated globally, 
and plenty of safety evaluations have been conducted. The data showed 
that the vaccines are safe and effective against COVID-19. However, rare 
adverse reactions, such as myocarditis and pericarditis, are commonly 
reported in males under the age of 30 within one week of their second 
vaccination dose [159]. These cases have been observed especially in 
Ontario, Canada and the United States after the administration of mRNA 
vaccines manufactured by Moderna Spikevax®, while less pragmatically 
after administering vaccines manufactured by PfizerBioNTech Com-
irnaty®. Taking precautions, the National Advisory Committee on Im-
munization (NACI) recommended halting the second dose if an adverse 
effect was experienced to the first dose of vaccine until more information 
is available. Individuals who suffer myocarditis and pericarditis after 
administering the vaccine experienced common symptoms including; 
shortness of breath, pain in the chest, palpitations [160]. Furthermore, a 
recently published report in American Heart Association revealed that 
the adverse reaction of myocarditis in young people under the age of 21 
is mild and improved quickly [161]. Cases of suspected vaccine- 
associated myocarditis were categorized as “probable” or “confirmed” 
using Center for Disease Control and Prevention (CDC) definitions. 

Similarly, analysis of observational data of adverse events following 
mRNA vaccination from the largest health care organization in Israel 
was compared with unvaccinated individuals. The results suggested that 
vaccination is most strongly associated with a high risk of myocarditis 
(risk ratio, 3.24; 95% CI, 1.55 to 12.44; risk difference, 2.7 events per 
100,000 persons; 95% CI, 1.0 to 4.6) [162]. 

Myocarditis and pericarditis are more typically reported in children 
who develop multisystem inflammatory syndrome (MIS-C) following 
COVID-19 infection. MIS-C is a condition that causes different parts of 
the body to become inflamed, including the heart, lungs, kidneys, brain, 
and gastrointestinal organs [163]. Children who develop MIS-C are 
much more likely to be admitted to the intensive care unit (ICU) and 
need medication. The CDC reports at least 5900 cases of MIS-C causing 
52 deaths among children in the US. Similarly, a study in the US and UK 
that included adults found that myocarditis is more likely common after 

COVID-19 infection instead after vaccination [164,165]. 
Myocarditis and pericarditis are conditions that have occurred 

following COVID-19 vaccination in a very small number of people. Most 
cases are mild, and individuals often recover on their own or with 
minimal treatment. The risks to the heart from COVID-19 infection can 
be more severe. Conclusively, the NACI reported that the benefits of 
COVID-19 mRNA vaccines continue to outweigh the risks of COVID-19 
illness in the authorized population as mRNA vaccines are effective in 
reducing COVID-19 infections, hospitalizations, and deaths. 

Table 3 
General characteristics of mRNA-based vaccines for COVID-19.   

BNT162b2 mRNA-1273 

Efficacy 95% 94.1% 
Technology mRNA mRNA 
Required doses 2 2 
Days between doses 21 1 month 

Recommended age 
group as per US 
FDA 

12 years of age and older 
(purple cap, gray cap), 
5–11 years of age (orange 
cap) 

18 years and older 

Common adverse 
reactions 

acute anaphylactic reaction, 
myocarditis and pericarditis, 
fainting, fatigue, headache, 
muscle pain, chills, joint 
pain, swelling at the 
injection site, fever, redness 
at the injection site 

acute allergic reactions, 
myocarditis and 
pericarditis, syncope, pain 
at the injection site, fatigue, 
headache, myalgia, 
arthralgia, chills, nausea/ 
vomiting, axillary swelling/ 
tenderness, fever, erythema 
at 
the injection site, and rash 

Storage temperature − 80 to − 60 ◦C − 25 ◦C to − 15 ◦C 
Duration of stability 

at fridge 
temperature 

5 days 30 days  

Table 4 
In-Progress Clinical trials using mRNA vaccines for the treatment of various 
cancer types.  

Target disease Status Phase NCT number 

Non-small cell lung cancer 
(NSCLC) 

Completed I/II NCT03164772 
Not yet recruiting – NCT03908671 
Unknown I/II NCT02688686 

Ovarian cancer Recruiting I NCT04163094 
Unknown I NCT01456065 

Melanoma Completed I/II NCT00204607 
Completed I NCT00978913 
Completed I/II NCT00940004 
Completed I NCT01066390 
Completed II NCT02285413 
Completed I/II NCT00204516 
Completed I/II NCT01278940 
Completed I/II NCT01530698 
Completed I/II NCT00243529 
Active, not 
recruiting 

II NCT03897881 

Active, not 
recruiting 

I NCT01456104 

Active, not 
recruiting 

I NCT02410733 

Terminated I/II NCT00961844 
Terminated I NCT03480152 
Terminated I/II NCT00929019 

Brain cancer Completed I/II NCT00846456 
Completed I NCT00626483 
Completed II/III NCT03548571 
Suspended II NCT03927222 
Recruiting I/II NCT02649582 
Recruiting II NCT03688178 
Recruiting II NCT02465268 
Unknown I NCT02808416 
Unknown I NCT02709616 
Active, not 
recruiting 

I NCT00639639 

Unknown II NCT02366728 
Unknown I/II NCT01291420 
Completed I NCT00890032 

Prostate cancer Completed I/II NCT01278914 
Completed II NCT01446731 
Completed II NCT02692976 
Active, not 
recruiting 

I/II NCT01197625 

Withdrawn I/II NCT01153113 
Terminated II NCT02140138 
Unknown I/II NCT02452307 

Blood cancer (leukemia) Completed I NCT00834002 
Completed I/II NCT01734304 
Completed II NCT00510133 
Completed I/II NCT02528682 
Recruiting II NCT01686334 
Active, not 
recruiting 

I NCT01995708 

Active, not 
recruiting 

I/II NCT03083054 

Terminated I NCT00514189 
Unknown  NCT00965224 

Cancer related to digestive tract Completed II NCT00228189 
Unknown – NCT03468244 
Unknown I/II NCT02693236  

A. Hussain et al.                                                                                                                                                                                                                                



Journal of Controlled Release 345 (2022) 314–333

326

9. Future of mRNA-based therapeutics to treat other major 
disease 

Since the mRNA-based vaccines have proven effective against 
COVID-19 and its emerging variants, the implications and role of mRNA 
are now expanding far beyond COVID-19. This ultimate success will 
pave the way for extensive use in emerging and recognized pathogens. In 
making mRNA-based vaccines, these great strides have changed the 
future approach for vaccine development. This attracted various re-
searchers to the field of mRNA vaccines against cancer and other in-
fectious diseases, which are in the early stages of clinical trials. Crucial 
advantages such as quick designing, rapid generation, and ease in 
manufacturing made the mRNA vaccines the best choice against various 
life-threatening diseases in the near future [166]. Some of the examples 
of mRNA vaccines in the developmental stages against various infectious 
diseases (Fig. 8) and cancer (Fig. 9) are highlighted below: 

Comparable to SARS-CoV-2, the influenza pandemic in 1918 caused 
40 M deaths around the globe. Several vaccines, including live attenu-
ated, inactivated, and recombinant haemagglutinin (HA) have been 
developed, targeting the haemagglutinin (HA) protein responsible for 
viral entry into the host. However, due to the rapid and constant mu-
tations, the virus is still causing severe respiratory illness, especially in 
winters [167,168]. Various mRNA vaccines are undergoing clinical tri-
als, such as modified mRNA VAL-506440 encoding full-length, a 
membrane-bound form of the HA glycoprotein isolated from either of 
the two prominent strains, H10N8 influenza strain and H7N9 influenza 
strain (Table 5) [169] [170]. For the H10N8 study, a total of 201 par-
ticipants were recruited and given 100 μg intramuscularly. The admin-
istered dose induced humoral immunization inhibition and 
microneutralization titers of 1:40 in 100% & 1:20 in 87.0% of the par-
ticipants. Compared to 34.5% of the participants receiving the intra-
muscular dose, the 25 μg intradermal dose generated humoral 
immunization inhibition titers of more than 1:40 in 64.7% of the par-
ticipants [170]. Similarly, 10, 25 and 50 μg doses were administered to 
156 participants intramuscularly for the H7N9 study. These adminis-
tered doses generated humoral immunization inhibition titers of 1:40 in 
36.0%, 96.3%, and 89.7% of the participants, respectively. For 10 and 
25 μg administered groups, the microneutralization titers around were 
1:20 by 100% participants, while 96.6% in the 50 μg group [170]. The 
above clinical data revealed high neutralization antibody titers, sug-
gesting that the mRNA vaccine candidates possess great promise in 
protecting against influenza infection. 

The Rabies virus is transmitted from an infected dog or cat and 

causes Rabies infection in the central nervous system. During the 
infection, flu-like symptoms develop at first, and due to progressive 
encephalomyelitis, the patient finally develops severe neurotropic 
symptoms [171]. Over the years, different conventional vaccines have 
been approved to treat rabies, but the mortality is still very high [172]. 
To address this, two mRNA-based vaccines, namely CV7201 and 
CV7202, have been developed and tested against rabies in clinical trials 
(Table 5). The lyophilized CV7201 and CV7202 are temperature-stable 
vaccines comprising mRNA encoding free form glycoprotein (RABV-G) 
from rabies virus itself, and cationic protein protamine is used for 
complexation [173]. During the phase I clinical trials in Germany, a total 
of 306 doses of CV7201 were administered to the participants. The 
vaccine administered intradermally prompted neutralizing antibody ti-
ters of 0.5 IU/mL against the virus with 32 (71%) of 45 participants, 
while 6 (46%) of 13 participants were administered intramuscularly. 
Moreover, 8 (57%) out of 14 participants were given a booster dose of 
CV7201 intradermally, which induces neutralizing antibody titers of 
more than 0.5 IU/mL. Similarly, CV7202 is also under phase I clinical 
trials with a total of 53 participants. The phase I clinical trials are ex-
pected to complete by next year [173–175]. 

Similarly, endemic to central Africa in 2014, the Ebola virus affects 
the central nervous and gastrointestinal systems at first, leading to 
multi-organ failure, coma, and death in severe cases [176,177]. In 2019, 
the US FDA approved a recombinant vesicular stomatitis virus (VSV) 
Ebola vaccine. However, certain safety concerns were also noticed at 
higher doses, such as skin rashes and acute arthritis [178]. Later on, two 
mRNA vaccines were developed that encodes the Ebola virus envelope 
glycoprotein (EBOV GP). Lipid nanoparticles are used to encapsulate 
mRNA to facilitate efficient delivery. The vaccine was tested on two 
groups of guinea pigs (vaccine A, B) to test the neutralizing antibodies. 
The results revealed that increased EBOV GP titers were induced after 21 
and 42 days post-treatment [179]. 

The transmission of Epstein–Barr Virus (EBV) from saliva, blood or 
other body fluid causes fever, sore throat, fatigue, lack of appetite, rash, 
swollen glands in the neck and sometimes Guillain-Barre syndrome and 
cancer of the nose and throat as well. The mRNA-1189 candidate 
developed against EBV targeting the glycoprotein 350 (gp350) showed 
promising results in preclinical studies [180]. The mRNA-1189 induced 
antibody titers in Balb/c mice after two doses against viral protein 
responsible for epithelial cell entry. These promising results bring hope 
for viable immunity and defense against EBV-related infections and 
complications. 

Similarly, the Respiratory Syncytial Virus (RSV) causes infection in 

Table 5 
Clinical trials of mRNA vaccines against infectious diseases except COVID-19.  

Funding source Name Target Infection Type Phase  

Moderna mRNA-1647 CMV Nucleoside-modified mRNA–LNP Phase II (NCT04232280) 
Phase III (NCT05085366) 

[224,225] 

Moderna mRNA-1443 CMV Nucleoside-modified mRNA–LNP Phase I (NCT03382405), 
Phase II (NCT04917861) 

[226,227] 

Moderna mRNA-1893 Zika Nucleoside-modified mRNA–LNP Phase I (NCT04064905) 
Phase II (NCT04917861) 

[228,229] 
[227] 

Moderna mRNA-1325 Zika Nucleoside-modified mRNA–LNP Phase I (NCT03014089) [230] 
Moderna mRNA-1653 hMPV/PIV3 Nucleoside-modified mRNA–LNP Phase I (NCT04144348, NCT03392389) [231] 
Moderna mRNA-1345 RSV Nucleoside-modified mRNA–LNP Phase I (NCT04528719), 

Phase II & III (NCT05127434) 
[232,233] 

Moderna mRNA-1851 (VAL- 
339851) 

Influenza A (H7N9) Nucleoside-modified mRNA–LNP Phase I (NCT03345043) [170] 

Moderna mRNA-1440 (VAL- 
506440) 

Influenza A (H10N8) Nucleoside-modified mRNA–LNP Phase I (NCT03076385) [234] 

Moderna mRNA-1944 Chikungunya Nucleoside-modified mRNA–LNP Phase I (NCT03829384) [235] 
Moderna mRNA-1388 (VAL- 

181388) 
Chikungunya Nucleoside-modified mRNA–LNP Phase I (NCT03325075) [234] 

CureVac CV7201 Rabies Unmodified mRNA complexed in RNActive Phase I (NCT02241135) [236] 
CureVac CV7202 Rabies Unmodified mRNA–LNP Phase I (NCT03713086) [237] 
GSK GSK3903133A Rabies Self-amplifying mRNA in cationic 

nanoemulsion 
Phase I (NCT04062669) [238]  
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children, leading to acute bronchiolitis with a high morbidity and 
mortality rate. Previously, certain RSV vaccine candidates were devel-
oped, specifically targeting the conserved F protein. But during the 
clinical trials, most of the vaccines were failed due to low neutralizing 
antibody titers against the virus. In recent times, an mRNA-based vac-
cine candidate (mRNA-1345) has been developed by optimizing the 
codon of the previous mRNA-1777 candidate to enhance translation and 
immunogenicity (Table 5) [181]. The ongoing phase I clinical trials for 
mRNA-1345 recruited 160 participants, where several doses will be 
given to evaluate the tolerability and reactogenicity in adults and chil-
dren. The study is expected to be completed in 2023, and then further 
evaluation will be conducted [182]. 

Zika Virus (ZIKV) causes influenza-like illness in milder cases, while 
the severe cases include multi-organ failure, meningitis, and encepha-
litis [183]. In order to prevent viral fusion, the membrane and envelope 
protein is excellent targets for mRNA vaccines against ZIKV. A study 
showed that the mRNA vaccine generated neutralizing antibody titers 
against ZIKV were 50–100 times higher than other vaccine candidates 
[184,185]. Another mRNA-based vaccine (mRNA-1893) is undergoing 
phase I clinical trials to evaluate safety, tolerability, and immunoge-
nicity. The study is expected to be completed at the end of 2021. The 
results will be available soon (NCT04917861). 

Likewise, the pandemic of Human Immunodeficiency Virus (HIV) 
has infected around 17.5 M people worldwide and is caused by the direct 
transmission of humans to humans [186]. Due to the antigenic multi-
plicity of the protein envelope and the compact glycan shield, still, there 
are no effective vaccines against HIV. Recently, a Self-amplifying mRNA 
vaccine was developed, which encodes the clade C envelope glycopro-
tein and viral replicon particle. The vaccine was tested in rhesus ma-
caques, and the results showed a higher generation of antibody titers 
against the virus’s envelope protein [187]. Some other mRNA-based 
vaccines are also in the developmental stages against various in-
fections, including Human Metapneumovirus (HMPV) and Para-
influenza Virus Type 3 (PIV3), Human Cytomegalovirus (HCMV). 
Moreover, Moderna is set to have various therapeutic targets in its 
sights, such as heart failure, more effective influenza shots and 
mosquito-borne viral disease chikungunya. Similarly, the world would 
probably see the first malaria vaccine developed by BioNTech at the end 
of 2022. 

In late 2021, the first dose of BNT111, an mRNA-based therapy 
developed by BioNTech, was administered to a patient in a phase II 
cancer vaccine trial. The BNT111 was given in combination with Lib-
tayo, co-developed by Sanofi and Regeneron. The patient was suffering 
anti-PD1-refractory/relapsed un-resectable Stage III or IV melanoma. A 
total of 120 patients will be recruited to evaluate the safety, efficacy and 
tolerability of the combination of BNT111 and Libtayo. The develop-
ment of BNT111 is the leading candidate of BioNTech, comprising a 
fixed combination of tumor-associated antigens with mRNA encode. The 
aim of the combination is to activate a specific and strong response to 
the tumor. The phase II clinical trials have been approved in the US, UK, 
Australia and some other European countries, including Spain, Ger-
many, Italy and others. The Phase II trials were launched after the 
success in preliminary results in early clinical evaluation and Phase I 
clinical trial. The phase I clinical trials results revealed promising safety 
profile in 89 patients with advanced melanoma. The efficacy data also 
showed that the BNT111 is highly effective in 42 patients both as a 
single agent and in combination with anti-PD-1 antibodies [188]. 

Similarly, mRNA-4157 developed by ModernaTX, Inc., is a person-
alized vaccine encoding multiple neoantigens and encapsulated in lipid. 
The selection of multiple neoantigens is based on a proprietary algo-
rithm, designed to prompt neoantigen specific T-cells and accompanying 
anti-tumor responses [189]. In Phase I clinical trials the safety profile of 
mRNA-4157 was evealuated using adjuvant monotherapy in patients 
with resected solid tumors. On other hand, the mRNA-4157- 
pembrolizumab combination was also used in patients with advanced 
or metastatic cancer. The results of 13 patients received mRNA-4157 as 

monotherapy, and 20 patients received mRNA-4157-pembrolizumab 
combination showed no clinically significant adverse events, however 
reversible and low-grade adverse events were noticed. Moroever, 12 
patients among the total 13 on adjuvant monotherapy were noticed 
disease free till 8 months during the study. Whereas the combination of 
mRNA-4157-pembrolizumab results revealed that 12 patients pro-
gressed on prior checkpoint inhibitor, 1 complete response and 16 have 
been restaged. However, one patient is observed to be non-evaluable for 
response but remains on study. The study further revealed that neo-
antigen specific T cell responses were also noticed via IFN-γ ELISpot 
from cryopreserved peripheral blood mononuclear cells. The phase I 
clinical trials results showed that all the doses of mRNA-4157 are safe 
and mRNA-4157-pembrolizumab showed desired clinical responses 
inducing neoantigen specific T cells. These promising results made the 
mRNA-4157 to progress to phase II clinical trials. Similarly, BioNTech 
also developed BNT113 and BNT122 for human papillomavirus 16, 
head, neckcancer and adjuvant colorectal cancer respectively. The phase 
II clinical trials for BNT113 & BNT122 are undergoing after promising 
results in Phase I clinical trials. 

10. Conclusion and prospectives 

The mRNA-based technology has been explored over the past three 
decades. Efforts are made, and billions of dollars are already spent to 
make them functional for human use. The mRNA-based treatment and 
vaccines with the potential of quick production are essential in coping 
with viral diseases and infections. As the viruses are highly mutating 
pathogens, the mRNA-based technology can be easily modified and 
manufactured in large quantities quickly. Furthermore, the technology 
transfer is extremely easy compared to conventional vaccines technol-
ogy because the shipping and transport might take weeks and months. 
But in the case of mRNA, the genetic sequence can be sent via a com-
puter. The COVID-19 opened the door for mRNA-based vaccines and 
therapies for other major diseases. The impact and implication of 
mRNA-based technology could be far beyond COVID-19. 

Moreover, mRNA gained much attention in the field of bio- 
pharmaceuticals. The reason for interest in this new kind of vaccine 
arises from their safety, precision and flexibility compared to conven-
tional approaches. The increasing number of clinical trials in cancer 
therapies (Table 4) and infectious diseases (Table 5) other than COVID- 
19 have recently revealed significant interest from pharmaceutical in-
dustries. The mRNA vaccines can be manufactured on a large scale for 
clinical-grade applications, which brings a quick platform to address 
sudden outbreaks when a quick response is needed. 

However, to further establish itself more, the technology must 
address sustainability and costly manufacturing processes in large scale. 
Compared with conventional established vaccines, the IVT reaction of 
mRNA is much safer and fast, but the use of expensive and limited 
materials made the scientists to research the manufacturing process. 
Furthermore, the downstream processing of the vaccine needs 
improvement to make it easy for scalability. In order to maintain 
integrity and develop deep roots, the technology needs to address some 
key issues such as the design of mRNA sequence in the first place. The 
IVT reaction is acceptable for small scale production however, major 
efforts are required to enhance the production in larger scale especially 
when the demand is of universal need. Such implementation of 
advanced research technologies are required to maintain less amount 
mRNA needed for anticipated therapeutic effect while maintaining 
safety profile. Furthermore, next-generation delivery technology are 
required to ensure safety as well as increase long-term stability of the 
final product within a more reasonable and feasible temperature range. 
Finally, proper regulatory guidelines shall be implemented for studying 
the safety and efficacy of novel carriers of mRNA vaccines. 
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