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Abstract

Since early 2020, disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has become a global pandemic causing millions of infections and deaths worldwide. 

Despite rapid deployment of effective vaccines, it is apparent that the global community lacks 

multipronged interventions to combat viral infection and disease. A major limitation is the paucity 

of antiviral drug options representing diverse molecular scaffolds and mechanisms of action. Here 

we report the antiviral activities of three distinct marine natural products: homofascaplysin A 

(1), (+)-aureol (2), and bromophycolide A (3), evidenced by their ability to inhibit SARS-CoV-2 

replication at concentrations that are non-toxic towards human airway epithelial cells. These 

compounds stand as promising candidates for further exploration towards the discovery of novel 

drug leads against SARS-CoV-2.
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Introduction

COVID-19, caused by infection with the SARS-CoV-2 coronavirus, is a novel disease 

affecting human populations worldwide that has led to over 5.9 million deaths and 

440 million infections as of March, 2022.1 As the pandemic continues, the deployment 

of several safe and effective vaccines has brought some optimism. Nevertheless, the 

only FDA approved direct-acting small molecule antiviral drugs for SARS-CoV-2 are 

remdesivir, molnupiravir, and a combination therapy using PF-07321332 with ritonavir 

(PAXLOVID™).2,3,4,5 Remdesivir has been shown to shorten the recovery time in 

hospitalized patients, whereas molnupiravir significantly reduces the risk of hospitalization 

and death. The combination therapy using PF-07321332 with ritonavir has displayed 

promise in Phase 2-3 clinical trials, reducing the risk of hospitalization by almost 89% and 

with no deaths.4 While these developments are promising, controlling virus transmission and 

treating patients require development of additional therapeutics, including small molecule 

drug candidates that can be used in combination regimens, a therapeutic approach that 

has proved beneficial in the fight against human immunodeficiency virus, hepatitis B, and 

hepatitis C virus.6 Furthermore, there is the possibility of additional benefits to human 

health through the discovery of compounds with activity against other coronaviruses. 

Although morbidity caused by many coronaviruses is mild (coronaviruses cause 10–30% 

of “common cold” upper respiratory tract infections),7, 8 SARS-CoV-2 is the third highly 

virulent coronavirus to emerge in the last 20 years, and it is unlikely to be the last.

In the search for novel drug candidates to treat or prevent COVID-19, a broad assessment 

of antiviral activities attributed to known marine and terrestrial natural products is a useful 

starting point for prioritizing screening of compounds against SARS-CoV-2. A wide array 

of molecules from terrestrial and marine sources show antiviral activity including inhibition 

of coronaviruses (Figure S1-S2).9-15 Some of their putative mechanisms of action include 

the inhibition of the viral spike protein (S) and angiotensin converting enzyme 2 (ACE2) by 

anthraquinones and tannins (Figure S1, A),16, 17 inhibition of viral helicase by flavonoids 

(Figure S1, B),18 and inhibitory activity against the SARS-CoV chymotrypsin-like protease 

(3CLpro)/ main protease (Mpro) and papain-like cysteine protease (PLpro) by alkaloids, 

flavonoids, and coumarins (Figure S1, C/D).19-23 Most relevant, recent reports have 
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demonstrated potent in vitro anti-SARS-CoV-2 activity for natural product representatives of 

isoprenoid, peptide, polyketide, binaphthoquinone, and polyphenol structural classes (Figure 

1, B).24-28 Recently, the repurposed drug plitidepsin (4, also known as dehydrodidemnin 

B, a depsipeptide from the marine ascidian Aplidium albicans; Figure 1, B) was shown to 

be more than 20 times as potent as remdesivir against SARS-CoV-2.28 Taken together, the 

molecular diversity represented by natural products holds promise for discovery of novel 

drug leads to fill the critical need for SARS-CoV-2 and other RNA viruses of pandemic 

concern.

Result and discussion

We initiated a study of marine natural products from our collection of several thousand 

marine extract fractions and pure compounds assembled through the National Institutes 

of Health (NIH) funded International Cooperative Biodiversity Groups (ICBG) program 

in Fiji and the Solomon Islands starting in 2004. Natural products with structural 

similarity to known antiviral molecules, especially those with established activity against 

coronaviruses and other RNA viruses, were prioritized. Homofascaplysin A (1) was 

chosen due to previously reported activity of other β-carboline alkaloids against RNA 

viruses including HIV and dengue virus.29-31 Additionally, members of the fascaplysin 

class (which includes 1) structurally resemble tryptanthrin (Figure S1, D), an indole 

quinazoline alkaloid active against human coronavirus NL63.19 Aureol (2) was selected 

due to its reported anti-influenza activity and because it embodies the sesquiterpene 

hydroquinone structural class.32 Moreover, a close structural analog stachyflin (16) has 

shown nanomolar activity against influenza A virus subtype H1N1, further motivating us to 

prioritize sesquiterpene hydroquinones (Figure S2).33, 34 Bromophycolide A (3), an unusual 

meroditerpene macrolide, was selected based on its known anti-HIV activity (Figure 1, 

A).35 Two other biosynthetically related polycyclic analogs, bromophycoic acid B (9) and 

callophycoic acid B (10), were chosen as additional representatives of this natural product 

family.36, 37 Likewise, the complex alkaloid haliclonacyclamine A (11) was considered 

based on its reported anti-HIV activity.38 Finally, peyssonnoside A (12) and formoside 

(13) representative of terpene glycosides, and cladophorol A (14), and cladophorol G (15) 

representing polyphenols were also chosen, as compounds from these classes have shown 

activity against human coronavirus 229E, respiratory syncytial virus, influenza A virus, 

SARS-CoV PLpro, and 3CLpro enzyme (Figure S1-S2).20, 39, 40 Thus, ten unique molecules 

belonging to five distinct structural classes were selected and purified from our extract 

library for screening in a SARS-CoV-2 specific assay with live virus in a BSL-3 facility.

Among the ten natural products that were evaluated, three stood out for their promise 

based on a series of experiments with SARS-CoV-2-infected human lung cancer Calu-3 

cells: homofascaplysin A (1), aureol (2), and bromophycolide A (3). These three natural 

products significantly suppressed viral infection while not killing human lung cells, relative 

to DMSO as control, at 0.5–1 μM (Figure 3). Follow-up experiments (with the same assay 

conditions) to further confirm the bioactivity of 1–3 also indicated significant suppression of 

viral infection at concentrations of 2.8 μM for 1 and 10 μM for 2–3 (Figure 4). Although 

formoside (13) showed initial promise in reducing infection by SARS-CoV-2 in Calu-3 

Chhetri et al. Page 3

J Nat Prod. Author manuscript; available in PMC 2023 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells (Figure 3), these data were not replicated in a subsequent experiment (data not 

shown). Homofascaplysin A (1) exhibited promising inhibition of SARS-CoV-2 infection 

(EC50 1.1 ± 0.4 μM) but suffered from relatively high cytotoxicity (CC50 ~5 μM) towards 

Calu-3 cells (Table 1). Following widely reported variability and cell-type dependencies 

for antiviral activities, the Calu-3 experiments were complemented with use of human 

primary airway cells in polarized pseudostratified air-liquid interface cultures. This model 

accurately recapitulates the biology of airway epithelia in vivo.41, 42 At 2.8 μM, 1 effectively 

reduced viral load as indicated by the >90% reduction in harvested SARS-CoV-2 RNA 

compared with dimethyl sulfoxide (DMSO) control (Figure 5, A). Additionally, 1 did not 

affect adenoviral transduction which was used as a toxicity control (Figure 5, B). However, 

compounds 2–3 were ineffective in this system at a test concentration of 10 μM.

While anti-SARS-CoV-2 inhibitory activities of 1–3 are less promising than known anti-

SARS-CoV-2 natural products 4–8 (Figure 1, B), they are comparable to other anti-SARS-

CoV-2 compounds that have recently been reported in the literature, albeit using different 

host cell systems.44-48 Homofascaplysin A (1), (+)-aureol (2), and bromophycolide A 

(3) represent three diverse structural classes of small molecules (β-carboline alkaloids, 

sesquiterpene hydroquinones, and meroditerpene macrolides, respectively) that offer 

numerous naturally occurring analogs and opportunities to create synthetic derivatives 

to pursue optimal antiviral and cytotoxicity profiles for development of lead candidates 

for treatment or prevention of SARS-CoV-2.35, 49-56 As all of the studies were done 

with compound treatment of cells prior to infection, future work could address post-

infection antiviral activity. Additionally, upcoming studies could utilize emerging tools 

such as replicons and virus-like particles to determine the antiviral mechanisms of lead 

candidates.57-61

The β-carboline alkaloid homofascaplysin A (1) belongs to the fascaplysin class of 

natural products which display a range of biological activities.29, 55 While fascaplysin has 

historically been known as a potent and selective CDK4 inhibitor, 1 and its congeners 

show potent antimicrobial, anticancer, and anti-Alzheimer’s activity.55, 62-68 Fascaplysin has 

also been shown to be a “balanced” opioid receptor agonist with a signaling profile that 

resembles endorphins, in contrast to “biased” μ opioid receptor agonists like morphine that 

participate in G protein signaling but weakly engage β-arrestin and endocytic machinery.69 

Additionally, β-carboline alkaloids including harman (18), N-butylharmine (19), harmol 

(20), and 9-N-methylharmine (21) have reported activity against HIV and dengue virus 

(Figure S2).30, 31 Hence, the β-carboline alkaloids are an important family of molecules that 

have shown promise against a variety of disease targets.

Sesquiterpene hydroquinones as represented by (+)-aureol (2) are common among marine 

organisms. Several analogs of 2 have been isolated through our ICBG project from 

marine sponges and algae,70 with numerous natural and synthetic analogs described in the 

literature.33, 34, 71-74 Aureol (2) has been shown to exhibit anti-influenza activity in earlier 

studies.32 Analogs of 2 including stachyflin (16),33, 34 strongylin A (22),73 and peyssonol 

A (23)75, 76 possess antiviral activity and hence underscore the importance of exploring the 

sesquiterpene hydroquinone class of compounds for lead optimization against COVID-19. In 
vivo studies on structural analogs of 16 in mice and ferrets (for anti-influenza virus activity) 
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indicate that the sesquiterpene hydroquinone class is indeed amenable to development as 

antiviral drug candidates.77

Macrocyclic terpenes as represented by bromophycolide A (3) are rare in nature, but 

Fijian red algae of the genus Callophycus are a renowned source of structurally complex 

diterpene-shikimate macrolides with variable halogenation, cyclization, and stereogenic 

motifs. Moreover, 3 is present at high concentrations in the producing alga, where it plays a 

role in defense against algal pathogens.35, 78 Although there have been a few total synthesis 

efforts geared towards the meroditerpene macrolide core of bromophycolides, a concise total 

synthetic approach still remains at bay.79, 80 Additionally, the biosynthetic pathways for 3 
and naturally occurring analogs have not yet been deciphered. The bromophycolides display 

a range of biological activities including antiviral (against HIV-1), antimicrobial (against 

methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium), 

antimalarial, and anticancer activities. While anti-HIV-1 activity of 3 is marginal (IC50 of 9.8 

and 9.1 μM against HIV-1 strains 96USHIPS7 and UG/92/029, respectively), 3 shows sub-

micromolar blood stage antimalarial activity, targeting heme crystallization in the human 

malarial parasite Plasmodium falciparum.35, 52 In vivo studies showed low toxicity and 

reasonable bioavailability in a malaria mouse model. However, the molecule suffers from 

rapid liver metabolism and hence a short in vivo half-life.53 Thus, future studies directed 

towards optimized analogs of 3 against SARS-CoV-2 can benefit from the pharmacokinetic 

and pharmacodynamic results reported for 3 in mouse models.

Taken together, the bioactivities observed for 1–3 encourage the exploration of compounds 

within their structural classes and can be envisioned to offer analogs exhibiting potent 

activity against SARS-CoV-2 via exploitable inhibitory mechanisms, while minimizing 

cytotoxicity. Whereas all current and future endeavors for antiviral drug discovery require 

a multifaceted approach, it’s worth noting as stated by Dr. Francis S. Collins in a recent 

Science editorial that: “Another lesson is that the necessary short-term dependence on 

repurposing existing drugs will not often produce true successful outcomes. For the future, 

we should begin to work on potent oral antivirals against all major classes of potential 

pathogens, with the goal of having drugs ready for phase 2/3 efficacy trials when the next 

threat emerges.”81

Experimental Procedures

General Experimental Procedures

NMR spectral data were acquired on 18.8 T (800 MHz for 1H and 201 MHz for 13C) Bruker 

Advance IIIHD instrument equipped with a 3 mm triple resonance cryoprobe. Spectra were 

recorded in DMSO-d6, CDCl3, and CD3OD and referenced to the solvent residual peaks (δH 

and δC). NMR data were analyzed using MestReNova 11.0.4.

High resolution MS data were acquired on a Thermo Scientific IDX Tribrid mass 

spectrometer. Low resolution mass spectrometric data was acquired on a Waters Acquity 

QDa detector equipped with a Waters 2695 separation module. X ray crystallographic data 

was acquired on an XtaLAB Synergy, Dualflex, HyPix diffractometer. Optical rotation data 

was acquired in a Jasco-DIP-360 digital polarimeter.
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Specimen Collection and Species Identification

Fascaplysinopsis reticulata (G-0633) was collected in 2008 from Thithia locale, Central 

Lau Island, Fiji (S 17°47′17.9″, W 179°23′52.8″) at a depth of 17 m. It had a conulose 

structure, medium hard texture with thin brown mucus and was dark brown in color. A 

Collection photo for Fascaplysinopsis reticulata (G-0633) is provided in the supporting 

information (Figure S3). Haliclona sp. (G-1364) was collected in 2016 near Florida Island, 

Nggela Sule Island, Solomon Islands (S 9°03′05.8″, E 160°04′30.0″). The organism was 

found growing prolifically on a reef slope at a depth of 42 m. It had a soft texture, 

black color with rope like morphological appearance and gave off a black exudate. The 

sponge was unispicular anisotropic with ~ 80 μm oxeas. For each collection, morphological 

vouchers were preserved in formalin and DNA vouchers were preserved in molecular grade 

ethanol, and are stored at the University of the South Pacific’s Institute of Applied Sciences. 

Genus and species were assigned by comparison with published morphological traits and by 

chemotaxonomic comparison based on the natural products literature.82-84

Isolation and characterization of natural products

Bromophycolide A (1),35 bromophycoic acid B (9),36 callophycoic acid B (10),37 

peyssonnoside A (12),85 formoside (13),86 cladophorol A (14), and cladophorol G (15)87 

were isolated as part of previously published investigations of marine algae or sponges, 

and characterized as detailed in earlier reports. All natural products were stored at 

−20°C until used for the present study. The purity and identity of each compound were 

confirmed by comparison of 1H NMR spectroscopic data to original reports. Based on 
1H NMR spectroscopic data (Figure S4-S6) bioactive compounds 1–3 were at least 90% 

pure. Compound quantities were determined using quantitative 1H NMR (qNMR) wherein 

the unknown quantity of a natural product was related to a known amount of caffeine 

(compound and caffeine were dissolved in equal volume of NMR solvent) using a capillary 

filled with benzene-d6 as an internal standard.88

Isolation of Homofascaplysin A (1) and aureol (2): Fascaplysinopsis reticulata (1180 g) was 

exhaustively extracted with 50% aqueous methanol followed by methanol. The combined 

extracts were partially evaporated in-vacuo and partitioned with dichloromethane. The 

dichloromethane extract was further re-partitioned with water. The dichloromethane-soluble 

extract (3.2 g) was adsorbed on 200-350 mesh silica gel (1:10 loading capacity), in a 

flash benchtop open column, and eluted with a step gradient of hexanes/ethyl acetate (1:1) 

to ethyl acetate/methanol (1:1) furnishing six fractions. Fraction 1 (0.5 g) (pooled from 

50% hexanes/ethyl acetate to ethyl acetate elutions) was flash chromatographed over 25 g 

of 200-350 mesh silica gel (gradient: hexanes to ethyl acetate). Further separation of the 

fraction containing 2 (as monitored with thin layer chromatography) by C18 silica flash 

benchtop open column chromatography (eluting with a gradient of 95% aqueous methanol 

to methanol) gave pure 2 as a yellow oil. The remaining combined 50% aqueous methanol 

and methanol extract (after partitioning with dichloromethane) was adsorbed into HP20SS 

resin, dried, and desalted with distilled water. Subsequent elution with methanol provided 

1.1 g of extract which was adsorbed onto 20.4 g HP20SS resin and eluted with a gradient 

of 20% aqueous methanol to 100% methanol followed with methanol/acetone (4:1) to 

100% acetone to obtain eight fractions. Fraction eluting with 1:1 methanol/water furnished 
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partially pure 1 (181.6 mg) as a red powder. A portion of this fraction (14.9 mg) was 

dissolved in chloroform and passed over celite to furnish 2.4 mg of pure 1 as a brown solid. 

Characterization data for 1–2 are reported in supporting information.

Haliclonacyclamine A (11): Haliclona sp. (750 g wet weight) was exhaustively extracted 

with methanol and then with dichloromethane. The crude extract (10.4 g) was suspended 

in 9:1 mixture of methanol/water and partitioned with hexanes to furnish 1.9 g of hexanes-

soluble fraction. The methanol/water extract was adjusted to 3:2 methanol/water and 

partitioned with dichloromethane to provide 2.6 g of dichloromethane-soluble extract. The 

methanol was evaporated, and the remaining water extract was partitioned with saturated 

butanol to give 1.5 g of butanol-soluble fraction. The dichloromethane-soluble fraction was 

subjected to silica gel column chromatography, eluting with hexanes and dichloromethane 

(0% to 100% dichloromethane step gradient), dichloromethane and ethyl acetate (0% to 

100% ethyl acetate step gradient), ethyl acetate and methanol (0% to 100% methanol step 

gradient), and finally with methanol/water (1:1) with 0.1% trifluoroacetic acid (TFA) in the 

aqueous portion. The fraction eluting with 1:1 methanol/water, gave 11 (1.1 g) as a white 

powder. Although the 1H and 13C NMR spectroscopic data for 11 did not entirely align 

with that reported in literature for haliclonacyclamine A,89 the structure was confirmed as 

haliclonacyclamine A based on X-ray crystallographic data (Figure S11).90 The discrepancy 

in NMR data is likely due to protonation of the two nitrogen atoms present in 11 in our case. 

Characterization data for 11 are reported in supporting information.

Viruses and cells

Vero E6 cells (#CRL-1586, ATCC, Manassas, VA, USA) are derived from the epithelium of 

an African green monkey kidney; they lack type I interferon production and are commonly 

used to grow virus stocks. Vero E6 cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM, #10313-021, Gibco, Waltham, MA, USA) supplemented with 10% fetal 

bovine serum (FBS, #sh30396.03, lot# ag29759488, Cytiva, Marlborough, MA, USA), 2 

mM L-glutamine (#25030-081, Gibco, Waltham, MA, USA), 100 units/ml penicillin and 

100 μg/ml streptomycin (#400-109, Gemini Bioproducts, West Sacramento, CA, USA) at 

37 °C in a humidified incubator supplemented with 5% CO2. These cells have been used 

extensively in the lab, over 100 passages.

Calu-3 lung epithelial adenocarcinoma-derived cells (#HTB-55, ATCC, Manassas, VA, 

USA) were cultured in Eagle’s minimal essential medium (#30-2003, ATCC, Manassas, 

VA, USA) supplemented with 10% FBS, 100 units/ml penicillin and 100 μg/ml streptomycin 

at 37 °C in a humidified incubator supplemented with 5% CO2. These cells were purchased 

for this study and were used at fewer than 20 passages.

Cryopreserved human bronchial epithelial cells (hBECs) from healthy donors (#FC0035, 

Lifeline Cell Technology, Frederick, MD, USA) cells were propagated in Ex Plus expansion 

medium (Stemcell Technologies, Cambridge, MA, USA) beginning at passage 3 on flasks 

coated with PureCol (Sigma-Aldrich, St. Louis, MO, USA) at 37 °C and 5% CO2 until 

~70-80% confluency. Monolayers were generated on collagen-coated (#234154, Sigma-

Aldrich, St. Louis, MO, USA) 6.5 mm transwells (#3470, Corning Life Sciences, Durham, 

NC, USA) by seeding at density of 150,000 cells per insert and maintained under submerged 
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conditions in Ex Plus medium for 3 days. Apical and basolateral culture solutions were 

aspirated, and lower chamber fluid replaced with ALI medium (Stemcell Technologies, 

Cambridge, MA, USA). Air liquid interface conditions were maintained for 21-28 days until 

monolayers were fully differentiated.

SARS-CoV-2 isolate USA-WA1/2020 (BEI Resources, Manassas, VA, USA) was used in 

these studies. This represents an early isolate from the COVID-19 pandemic. To produce 

stocks, a confluent T75 flask of Vero E6 was infected with SARS-CoV-2 then monitored for 

cytopathic effect (cpe). When marked cpe was observed (typically 2-3 days post infection), 

viral supernatant was collected, passed through a 0.22 μm filter to remove cell debris, 

aliquoted and stored at −80 °C. To determine the infectious titer of stocks, Vero E6 cells 

were seeded in 96-well plates at 20,000 cells per well, then, after 12-24 h they were infected 

with serially diluted SARS-CoV-2. After 4-8 h, cells were fixed in 4% paraformaldehyde 

in PBS, then stained with rabbit monoclonal anti-N (#40143-R001, Sino Biologicals, VWR, 

Radnor, PA, USA) to identify infected cells, and counter-stained with Hoechst-33342 to 

identify nuclei. Total cell number and infected cell number were determined by imaging 

with a Cytation 5 automated microscope (Biotek, Winooski, VT, USA) and image analysis 

using Gen5 Prime software (Biotek, Winooski, VT, USA). The estimated titer was expressed 

as infectious units per ml.

SARS-CoV-2 antiviral assays

Initial screening and dose response assays: Experiments were performed in 96-well plates. 

Calu3 cells were seeded at 30,000 cells per well. Cells were treated with compounds 24 

h after seeding, at a confluency of 80-90%. They were infected at a low multiplicity of 

infection (MOI ~0.01) then incubated for 48 h before being fixed and stained for N protein. 

Total cell count was determined by counter-staining nuclei with Hoechst-33342. Nuclei 

and infected (N-protein positive) cells were counted using an automated microscope, as 

described above.

Antiviral activity in primary airways cells: Air-liquid interface cultures of hBECs were 

infected by the addition of 300 infectious units (determined on Vero E6) of SARS-CoV-2 

in 10 μl medium directly to the apical surface. RNA was harvested immediately (for a 0 

h, input value) or after culturing for 48 h. Levels of the SARS-CoV-2 N protein RNA (a 

marker of viral replication) and the host transcript coding RNase P (an internal standard) 

were determined by reverse-transcription quantitative PCR (RT-qPCR). RNA was extracted 

using the PureLink RNA Mini Kit (Thermo Fisher Scientific, Waltham, MA, USA) and 

eluted in a final volume of 100 μl nuclease-free water. Primers and probes were obtained 

as part of the SARS-CoV-2 Research Use Only qPCR Primer & Probe Kit: N1, N2 & RP 

(IDT, Coralville, IA, USA). Reactions were prepared with GoTaq Probe RT-qPCR system 

(#A6121, Promega, Madison, WI, USA) in final volume of 10 μl, with 1 μl extracted RNA, 

and run on a PicoReal 96 Real-Time PCR System (Thermo Fisher Scientific, Waltham, 

MA, USA). A ΔΔCt method was used to determine effects on SARS-CoV-2 replication. 

The difference in cycle threshold (Ct) between N and RNase P was determined for each 

experimental condition, then compared to the difference observed at 0 h, i.e., before any 

replication can occur. Fold change is determined by assuming that a reduction in Ct of 1 
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cycle represents a 2-fold increase in the amount of starting RNA. All experiments were 

performed with duplicate cultures and duplicate technical replicates for the RT-qPCR. Basic 

statistical analyses were performed using Microsoft Excel. Bioassay results were plotted 

using OriginPro software (OriginPro 2021, OriginLab Corporation, Northampton, MA, 

USA). EC50’s were calculated using the Quest Graph™ IC50 Calculator.91

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A: Homofascaplysin A (1), (+)-aureol (2), and bromophycolide A (3), which exhibited anti 

SARS-CoV-2 activity in the current study. B: Natural products recently reported to show 

potent activity against SARS-CoV-2.24-28
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Figure 2. 
Natural products screened with a SARS-CoV-2 live virus assay in the present study, in 

addition to those in Figure 1, A).
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Figure 3. 
Inhibition of SARS-CoV-2 infection by ten natural products in human lung cancer Calu-3 

cells. All compounds were prepared in 100% DMSO and used at a final concentration of 1 

μM (1% DMSO) except for homofascaplysin A (1, 0.5 μM), cladophorol A (14, 10 μM), and 

cladophorol G (15, 10 μM). Following treatment with the compounds, cells were infected 

with SARS-CoV-2. After 48 h, cells were fixed and stained to visualize SARS-CoV-2 

infected cells and nuclei. Both infected and uninfected cells were counted by automated 

microscopy; within each experiment, the number of total cells present at the end of the 

experiment was similar across all treatments (data not shown). 1% DMSO was used as 

vehicle control. Mean of two independent experiments are shown with standard error of the 

mean.
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Figure 4. 
Inhibition of SARS-CoV-2 infection in human lung cancer Calu-3 cells, performed as for 

Figure 3. Calu-3 cells were treated with the indicated compounds in a final concentration of 

1% DMSO. Mean of two independent experiments shown with standard error of the mean.
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Figure 5. 
Inhibition of SARS-CoV-2 infection by natural products in primary human airway cells. 

A) Primary human airway cells in air-liquid interface culture were treated with 1 in a 

final concentration of 0.1% DMSO and with 2–3 in a final concentration of 1 % DMSO. 

Compounds were added to the basal medium 1 h prior to infection. 1000 infectious units of 

SARS-CoV-2 was added to the apical surface of the cells. Total RNA was harvested at 0 h 

(input) and 48 h post-infection, replication was defined as the increase in viral RNA from 

0 to 48 h relative to the corresponding DMSO sample. Averaged data from 2 independent 

experiments shown with standard error of the mean. B) Primary human airway cells in 

air-liquid interface culture were treated with 1 in a final concentration of 0.1% DMSO and 

added to the basal medium 1 h prior to transduction with 10,000 infectious units of an 

adenoviral vector containing a CMV-driven GFP. After 48 h, cells were imaged and number 

of GFP expressing cells was counted; number of transduced cells was expressed relative to 

the DMSO treated sample. Averaged data from two independent experiments shown with 

standard error of the mean. Similar results were observed at 2.8 μM of 1 (single independent 

experiment).
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Table 1.

SARS-CoV-2 inhibition in human Calu-3 cells by 1–3.

Compound EC50 (μM) a CC50 (μM) a

Homofascaplysin A (1) 1.1 ± 0.4 ~5

(+)-Aureol (2) 4.0 ± 1.0 >10

Bromophycolide A (3) 6.9 ± 2.0 >10

Remdesivir 0.3 >5 b

DMSO control 8.3 ± 1.5 >10

a
EC50 and CC50 were determined from dose response in Calu-3 cells. Averages from three independent experiments shown with standard error of 

the mean.

b
Literature precedent shows that CC50 for remdesivir was >40 μM against Calu-3 cells.43
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