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ABSTRACT

Quantifying individual differences in higher-order cognitive functions is a foundational area of cognitive science that
also has profound implications for research on psychopathology. For the past 2 decades, the dominant approach in
these fields has been to attempt to fractionate higher-order functions into hypothesized components (e.g., inhibition,
updating) through a combination of experimental manipulation and factor analysis. However, the putative constructs
obtained through this paradigm have recently been met with substantial criticism on both theoretical and empirical
grounds. Concurrently, an alternative approach has emerged focusing on parameters of formal computational models
of cognition that have been developed in mathematical psychology. These models posit biologically plausible and
experimentally validated explanations of the data-generating process for cognitive tasks, allowing them to be used to
measure the latent mechanisms that underlie performance. One of the primary insights provided by recent appli-
cations of this approach is that individual and clinical differences in performance on a wide variety of cognitive tasks,
ranging from simple choice tasks to complex executive paradigms, are largely driven by efficiency of evidence
accumulation, a computational mechanism defined by sequential sampling models. This review assembles evidence
for the hypothesis that efficiency of evidence accumulation is a central individual difference dimension that explains
neurocognitive deficits in multiple clinical disorders and identifies ways in which this insight can advance clinical
neuroscience research. We propose that recognition of efficiency of evidence accumulation as a major driver of
neurocognitive differences will allow the field to make clearer inferences about cognitive abnormalities in psycho-
pathology and their links to neurobiology.
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The study of individual differences in performance on labora-
tory cognitive tasks and the neural basis of these differences

obstacles that have arisen for current approaches and lay out
the case for an alternative framework. The Fractionation

has been a pillar of biological psychiatry research over the past
several decades. This work is driven by the consistent obser-
vation that impairments in executive functions and cognitive
control (hereafter referred to as higher-order cognition) are
observed transdiagnostically across multiple mental disorders,
including schizophrenia, externalizing disorders (attention-
deficit/hyperactivity disorder [ADHD], substance use) (1-4),
depression, and anxiety (5,6). Links between deficits in higher-
order cognition and psychopathology have prompted a swell
of clinical neuroscience research aimed at better understand-
ing their psychological and neurobiological basis (7-16).
Moreover, this work is heavily emphasized in major funding
agency initiatives, such as the Research Domain Criteria
project (17) and Computational Psychiatry Program (18).

Our aim in this review is to offer a critical perspective on the
current state of the science; we identify a set of interrelated

Paradigm and Recent Challenges section reviews the domi-
nant fractionation paradigm, which aims to use factor analysis
to break cognitive functions into constituent elements with
selective relations to clinical disorders, and details recent
findings that present serious challenges for this approach.
The next three sections introduce an alternative paradigm
based on computational modeling, specifically focusing on
efficiency of evidence accumulation (EEA), a central individual
difference dimension measured in sequential sampling
models (SSMs) of cognition. We review evidence that EEA is
a primary driver of individual and clinical differences in
cognitive performance across a broad array of ostensibly
quite distinct cognitive tasks and exhibits several advantages
over metrics derived from the fractionation paradigm. Finally,
we highlight key implications of this framework for clinical
neuroscience.
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THE FRACTIONATION PARADIGM AND RECENT
CHALLENGES

The dominant approach toward studying individual differ-
ences, and by extension clinical differences, in higher-order
cognition involves fractionation. This framework assumes
that higher-order cognition consists of multiple component
functions and that each constitutes a relatively distinct indi-
vidual difference dimension. This latter assumption is espe-
cially relevant to clinical neuroscience research, where it is
common to postulate that disorders involve selective impair-
ments in specific functions.

A primary tool for fractionation involves batteries of carefully
constructed experimental tasks that are intended to selectively
engage specific functions. For example, in the incongruent
condition of the Stroop task (19), participants must respond as
to the ink color of a word while ignoring the word’s semantic
meaning, which indicates a discrepant color. This discrepancy
is thought to engage an inhibition process that suppresses the
dominant tendency to provide the (incorrect) word response. In
an otherwise-similar congruent condition, in which the color of
the word and its meaning are matched, it is assumed that the
inhibition process is unengaged. Performance differences be-
tween the two conditions are thus assumed to precisely index
individuals’ inhibition. Tasks such as the Stroop are often
paired with factor analysis to study patterns of covariance
across task batteries. Foundational work by Miyake et al. (20)
yielded evidence for three core executive dimensions—
response inhibition, task switching, and working memory
updating—and this framework remains the most influential
fractionation taxonomy [e.g., (21,22)].

A growing body of findings, however, presents serious
challenges for the fractionation approach. First, in a systematic
review, Karr et al. (23) provided evidence that many factor
models in this literature were overfit to underpowered samples
and that alternative models that contradict the foundational
three-factor structure may be more plausible. A second chal-
lenge for this paradigm concems fundamental psychometric
properties of widely used tasks that utilize difference scores to
selectively index higher-order functions (e.g., the Stroop). Such
measures consistently demonstrate poor test-retest reliability
(24-27); that is, the rank order of subjects fails to be preserved
across testing occasions, limiting the usefulness of these met-
rics for individual differences research (28,29). The same mea-
sures also have poor predictive validity; recent well-powered
studies show that they have tenuous relationships with relevant
criterion variables, such as self-regulation questionnaires
(30-33). A third challenge for fractionation is the failure of dis-
order specificity, the idea that selective executive deficits could
help establish boundaries between disorders. Researchers have
long sought to selectively link deficits in working memory to
schizophrenia (34-36), behavioral inhibition to ADHD (37-39),
and inhibition of negative thoughts to anxiety and depression
(40-42). However, such selectivity has been elusive. People with
psychiatric disorders, including schizophrenia, bipolar disorder,
and ADHD, typically exhibit diverse cognitive impairments that
cut across the higher-order domains fractionation researchers
seek to distinguish (3,15,43-49).

None of these challenges to the fractionation paradigm are
necessarily decisive, but they are serious enough that
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alternative approaches, the subject to which we now turn,
deserve greater attention.

MATHEMATICAL PSYCHOLOGY, COMPUTATIONAL
PSYCHIATRY, AND SSMs

Multiple recent commentaries in psychiatry, clinical psychol-
ogy, and the broader behavioral sciences (50-53) have high-
lighted a critical paradox: these fields have largely eschewed
the use of formal mathematical process models, despite the
substantial advancements in precision, theory development,
and cumulative knowledge that such models have provided for
other sciences. One notable exception is the subfield of
mathematical psychology, which has a long tradition of using
formalisms to specify, and stringently test, theories about the
mechanisms behind cognitive processing (54-56). Beyond the
general scientific advantages of mathematical modeling,
including allowing greater explanatory clarity and stronger
empirical tests of theoretical predictions (52,53,55), this
approach has recently shown unique promise for identifying
links between human cognition and neural functioning (57-59).
Furthermore, mathematical psychology’s models are begin-
ning to play a pivotal role in the emerging field of computa-
tional psychiatry, where they are used to identify candidate
biobehavioral dimensions linked to psychopathology that may
have clearer relationships with neurobiological mechanisms
than existing cognitive constructs (50,60,61).

SSMs (62) are a prime example of computational frame-
works from mathematical psychology that are now seeing wide
application in the neurosciences and psychiatry. Although
models in this class were originally developed to explain
recognition memory and simple perceptual decisions (62-64),
they have been successfully applied to a variety of complex
behavioral domains (65-67), including executive tasks (68-72).
For tasks in which individuals must choose between response
options, SSMs assume that they gradually accumulate noisy
evidence for each option from the environment over time until
evidence for one option reaches a critical threshold, which
initiates the corresponding response.

SSMs come in two general variants (62) (Figure 1). In
accumulator-type models, such as the linear ballistic accu-
mulator (LBA) (73), evidence is gathered by separate accu-
mulators for each response option that race toward an upper
threshold. In random-walk models, such as the diffusion de-
cision model (DDM) (63,74), relative evidence for each choice is
represented as a single total that drifts between boundaries
representing each option. The DDM and LBA, which are the
most widely used models in each class, differ on several major
assumptions. Most prominently, the DDM assumes that the
rate of evidence accumulation varies stochastically over time
within a trial. Conversely, the LBA assumes that the evidence
accumulates in a linear and deterministic manner and that any
variability in accumulation rate occurs between trials. Although
the within-trial variability of the DDM may be more biologically
plausible, the LBA’s simplified assumptions do not appear to
limit its descriptive power and make it easier to apply (73).

Despite these differences, parameters from both models
can be used to measure three key latent processes: 1) the drift
rate, or EEA; 2) the threshold or boundary separation, which
reflects an individual’s level of caution (i.e., speed/accuracy
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Figure 1. Schematics of the (A) linear ballistic
accumulator (LBA) and (B) diffusion decision model
(DDM), which are commonly applied sequential
sampling models in the accumulator-type class and
random-walk class, respectively. In both illustrations,
the models describe a task in which an individual
must decide whether a presented arrow is pointing
to the left or the right. The LBA assumes that accu-
mulators for the correct choice (right, in green) and
incorrect choice (left, in red) start at a level drawn
from a uniform distribution between 0 and parameter
A and proceed to gather evidence at linear and

> deterministic rates over time as they race toward an

upper response threshold, set at parameter b. The
rates of evidence accumulation on individual trials,
represented by the light green and light red traces,
are drawn from normal distributions with a mean of v
(represented by the green, Vg, and red, Vs,
arrows) and a standard deviation of sv. The DDM
instead assumes a single decision variable that
represents the relative amount of evidence for each
of the two possible choices (e.g., evidence for right
vs. left; these models are typically applied to two-
choice decisions). This variable begins at parameter
z and drifts over time between boundaries for each
possible response, set at 0 (for left) and parameter a
(for right). The drift process on individual trials, rep-
resented by the light blue traces, is stochastic and
moves toward the boundary for the correct choice at
an average rate of v (represented by the blue arrow,

Vright-iert)-  Efficiency of evidence accumulation,
defined as the rate at which an individual is able to
" gather relevant evidence from the environment to

time
stimulus ) encoding, decision processing motor
presented etc. response, etc.
B
select “right”
I
A
Viight - left
LAY
0 select “left”
time
stimulus Jencoding, decision processing motor
presented etc. response, etc.

make accurate choices, can be measured in the LBA
by subtracting the average accumulation rate for the
incorrect choice (ver) from that of the correct choice
(Vrigne)- Efficiency of evidence accumulation is also

measured by the DDM’s single average drift rate parameter (v ign:er). Individuals’ level of response caution (i.e., speed/accuracy trade-off) can be indexed by
parameters that represent the distance evidence accumulators must travel to trigger a response in both the LBA (parameter b) and DDM (parameter a). Both
models also include parameters for time taken up by perceptual and motor processes peripheral to the decision, t0 and Ter, respectively.

trade-off); and 3) nondecision time, which accounts for the
time spent on peripheral (e.g., motor) operations. Applications
of the DDM and LBA to the same empirical data generally
suggest similar conclusions about these three key processes
(75,76), although process parameterization differs slightly be-
tween the models (Figure 1), and they sometimes offer diver-
gent accounts of other constructs [e.g., variability in memory
evidence (77)].

Several considerations are relevant when using these
models. First, researchers should seek to ensure that the
behavioral tasks analyzed respect SSM assumptions [e.g.,
number of processing stages, parameter invariance across
time, and others detailed in (65)]. That said, recent work on
complex paradigms has suggested that inferences from SSMs
often remain robust despite violations of certain assumptions
(78,79). Second, parameters that measure processes of inter-
est must be able to be accurately estimated from empirical
data (80). Small numbers of trials and greater model complexity
(i.e., more parameters) impede parameter estimation, which
may force investigators to select more parsimonious models.
For example, several specialized SSMs have been proposed to
explain processing on inhibition (e.g., Stroop) tasks (70,72), but
parameters for these complex models are difficult to estimate
at trial numbers common in empirical studies (81). Therefore,

an alternative approach [e.g., (25,30)] is to fit a standard DDM
to these tasks under the assumption that measurement of the
main processes of interest will be robust despite some mis-
specification in the simpler model.

The use of SSMs to describe and differentiate cognitive
mechanisms has several benefits. First, SSMs posit detailed
mechanistic accounts that explain how underlying cognitive
operations produce observed patterns of behavior. Thus, they
make specific, quantitative predictions about behavioral data
(e.g., skew of response time distributions, slow vs. fast errors)
that are generally well supported in a substantial literature
(78,74,82). Second, mechanisms posited in these models have
clear links to neurophysiological processes. Neural firing pat-
terns recorded in nonhuman primates across multiple brain
regions during decision making display properties consistent
with evidence accumulation (62,83-85), and these patterns
have recently been quantitatively linked to SSM parameters in
joint neural and behavioral models (86,87). Hence, SSMs
display clear evidence of biological plausibility, providing an
important bridge between neurophysiology and human
behavioral research. Third, SSMs allow selective measurement
of latent cognitive mechanisms. Standard metrics derived from
laboratory tasks, such as response time (RT) and accuracy, are
influenced by confounding factors such as subjects’
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preferences to prioritize speed versus accuracy. However,
SSMs can recover precise estimates of critical parameters
irrespective of subjects’ strategies (65). A recent simulation
study suggests that SSMs’ ability to measure latent processes
selectively (e.g., indexing cognitive efficiency independent of
speed/accuracy preferences) boosts statistical power (88).
Finally, as detailed below, SSMs are beginning to provide
novel insights into the structure of individual differences in
cognition across the spectrum of health and psychopathology.

EEA AS A FOUNDATIONAL INDIVIDUAL DIFFERENCE
DIMENSION

A burgeoning individual differences literature [reviewed in
detail in (89,90)] has begun to demonstrate SSMs’ utility for
characterizing fundamental mechanisms of cognition. This
work has primarily focused on the DDM’s drift rate parameter,
which indexes EEA, or the rate at which an individual gathers
relevant evidence from the environment to make accurate
choices in the context of background noise. Simulated DDM
data in Figure 2 illustrate the behavioral consequences of
variation in EEA; lower drift rates lead to lower accuracy and

accuracy = .88

accuracy = .74

accuracy = .62

mean RT = .490, SDRT = .145
u=.340,0=.015,7=.150

mean RT = .533, SDRT =.189
u=.341,0=.0151=.191
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greater RT variability, primarily by increasing the positive skew
of RT distributions (91).

Observed EEA for an individual on a given cognitive task is
likely the product of multiple processes (Figure 3). Although
task-specific mechanisms (e.g., individuals’ color identification
ability on the Stroop) and state factors [e.g., motivation (92—
95)] may play key roles, a growing body of findings suggests
that a large portion of the variance in EEA is explained by a
domain-general, trait-like factor. EEA estimates from choice
tasks across different cognitive domains show strong corre-
lations with one another, allowing the formation of a domain-
general latent variable (96-101), and recent work demon-
strates that this general factor remains present even after
explicitly accounting for domain-specific variance in EEA (78).
EEA estimates are test-retest reliable under ideal measurement
conditions [e.g., 200-400 trials (102)], and work using latent
state-trait modeling across an 8-month interval found that
state-related variance in EEA measures was statistically
indistinguishable from zero, while trait-related variance was
close to that found for intelligence tests (44% on average)
(96). As EEA measured via relatively simple choice tasks
correlates strongly with EEA on more complex paradigms
and predicts better working memory ability and intelligence

Figure 2. Simulated data that illustrate the
behavioral manifestations of differences in efficiency
of evidence accumulation (EEA). Response time (RT)
data from 10,000 trials were simulated with the
diffusion decision model implemented in the R
package rtdists (149) while varying drift rate (v =2, 1,
0.5) and holding other diffusion decision model pa-
rameters constant (@ = 1, z = 0.5, Ter = 0.300). Blue
histograms represent simulated correct RTs, while
red histograms represent simulated error RTs. As
EEA (v) decreases, accuracy rates are reduced and
both the mean and standard deviation of RT in-
crease. However, analysis of RTs with the ex-
Gaussian distribution, a statistical model that al-
lows Gaussian and exponential components of RT
distributions to be indexed separately, reveals that
the mean (1) and Gaussian variability (o) stay rela-
tively constant, while exponential RT variability (t;
positive skew) substantially increases at lower levels
of EEA. Therefore, as demonstrated in previous
large-scale simulation studies (91), EEA primarily
affects RT distributions’ level of exponential RT
variability, with larger © estimates (i.e., greater levels
of positive skew) providing a behavioral hallmark for
reduced EEA.

mean RT = .546, SDRT = .202
u=.340,0= .014, 7= .206
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(78,97-101,103-105), trait EEA may be a critical determinant of
individual differences in higher-order cognitive abilities. Taken
together, this body of work indicates that EEA is a psycho-
metrically robust cognitive individual difference dimension that
appears to be foundational to the performance of a wide va-
riety of tasks. Importantly, the fact that trait EEA is derived from
a formal, mechanistic theory of the data-generating process
across cognitive measures contrasts with constructs in the
fractionation paradigm, which are not linked to a generally
applicable mechanistic theory.

REDUCED EEA AS A TRANSDIAGNOSTIC
NEUROCOGNITIVE RISK FACTOR FOR
PSYCHOPATHOLOGY

The behavioral signatures of reduced EEA—variable RTs and
less accurate responding—have long been documented in the
task performance of individuals with diverse psychiatric
diagnoses (95,106-110). Yet, SSMs have only recently been
applied in the context of clinical research. Because RT vari-
ability has been of longstanding interest in ADHD (95), SSMs
have been most extensively used to study this disorder. As
reviewed by others (95,111,112) and supported by subsequent
work (104,113-117), individuals with ADHD consistently
display reduced EEA in SSM analyses, and meta-analytic
effect size estimates for comparisons with healthy partici-
pants are in the moderate to large range: d = 0 .75 (112) and
g = 0.63 (95). What is arguably most striking about these ef-
fects is the breadth of domains in which EEA reductions are
observed, including simple perceptual decision making
(105,114,118), sustained attention (112,117,119), inhibition
(120-123), pattern learning (116,124), and interval timing (115).
Furthermore, stimulant medication treatments for ADHD have
been found to improve EEA in both children with the disorder
(92) and healthy adults (125), suggesting that EEA could help
mediate treatment effects. In the latter study (125), stimulants
enhanced EEA similarly in an incongruent task condition
(thought to engage executive control) and a congruent task
condition (where control is thought to be unengaged). Taken
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Figure 3. Hypothesized determinants of efficiency
Observed EEA of evidence accumulation (EEA) manifested on spe-
many cific cognitive tasks for a given individual.
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together with the pattern of cross-task effects observed in
ADHD, this finding suggests that both ADHD-related deficits
and treatment-related improvements in EEA are domain gen-
eral, spanning diverse tasks and conditions with varying levels
of complexity and executive demands.

Beyond ADHD, reduced EEA has been documented in
schizophrenia (126,127), depression (128), and individuals at
risk for frequent substance use (129). Extending these findings,
our recent work has provided evidence that EEA is a trans-
diagnostic risk factor for psychopathology (130). In a large
sample drawn from the UCLA Consortium for Neuropsychiatric
Phenomics (131) we found that a latent EEA factor derived from
multiple tasks was substantially reduced in patients with ADHD,
schizophrenia, and bipolar disorder relative to healthy partici-
pants (d = 0.51, 1.12, and 0.40, respectively) and displayed a
negative correlation with the overall severity of individuals’
cross-disorder psychopathology symptoms (r = —.20). As this
study made the simplifying assumption, discussed above —that
the standard DDM can provide adequate measures of EEA on
inhibition tasks —replication of these results using more com-
plex modeling procedures is warranted.

We now present a hypothesis that seeks to build on this
growing array of observations. We posit that lower trait EEA
conveys broad risk for psychopathology and that EEA can
therefore account for a substantial proportion of performance
decrements on tests of neurocognitive abilities that are
observed across psychiatric disorders. Moreover, we propose
that reductions in EEA similarly impair performance across
tasks of varying levels of complexity, rather than selectively
impacting executive tasks. These claims are rendered plau-
sible by the research reviewed above documenting that 1) trait
EEA displays clear validity as a task-general cognitive indi-
vidual difference dimension; 2) in healthy individuals, EEA ex-
plains a large portion of the variance in higher-order cognitive
functioning; 3) EEA is impaired across multiple psychopathol-
ogies; 4) EEA impairments are present across a wide range of
cognitive paradigms; and 5) individuals with psychiatric di-
agnoses linked to neurocognitive decrements, such as ADHD
and schizophrenia, have been found to display such
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decrements across both complex executive tasks and simple
choice RT paradigms.

Although we view this evidence as compelling, we note that
direct tests of our hypothesis, which have yet to be completed,
would require several features. First, these tests would
require that large and demographically diverse samples of in-
dividuals with and without psychiatric diagnoses complete
batteries of tasks that can be used to accurately estimate
SSM parameters. Second, because precise measurement
of trait EEA requires latent variables informed by performance
in multiple domains (78,90), tasks would need to span cogni-
tive processing modalities (e.g., verbal, numeric) and the
executive/nonexecutive continuum. Such data would allow
the derivation of latent trait EEA metrics and assessments
of EEA’s relations with an array of disorders and psychopa-
thology symptoms.

We also note three important qualifications to our claims.
First, the task generality of trait EEA does not imply that the
computational processes involved in the execution of tasks from
diverse cognitive domains are identical. Rather, the psycho-
metric work reviewed above indicates that trait EEA is a primary
factor driving individual differences (and therefore, we suspect,
clinical differences) in task performance. Although different
tasks require cognitive operations involving distinct types of
evidence (Figure 3), the fact that SSMs provide a highly gener-
alizable account of processing across tasks suggests that task-

Evidence Accumulation in Clinical Neuroscience

general mechanisms involved in accumulation of multiple types
of evidence could plausibly drive individual differences in EEA.
Indeed, estimates of task-specific variance in EEA from state-
trait models are strikingly low (=17%) (96). Second, we do not
claim that trait EEA is itself determined by a single underlying
process. As we outline below, current evidence suggests that
EEA is likely influenced by an array of biological and contextual
factors. EEA may thus serve as a “watershed node” (132) in a
complex matrix of causation. Watersheds are shaped by multi-
tudinous converging water channels, but once formed, they are
subsequently relatively unitary drivers of downstream effects.
Similarly, we propose that EEA has multifactorial determinants
but serves as a relatively unitary driver of cognitive deficits and
clinical symptoms. Third, although we posit that EEA is a
prominent contributor to psychopathology-related deficits on
tests of cognitive abilities, it is almost certainly the case that a
much broader array of factors, beyond EEA and beyond other
influences on cognitive test performance, contribute to in-
dividuals’ psychopathology symptoms. Unlike EEA, other con-
tributors to psychopathology may be difficult to capture on
laboratory cognitive tasks and may therefore be better
measured with alternative methods (e.g., questionnaires,
biomarkers).

The overall framework we propose is outlined and con-
trasted with the conventional fractionation framework in
Figure 4. We now examine its broader implications.

Figure 4. Diagrams contrasting the general as-
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IMPLICATIONS OF AN EEA-BASED
COMPUTATIONAL FRAMEWORK FOR CLINICAL
NEUROSCIENCE

A Focus on Complex Executive Tasks May Be
Misplaced

The preoccupation of psychiatric cognitive neuroscience with
response inhibition and other executive constructs is under-
standable. There are clearly clinically important individual dif-
ferences in the ability to resist cravings for an addictive
substance or to regulate tendencies to mind wander during a
boring lecture. Because tasks such as the Stroop were
designed to selectively isolate top-down control, it makes
sense that these tasks are seen as key elements of research
into regulatory problems in psychopathology. However, the
evidence reviewed above suggests that these tasks are not, in
fact, selectively isolating executive processes.

The alternative possibility we put forward is that aberrant
performance on complex executive tasks in psychopathology
largely reflects task-general reductions in EEA. If this view is
correct, it follows that the field’s focus on executive functions,
and the experimental paradigms thought to measure them, is
overly narrow. To better understand the ability to attend to a
lecture or resist cravings, it may be more fruitful to investigate
the clinical correlates and neural basis of task-general im-
pairments in EEA. At the level of study design, cross-domain
batteries of relatively simple cognitive tasks that are opti-
mized for computational modeling (e.g., perceptual choice)
may be as good as, or preferable to, complex tasks that
attempt to experimentally isolate executive processes.

Subtraction in Cognitive and Neuroimaging
Measures Is Counterproductive

EEA’s potential role in task-general deficits similarly calls into
doubt the use of subtraction methods that attempt to isolate
individual differences in specific neurocognitive processes
(e.g., contrasting behavior or neural activation in conditions
that do and do not require inhibition). If EEA is the primary
driver of individual differences in performance across task
conditions, subtraction likely obscures, rather than enhances,
measurement of the clinically relevant process.

Recent findings support this notion. In a large nonclinical
sample (30), we found that subtraction-based metrics show
negligible relations across tasks and do not predict self-report
indices of self-control (133). Nonetheless, EEA estimates
across these same tasks, and across executive/nonexecutive
conditions (again obtained under the simplifying assumption
that the standard DDM can adequately index EEA from inhi-
bition paradigms), formed a coherent latent factor that was
related to self-regulation (r = .18) (133). Similarly, in a neuro-
imaging study of the go/no-go task (134), EEA estimated from
trials that require inhibition (no-go) was strongly correlated (r =
.73) with EEA on trials that do not (go), suggesting that per-
formance across conditions was largely determined by a single
dimension (134). At the neural level, activation from the
commonly used neuroimaging contrast that subtracts activity
during go trials from activity during correct no-go trials dis-
played little evidence of relationships with performance metrics
(including EEA), questioning the utility of subtraction for neural
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measures (134). Hence, clinical neuroscientists may be better
off focusing on commonalties across cognitive task conditions
than on differences between them.

Findings of Disorder-Specific Deficits in
Neurocognitive Test Data May Be Elusive

A related implication is that efforts to use neurocognitive test
data to identify deficits in specific cognitive functions that
differentiate disorders (e.g., inhibition in ADHD) may face sig-
nificant challenges. Indeed, our hypothesis that EEA is a primary
driver of individual differences in performance across commonly
used tasks provides an explanation for the already well-
acknowledged failure of such tasks to characterize selective
deficits for many disorders (3,15,43-49). Although some may
view this conclusion as discouraging, we believe that it fits with
emerging views of psychopathology that emphasize trans-
diagnostic individual difference dimensions (e.g., Research
Domain Criteria and Hierarchical Taxonomy of Psychopathol-
ogy) (17,135), in which positions on multiple such dimensions
characterize disorders. Specifically, it is likely that EEA, as
measured on neurocognitive tasks, is one of many relevant
transdiagnostic dimensions and must be combined with indices
of constructs derived from other measurement domains
(e.g., socioemotional, biological) to better characterize variation
in, and the multifactorial causes of, psychopathology.

EEA Can Provide a Window Into the Basis of
Neurocognitive Deficits in Psychopathology

A shift in psychiatric cognitive neuroscience research focus
toward EEA is likely to produce novel mechanistic insights and
facilitate translation across behavioral, systems, and neuro-
physiological levels of analysis. As outlined above, a major
advantage of using SSMs to guide research is that the
evidence accumulation processes they posit are not only
biologically plausible but well supported by extant
neurophysiological research in nonhuman primates (62,83-
86,136). Corresponding neural signatures of these processes
in humans have also been well characterized with
electroencephalography (137-139) and functional magnetic
resonance imaging (140-143). Although these signatures are
distributed throughout multiple cortical areas, there is
converging evidence that the frontoparietal network and
anterior insula play especially important roles (144).

Research on the neural basis of trait EEA is sparser. A small
number of studies using disparate methodologies have linked
between-individual differences in EEA to parietal activation
during decision making (145), salience network responses to
errors (134), and greater structural and functional connectivity
in the frontoparietal network (146). However, these studies are
limited by their measurement of EEA with individual tasks,
rather than with the recommended cross-domain latent factors
(90). Findings that EEA is enhanced by catecholamine agonists
(92,125,147) indicate that EEA may be related to the integrity of
dopamine or norepinephrine systems. Incentives also alter EEA
(92-95), suggesting that stable traits related to motivational
processes [e.g., cognitive effort discounting (148)] could affect
how individuals react to these state-related factors during
cognitive performance. We do not offer a comprehensive hy-
pothesis about the etiology of individual and clinical
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differences in EEA because we believe doing so would be
premature. However, strong evidence for the existence of a
task-general trait EEA factor suggests that broad neurobio-
logical and/or contextual (e.g., poverty) influences could affect
cognitive performance though EEA.

The study of individual differences in EEA could usher in a
new paradigm for understanding cognitive abnormalities in
psychopathology. Rather than attempting to fractionate puta-
tive disorder-specific deficits, this paradigm would instead
focus on how EEA is determined by neurophysiological pro-
cesses, neurotransmitter systems, brain networks, and
contextual factors such as motivation, stress, and social
adversity. Doing so would move the study of these influences
on disordered cognition into a more mechanistic computa-
tional framework.

CONCLUSIONS

This review assessed the emerging literature on the application
of mathematical process models to the study of individual and
clinical differences in neurocognition. We argue that this liter-
ature presents a compelling case that trait EEA, a foundational
individual difference dimension formally defined in computa-
tional models, is likely a primary driver of observed deficits on
tests of neurocognitive abilities across clinical disorders.
Adopting an EEA-focused research approach has the potential
to transition clinical neuroscience away from measures that
have poor psychometric properties and constructs that are
biologically amorphous. In contrast, EEA is a precisely defined
construct that has strong psychometric properties, displays
clear links to psychopathology, and is well positioned to yield
richer connections with neurobiology.
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