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Abstract

Reinforcement learning models have been productively applied to identify neural correlates of 

the value of social information. However, by operationalizing social information as a lean, reward-

predictive cue, this literature underestimates the richness of human social learning: Humans 

readily go beyond action-outcome mappings and can draw flexible inferences from a single 

observation. We argue that computational models of social learning need minds, i.e, a generative 

model of how others’ unobservable mental states cause their observable actions. Recent advances 

in inferential social learning suggest that even young children learn from others by using an 

intuitive, generative model of other minds. Bridging developmental, Bayesian, and reinforcement 

learning perspectives can enrich our understanding of the neural bases of distinctively human 

social learning.
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Introduction

Suppose you see a friend open a cabinet by kicking it. If you considered only superficial 

contingencies between your friend’s action (kicking) and its outcome (successfully opening 

the cabinet), then you might learn that kicking opens the cabinet. When we learn from 

others, however, we learn far more than meets the eye. For instance, you might infer that 

the cabinet is stuck, even though you never saw your friend struggle to open the cabinet; 

if you can explain away her action (e.g., because her hands were loaded with books), you 

might infer that kicking is not necessary at all [1]. How is this possible? Beneath the surface 

of observable actions is a rich, causal structure of unobservable mental states, such as the 

actor’s goals, beliefs, and desires. By reasoning about how and why others’ actions came to 

be, learners can draw powerful inferences that go beyond the data.
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Recent advances in probabilistic, or Bayesian, models of social cognition have provided the 

foundation for formal theories of inferential social learning—that is, of how agents update 

their beliefs by drawing inferences from evidence generated by others ([••2]; see also [3]). 

However, despite their success in explaining the power and the flexibility of human social 

learning, the neural mechanisms that support these inferences are vastly underexplored. 

On the other hand, reinforcement learning models have been applied to study the neural 

substrates of social learning, but they have yet to incorporate formal theories of how 

unobservable mental states give rise to observable actions and outcomes. Below we review 

what reinforcement learning models have revealed about the neural basis of social learning, 

what they have missed, and what can be gained by bridging insights from inferential social 

learning.

Social learning as a reinforcement learning problem

Reinforcement learning (RL) models describe how agents optimize their actions through 

trial and error by learning a mapping between the environment, the actions available to them 

within the environment, and the outcomes associated with those actions [4]. Parameters of 

RL models appear to be directly instantiated in evolutionarily conserved neural circuits [5]. 

Regions including prefrontal cortex, orbitofrontal cortex, and striatum track the expected 

value of rewards, the magnitude of the actual reward, and the discrepancy between the two, 

or prediction error [6]. These neural circuits play a causal role in reward-guided learning 

[7–9]. Thus, RL provides a powerful framework for studying the brain as an information-

processing system: It offers a computational specification of the problem to be solved, a 

suite of algorithms that describe possible solutions, and a link between algorithms and their 

physical implementation. Its success in characterizing non-social learning across Marr’s 

levels of analysis [10,11] has naturally led to extensions of this approach to understand how 

humans learn in social contexts [12,••13].

In the past decade, RL models have been productively applied to study the neural basis of 

social learning [••13–15]. Existing work has largely emphasized continuities between the 

neural mechanisms that support individual learning through trial and error, and those that 

support social learning through repeated interactions with social partners. Neural signals that 

track rewards and prediction errors during individual learning also vicariously track rewards 

that others have received [16,17]. These signals can also be directly modulated through 

instruction; for example, informing participants of the reward probabilities associated 

with each action dampens striatal reward prediction error signals [18,19]. In addition 

to learning about rewards in the environment, RL models have been applied to address 

how humans learn about others. Recent studies suggest that separable neural signals track 

reward-predictive properties of social information, such as how often an advisor is accurate 

[20] or how generously a donor will share from their endowment [21].

For all the successes of this approach, however, it is also important to consider what RL 

models have missed about social learning. The studies above largely treat others’ actions 

and advice as a lean, reward-predictive cue—e.g., the model’s estimates of how often an 

advisor is correct fluctuate from trial to trial, and the task for the learner is to figure out the 

expected value of the cue. But social information is far more than a reward-predictive cue: 
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It is curated by other minds. What is missing from past work is a causal, generative model 

of how those actions and advice came to be. By inverting these generative models, learners 

can gain far more from social information than superficial contingencies between actions 

and outcomes [22–••24]. These limitations present an opportunity to consider a different 

approach that complements RL: inferential social learning.

Social learning as probabilistic inference over structured representations

Before we define inferential social learning, we will first place the idea in context. 

Inferential social learning is part of a larger intellectual project that aims to characterize 

human intelligence as a powerful inference engine—one that performs probabilistic 

inferences over structured representations of the world, of other minds, and of the 

intersection between the two [25,26]. Probabilistic cognitive models have been successfully 

applied to characterize many aspects of human learning and reasoning, including prediction 

[27–29], causal judgments [30,31], concept acquisition [32], active hypothesis testing [33], 

and learning and exploration in early childhood [34,35].

The key idea behind inferential social learning is that learners recover the meaning 

underlying others’ actions by inverting an intuitive, causal model of how agents think, 

plan, and act [••24,36,37]. Key signatures of inferential social learning emerge early in 

life. Even infants can learn the meanings of words [35], discover hidden object properties 

[34], and infer others’ preferences [38,39] from a handful of examples by considering 

how those examples were selected by a demonstrator. In addition, preschoolers can draw 

sophisticated inferences by considering the demonstrator’s unobservable mental states, such 

as their knowledge and communicative intent [40,41]. For example, if a knowledgeable 

teacher pedagogically demonstrates that a toy plays music, preschoolers not only learn 

that the toy plays music; they also infer that it is the toy’s only function and constrain 

their exploration accordingly [40]. This inference is supported by an abstract understanding 

of how cooperative teachers select evidence; if there had been additional functions, the 

teacher would have shown them [3,42,43]. Children also penalize teachers who violate this 

expectation, such as a teacher who demonstrates only one function of a multi-function toy 

[44,45]. This result cannot be explained by tracking the accuracy of social information, 

because the teacher did provide the truth; it’s just not the “whole truth.”

Inferential social learning poses two key challenges for RL accounts of social learning. 

First, beyond learning reward-predictive properties of social information, such as accuracy, 

humans can also use repeated observations to infer the latent process that gave rise to others’ 

actions. In one study (Figure 1; [••24]), adults received advice from two advisors who 

were equally knowledgeable and equally accurate, but who differed in their strategy: One 

advisor was conservative, the other risk-seeking. If participants only considered how often 

the advice is accurate, then they should not distinguish between these two advisors at all. 

Indeed, across both conditions, participants followed advice at similar rates and achieved 

similar earnings. However, participants differed in how they used the advice. Participants 

flexibly adjusted their use of advice based on the advisor’s strategy, and they could explicitly 

report the shape of the advisor’s choice function. Their choice behavior was best described 

by a probabilistic model that jointly infers the shape of the advisor’s choice function and 
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the value of unobservable options that are known to the advisor, compared to a model that 

tracked the advisor’s accuracy.

Second, not all social learning can be easily explained as gradually learning costs and 

rewards through repeated observations of others. Even preverbal infants expect other 

agents to act efficiently [46,47], and they can infer the value of goals from a handful 

of observations, based on the costs that agents are willing to incur to attain them [48]. 

The naïve utility calculus provides a formal model of the computations that underlie 

these inferences; at its core, it proposes that our inferences about others’ behavior are 

guided by the principle that agents act as utility maximizers, maximizing the rewards of 

their goal-directed actions while minimizing the costs [22,37]. This principle even extends 

to how learners interpret information provided by others, and how teachers select what 

to teach. For instance, 5- and 6-year-olds have an intuitive understanding of how much 

information is necessary for accurate learning and prefer not to learn from teachers who 

provide unnecessarily costly, overinformative demonstrations. As teachers, children not only 

resist being overinformative, but also choose what to teach (and what to let learners discover 

on their own) in ways that maximize learners’ utilities and avoid unnecessary costs [49,50]. 

Thus, inferential social learning grounds our understanding of how humans learn from and 

teach others within a broader unifying framework that explains learning as rich, powerful 

inferences guided by an intuitive model of other minds [••2].

So far, we have critiqued the shortcomings of characterizing social learning using existing 

reinforcement learning models, and we have emphasized what they lack in light of 

approaches that characterize social learning as probabilistic inference. However, the two are 

not incompatible with one another. One of the core ideas in inferential social learning is that 

learners interpret information provided by others using an intuitive theory of others as utility 

maximizers [22,37]; this idea mirrors the ways in which reinforcement learning models 

instantiate scientific theories of how humans plan and make utility-maximizing decisions. 

Thus, inferential social learning can in principle be recast as an inverse reinforcement 

learning problem [51]. Recent work has applied inverse reinforcement learning models 

to study neural signals that track unobservable reward distributions inferred from others’ 

actions [52]; related work has found neural signals that track value inferred from other 

people’s stated confidence [53] and signals that arbitrate between inferring value from 

others’ observable actions and using simpler strategies, such as copying [•54]. Looking 

farther into the future, the formalisms of reinforcement learning models are flexible enough 

that there is a gap between what these models can do, and how they have been applied so 

far to study the neural basis of social learning. This gap provides an opportunity to consider 

what could be gained by bridging the two frameworks.

New directions in the study of social learning

To close, we bring together insights from probabilistic and reinforcement learning 

approaches to social learning. We can now imagine the neuroscience of social learning 

not only as it has been, but as it could be.
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First, synthesizing probabilistic and reinforcement learning approaches will allow us to gain 

purchase into how neural representations of mental states support inferential social learning. 

RL models have allowed us to identify neural signals that track reward-predictive properties 

of social information (e.g., accuracy); however, what underlies this social information is a 

fairly lean generative process. For example, if an advisor is simply right or wrong with some 

fixed probability [20], then their advice has as much latent structure as a coin flip. Here, the 

inferential social learning approach shines: It makes explicit commitments about the nature 

and the contents of the rich, structured representations involved in learning from others, in 

ways that RL models do not. One key potential substrate for these representations is the 

Theory of Mind network: Regions in this network are robustly engaged when reasoning 

about others’ mental states [55] and contain representations of abstract mental state features, 

such as the perceptual source, valence, and evidentiary strength of others’ beliefs [56,57]. 

However, less is known about how value computations and mental state representations 

work in tandem to support social learning. Here, insights from RL approaches can help 

guide our predictions. For example, abstract features of an advisor’s mental state, such as 

their perceptual access, may be represented in regions within the Theory of Mind network, 

while the value of choice options that are inferred through their advice may be represented 

in reward-guided regions [••24].

Second, some kinds of social information not only provide information about the world, but 

also feel good; for example, a mentor’s feedback can both improve a manuscript and provide 

a flush of pride. In other words, social feedback can be both epistemically valuable and 

intrinsically rewarding. How is social feedback represented and processed in the brain, and 

how does it differ from feedback from the physical environment? Past work has claimed that 

social and non-social rewards are represented using a common neural currency; for example, 

overlapping regions of striatum track both monetary rewards and social rewards (e.g., smiles 

and gains to reputation; [58,59]). In these tasks, social feedback is intrinsically rewarding, 

but it does not provide additional epistemic value—that is, rather than providing information 

about rewards, the social information itself is the reward. Yet positive feedback in social 

contexts—praise, smiles, and encouragement—is not merely a reward to be maximized. 

Children and adults alike interpret social feedback as communicative acts [60–•62]; for 

example, the same praise can be interpreted differently, based on the quality of the thing 

being praised and the selectivity of the person providing it. Thus, the computations that 

underlie learning from social feedback likely involve a generative model of the person 

providing it. Probabilistic models can help formalize how learners compute the epistemic 

and intrinsic value of social feedback [63]. Integrating both perspectives can provide insights 

into how the brain represents the epistemic value of social information and whether neural 

signals that track the epistemic value of social information overlap with or are distinct from 

those that track non-social value.

Our final question concerns how cognitive neuroscience can help build better scientific 

theories about our intuitive theories of the world. One key advantage of the naïve utility 

calculus is that it is not a theory of decision-making or action selection. Unlike RL, 

which aims to describe how people make decisions, the naïve utility calculus describes 

an intuitive theory—that is, people’s lay intuitions of how others make decisions. While 

intuitive theories provide a “good enough” correspondence to reality, they can also differ 
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from scientific theories in striking ways; for example, lay intuitions about physics are 

good enough to throw balls and build towers, but differ from classical mechanics [64,65]. 

Understanding how intuitive theories are neurally instantiated is a particularly exciting 

direction for future research. Some progress has been made in the domain of intuitive 

physics [66,•67] and aspects of Theory of Mind [56,57]. Yet it remains to be seen how the 

brain represents the costs and rewards of others’ actions [68], and how these representations 

relate to neural signatures of action understanding [69,•70] or of one’s own costs and 

rewards [71].

And we have only begun to scratch the surface—by bridging the two perspectives, we may 

also gain insights into the neural computations that support learning and exploration in 

social contexts [41,72], evaluations of others’ reliability as advisors and teachers [20,60], 

and even our decisions about what is best to teach [49,73]. Bridging these perspectives can 

enrich our understanding of how the human brain supports social learning that is powerful, 

effective, and distinctively human.
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Highlights

• RL models have been applied to study the neural underpinnings of social 

learning.

• Past work has largely found neural correlates of observable, reward-predictive 

cues.

• But, in learning from others, humans make inferences that go beyond 

observable data.

• Such inferences rely on a model of how others’ mental states give rise to 

actions.

• Bridging RL and Bayesian approaches can deepen our understanding of social 

learning.
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Figure 1: Humans can infer the latent process that gave rise to others’ actions.
Schematic of model and task design [••24]: Participants played a card game where they 

could choose to stay with the points in a visible card, or switch to a hidden card that was 

only known to the advisor. The probability of the advisor telling participants to “switch” 

scaled according to a choice function that was unknown to participants. The Inference model 

worked backwards from the observed evidence to jointly infer the shape of the advisor’s 

choice function and the value of the hidden card. B. Ground-truth choice functions of the 

risky (solid) and conservative (dotted) advisors (left), and participant’s explicit reports of the 

shape of the choice function at post-test (right). C. Participants flexibly adjusted their use of 

advice based on the advisor’s strategy (Human); their choice behavior was better described 

by the Inference model than by a model that tracked observed Accuracy.
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