TABLE 4. Comparison to Recent Epileptic Seizure Prediction Methods on CHB-MIT Scalp EEG Database.
Authors | Dataset | Features | Classifier | No. of seizures | No. of subjects | Validation methods | FPR (/h) | Sens (%) | Interictal distance (minutes) | Preictal length (minutes) |
---|---|---|---|---|---|---|---|---|---|---|
Zandi et al. 2013 [29] | CHB-MIT | Zero crossings similarity/dissimilarity index | – | 18 | 3 | – | 0.165 | 83.81 | 60 | 40 |
Cho et al. 2017 [31] | CHB-MIT | Phase locking value | SVM | 65 | 21 | 10-Fold CV | – | 82.44 | 30 | 5 |
Truong et al. 2018 [13] | CHB-MIT | STFT spectral images | CNN | 64 | 13 | LOOCV | 0.16 | 81.2 | 240 | 30 |
Khan et al. 2018 [32] | CHB-MIT | Wavelet transform coefficient | CNN | 18 | 15 | 10-Fold CV | 0.147 | 87.8 | – | 10 |
Ozcan et al. 2019 [15] | CHB-MIT | Spectral power Statistical moments Hjorth parameters | 3D CNN | 77 | 16 | LOOCV | 0.202 | 79.2 | 60 | 30 |
0.096 | 85.7 | 240 | 60 | |||||||
Zhang et al. 2020 [33] | CHB-MIT | Common spatial pattern statistics | CNN | 156 | 23 | LOOCV | 0.10 | 93.1 | – | 30 |
Our work | CHB-MIT | CNN | CNN | 85 | 16 | LOOCV | 0.007 | 93.3 | 60 | 30 |
Abbreviations: 10-fold CV = 10-Fold Cross-Validation, LOOCV = Leave One Out Cross-Validation