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Human Immunodeficiency Virus (HIV) infection dynamics is strongly influenced by the host genetic background. NKG2C is an
activating receptor expressed mainly on Natural Killer (NK) cells, and a polymorphism of copy number variation in the gene coding
for this molecule has been pointed as a potential factor involved in HIV infection susceptibility. We evaluated the impact of the
NKG2C deletion on HIV-1 susceptibility, with or without HBV/HCV co-infection, in a total of 780 individuals, including 385 HIV-
infected patients and 395 healthy blood donors. NKG2C deletion genotyping was performed by standard PCR. To our knowledge,
this is the first study to access the impact of complete NKG2C deletion among HIV-infected Brazilian individuals. The frequency of
NKG2C deletion (range: 19–22%) was similar in cases and controls. No association of NKG2C deletion with HIV-1 susceptibility or
influence on clinical features, HBV or HCV co-infection was observed in the evaluated population. Our findings suggest that NKG2C
deletion, and the consequent absence of this receptor expression, does not directly impact HIV susceptibility, HBV/HCV-co-infection
in the studied population, suggesting that other signaling pathways might be triggered and perform similar functions in cell activity
in the absence of this specific receptor, preventing the development of disadvantageous phenotypes. Larger cohorts and studies
involving protein expression are necessary to confirm our findings.
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INTRODUCTION
The Human Immunodeficiency Virus (HIV) is classified into two
major subtypes, HIV-1 and HIV-2. While the first one shows the
highest infectivity and is responsible for the global epidemic, the
latter is mainly endemic in west Africa [1, 2]. HIV-related mortality
has been decreasing worldwide but still represents a major public
health issue, especially in low and middle-income countries, where
factors such as impaired access to treatment, lack of public health
policies, stigma, and discrimination are responsible for the
reduced effectiveness of clinical protocols [3, 4]. Additionally,
while numbers of AIDS-related deaths and new HIV cases have
been decreasing worldwide, an opposite trend can be seen in
eastern Europe and central Asia, where these parameters
increased more than 30% in the last 10 years. Furthermore, the
HIV incidence did not change in Latin America, although HIV
mortality has declined 21% from 2010 to 2020 [4].
Among risk factors influencing HIV infection, the host genetic

background is known to strongly impact overall HIV susceptibility
and disease progression [5]. In this context, pharmacogenetic
studies observed remarkable differences in HIV drug treatment
response associated with genes from several distinct biological
pathways [6]. Furthermore, distinct genetic variants have been

pointed out as potential factors influencing HIV susceptibility and
disease [7], but additional studies are required to understand how
these alterations in the host immune response are related to HIV
pathogenesis. Besides the CCR5Δ32 allele from the chemokine
receptor-5 (CCR5) gene, which in homozygosis protects humans
from HIV infection and is the best-known gene variant that affects
HIV infection [8, 9], other loss-of-function variants such as the killer
cell lectin-like receptor-2 (KLRC2, also known as NKG2C) gene
deletion have been associated with HIV infection risk, suggesting
that the absence of NKG2C expression impairs viral immune
response [10, 11].
The KLRC (NKG2) gene family is located within the NK (Natural

Killer) cell complex in human chromosome 12 and encodes seven
proteins. NKG2A and NKG2B act as inhibitory receptors, whereas
NKG2C, NKG2D, NKG2E, and NKG2H are activating NK receptors
[12, 13]. NKG2F function is unknown although it binds to DAP12
potentially providing activating signals. After signaling this
complex is retained intracellularly [14], while CD94 is known to
form dimers with multiple members of the NKG2 family such as
NKG2A, -2B, -2C, -2E, and -2H [13]. The activating receptor NKG2C/
CD94 acts as a receptor to the human leukocyte antigen-E (HLA-E).
The receptor is expressed primarily on NK, γδ-T cells, and some
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subsets of CD8+ T cells [15]. The NKG2C deletion has been
correlated with the absence of expression in homozygous
individuals, while an intermediate phenotype is observed in
heterozygous [10]. Since NKG2C and NKG2A co-modulate NK cell
function by recognizing HLA-E, NKG2C deletion may impair
cytotoxic and immunomodulatory response through inefficient
immune cell activation [16, 17]. The role of the NKG2C+ subset of
NK and T cells has been studied in multiple viral infections, such as
Hepatitis B Virus (HBV), Human Cytomegalovirus (HCMV), and HIV
[18–22]. Despite the extent of data gathered over the years, the
impact of NKG2C deletion on HIV infection is still unclear, since
different groups have not been able to replicate results on
different populations. Our study evaluated the impact of NKG2C
deletion in a cohort of 780 Brazilian individuals, divided into 385
HIV-infected individuals and 395 controls from two geographic
regions of Brazil, in order to achieve a better comprehension of
the influence of NKG2C on HIV susceptibility.

MATERIALS AND METHODS
Patients and data collection
Blood samples were obtained from 395 healthy blood donors and 385
HIV+ individuals. The control group was composed of HIV, HBV, and HCV
seronegative individuals from two different Brazilian cities, Porto Alegre
(the capital of the southernmost state of Brazil) and Rio de Janeiro (capital
of one of the main Brazilian states located in the southeast region). All
HIV+ patients were under HAART (highly active antiretroviral therapy)
treatment as previously described [23] and were enrolled in the South
Brazilian HIV Cohort (SOBRHIV) in Porto Alegre. These cities were selected
since both have similarly admixed populations. Clinical data of the patients
(i.e., co-infection by Hepatitis B and C) were obtained by reviewing the
medical records. This study was approved by the Ethics Committees from
all medical centers involved and all patients and controls provided written
informed consent. DNA samples were obtained from peripheral blood
using the salting-out method [24] and the NKG2C gene deletion was
genotyped with conventional PCR as previously optimized by Moraru et al.
[25]. To ensure the quality of our results, all amplification experiments
included internal controls with known genotypes, and 10% of the DNA
samples were randomly tested with 100% concordance with initial data.

Statistical analysis
Categorical variables were evaluated through the Chi-square test.
Asymmetric distribution of continuous variables was evaluated through
the Mann–Whitney U test and represented by the median and the
25th–75th percentile. Undetectable viral load was considered as the
number of <50 viral copies/mL. Adherence to Hardy-Weinberg equilibrium
was evaluated as previously described by Rodriguez et al. [26]. The
strength of association between the genetic marker and the outcome was
evaluated by adjusted binary logistic regression. Potential confounding
factors were evaluated and entered in the logistic regression models only if
they were associated both with the outcome and with the study factor at
p < 0.20. All analyses were performed by SPSS v.18.0 for Windows (SPSS
Inc., Chicago, Illinois, USA). For all instances, a p-value < 0.05 was
considered statistically significant.

RESULTS
The demographic and clinical characteristics of the study group are
shown in Table 1. A significant difference in male/female frequency
between groups, with a major representativity of men in the
control group (63.3% vs. 36.7; p= 0.021) was observed (data
available for 756 individuals). All patients included in this study
were under HAART treatment and 96.1% of them showed
undetectable viral load (<50 copies/mL), and the CD4+ T cell
count (cells/mm3) median was 504.5 (362.5–687.0). Also, a
statistical difference in ethnicity proportion was observed between
groups (p= 0.013). Since NKG2C wild-type (WT) allele frequency
was higher among European-derived controls than African-derived
controls (84% vs. 74%; p < 0.001), the impact of NKG2C deletion
was assessed in the overall group and according to ethnicity.

The genotype and allele frequencies of the evaluated indivi-
duals were in Hardy-Weinberg equilibrium. No differences in allele
and genotype frequencies between HIV-infected and controls
were observed (Table 2), thus suggesting that NKG2C deletion has
no direct impact on HIV-infection risk in our population. Also, as
shown in Table 3, no association of NKG2C genotypes with HIV/
HCV co-infection was observed (data available for 370 individuals).
Considering HBV co-infected individuals genotyped (n= 15), 80%
were NKG2C WT homozygous and 20% were heterozygous. No
NKG2C deletion homozygous was found in the HBV co-infected
group, probably due to the small number of HBV co-infected
patients. No statistical differences were observed when compared
to the HIV/HBV co-infected individuals (data available for 364
individuals).
Since this is the first study to evaluate NKG2C deletion in a

Brazilian HIV cohort, we compared our results to those previously
published concerning other human populations [10, 11, 27–35].
NKG2C genotype and allelic frequencies of previous studies are
given in Table 4. In the present study, we found that the frequency
of NKG2C del/del genotype was around 4%, ranging from 0 to 10%
in previous studies. Besides, the allele frequency of NKG2C
deletion reported by other studies ranges from 3 to 30%,
compared to 20% found in our study.

DISCUSSION
In the present study, no association of NKG2C deletion with HIV
susceptibility nor HB/HCV co-infection was observed. Importantly,
our results differ from similar published studies that found NKG2C
deletion to be a risk factor for HIV infection [10, 11]. Thomas et al.
observed a statistically significant higher frequency of NKG2C

Table 1. Demographic and clinical features of HIV-infected individuals
and controls

HIV-infected
individuals (n= 385)

Control group
(n= 395)

Age [median (25–75%)] 42 (37–49) 43 (37–49)

Gender n (%)a

Male 212 (55.1) 235 (63.3)

Female 173 (44.9) 136 (36.7)

Ethnicity n (%)

Euro-derived 219 (56.9) 259 (65.6)

African-derived 166 (43.1) 136 (34.4)

T-CD4+ [cells/mm³,
median (25–75%)]

504.5 (362.5–687.0) NA

HIV viral load [median
(25–75%)]

292 (110–2169) NA

Undetectable HIV viral
load n (%)

370 (96.1) NA

Time on HAART
(months), median
(25–75%)

28 (16–46) NA

Total HAART time,
median (25–75%)

66 (32–104) NA

HBV co-infection, n (%) 15 (4.1) NA

HCV co-infection, n (%) 97 (26.2) NA

Smoking, n (%) 109 (28.3) NA

Alcohol consumption,
n (%)

79 (20.5) NA

HAART highly active antiretroviral therapy, NA data not available, SD
standard deviation
aData available for 756 individuals
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wild-type homozygous in Long-Term Non-Progressor individuals
(LTNP) compared to other progression categories [10]. In our
study, progression to AIDS could not be assessed due to the
indication of HAART initiation in all HIV-positive patients,
independently of the CD4+ T cell counts, thus, this parameter
was not checked. Information regarding treatment status and
duration was also not available. Another group recently assessed
the impact of the same genetic variant among people living with
HIV (PLWH) and subjects who remained uninfected even after
multiple HIV exposures. Results indicated a higher frequency of
the NKG2C del/del genotype in the PLWH group, and authors
hypothesized that the presence of this deletion in homozygosis
could be associated to increased susceptibility to HIV by impairing
NK cell response to virus infection [11]. Although we do not have
information specifically regarding environmental exposure to HIV,
mainly due to the nature of our cohort (healthy blood donors), we
could speculate that subjects enrolled in our control group have
not been exposed, or have a low exposure, to HIV. This feature
should be taken into consideration when discussing the results of
our study.
Few studies have evaluated NKG2C deletion in HIV suscept-

ibility. Nonetheless, the same genetic variant has also been
investigated in the context of other viral infections, such as HCMV,
HSV-1, H1N1, and RSV [27–35]. Although data is conflicting
(Table 4), it has been suggested that the lack of NKG2C expression

caused by the gene deletion impairs the control of HCMV viremia
and disease [31, 34], and significantly impacts the development of
severe SARS-CoV-2 infection [35].
‘Natural gene knockouts’ are frequently observed among

different populations, and redundancy of function between genes
is suggested to compensate for eventual loss-of-function variants;
ultimately leading to no disadvantageous phenotypes [36].
Interestingly, NK cell maturation triggered by HCMV infection
was demonstrated to occur even in the absence of NKG2C [37],
and similar studies reported that individuals lacking NKG2C
expression display normal immune response towards HCMV
infection [38, 39]. Thus, alternative routes might exist, leading to
similar functions and cell activity when this specific receptor is
lacking. Given that, it is feasible to speculate that population
ethnicity could also be playing an important role in how this
genetic variant impacts HIV infection. Interestingly, our group has
previously demonstrated how polymorphisms may have different
clinical outcomes depending on the genetic/ethnic background of
the evaluated individuals [40]. Although it is generally accepted
that the Brazilian population is highly admixed, encompassing
Amerindian, African, and European components, the European
component is preponderant in different Brazilian regions [41–43].
In fact, according to a study based in a panel of 40 validated
ancestry-informative insertion-deletion DNA polymorphisms, the
genetic composition of the Brazilian population is rather uniform
in its miscegenation in different regions of the country [43]. The
characteristic miscegenation of the Brazilian population and its
potential consequences were discussed extensively by our group
in a recent review (see ref. [44]). Nevertheless, genetic/ethnic
background differences between our cohort and the few other
populations evaluated concerning NKG2C deletion and HIV
infection could be responsible by the discordant results. Therefore,
further assessments of the impact of NKG2C deletion in viral
infections among different populations are highly recommended.
Besides studies assessing the NKG2C genotype, total numbers of

NKG2C+ cells in the context of viral infections have also been
evaluated [18, 19, 21, 22, 42–47]. Of note, it was demonstrated that
this subset is significantly increased in HIV-infected patients when
compared to healthy controls [22], and a higher number of
NKG2C+ γδ T cells was observed in HIV-infected patients [46].
However, opposite results reported no differences in CD8+
NKG2C+ T cells counts comparing HIV+ patients and healthy
controls [19]. Additionally, studies enrolling HIV+ patients with
concomitant infections suggested that increase in NKG2C+ NK
and CD8+ subpopulations might be a response to an underlying
co-infection of HCMV, and not necessarily to HIV itself [18, 21, 47].
Similar data were reported by groups evaluating NKG2C+ cells in
chronic hepatitis, strongly suggesting that underlying HCMV
infection is the factor responsible for the expansion of this subset

Table 3. Evaluation of NKG2C deletion on HIV/HCV co-infection risk

Ethnicity NKG2C Genotypes—HIV/HCVa

WT/WT
n (%)

WT/del
n (%)

del/del
n (%)

p-valuea

European-derived

Co-infected
individuals

24 (60) 16 (40) − 0.37

No co-infected 110 (65) 53 (31) 7 (4)

African-derived

Co-infected
individuals

32 (56) 23 (40) 2 (4) 0.31

No co-infected 70 (68) 29 (28) 4 (4)

Total

Co-infected
individuals

56 (58) 39 (40) 2 (2) 0.15

No co-infected 180 (66) 82 (30) 11 (4)

WT wild-type, del deletion
aData available for 370 individuals

Table 2. NKG2C genotype and allele frequencies among HIV-infected individuals and control group stratified by ethnicity

Ethnicity NKG2C Genotype NKG2CAllele

WT/WT n (%) WT/del n (%) del/del n (%) p-value WT (%) del (%) p-value

European-derived

HIV-infected individuals 140 (64) 72 (33) 7 (3) 0.214 352 (80) 86 (20) 0.105

Control group 185 (71) 67 (26) 7 (3) 437 (84) 81 (16)

African-derived

HIV-infected individuals 105 (64) 55 (33) 6 (3) 0.093 265 (80) 67 (20) 0.068

Control group 77 (57) 46 (34) 13 (9) 200 (74) 72 (26)

All individuals

HIV-infected individuals 245 (64) 127 (33) 13 (3) 0.093 617 (80) 153 (20) 0.763

Control group 262 (66) 113 (29) 20 (5) 637 (80) 153 (20)

WT wild-type, del deletion
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in HBV/HCV-infected patients [48–50]. Given the lack of informa-
tion regarding HCMV status in our cohort, this issue could not be
taken into consideration. We also highlight that most of the
previous studies regarding HCMV-co-infection did not evaluate
the NKG2C deletion; moreover, we highly encourage further
studies to access the role of NKG2C copy number variation on HIV/
HCMV-co-infection.
In conclusion, no association between NKG2C deletion and HIV

susceptibility nor HBV/HCV co-infection was observed. To our
knowledge, this is the first study to evaluate the contribution of
NKG2C deletion in a Brazilian population, and also the third
worldwide in an HIV context. Of note, we are aware that
phenotypic expression of NKG2C also deserves attention, and
the lack of data regarding protein expression is a limitation of our
study. Given controversial data gathered throughout the years, it
is still unclear whether or how NKG2C influences HIV susceptibility
and disease progression. Therefore, studies evaluating larger
populations, as well as integrating genetics and functional aspects
are necessary to understand the relation between this receptor
and HIV infection and progression.
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