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Abstract

Whole-exome and whole-genome sequencing studies in autism spectrum disorder (ASD) have 

identified hundreds of thousands of exonic variants. Only a handful of them, primarily loss-

of-function variants, have been shown to increase the risk for ASD, while the contributory 

roles of other variants, including most missense variants, remain unknown. New approaches 

that combine tissue-specific molecular profiles with patients’ genetic data can thus play an 

important role in elucidating the functional impact of exonic variation and improve understanding 

of ASD pathogenesis. Here, we integrate spatio-temporal gene co-expression networks from 

the developing human brain and protein-protein interaction networks to first reach accurate 

prioritization of ASD risk genes based on their connectivity patterns with previously known 

high-confidence ASD risk genes. We subsequently integrate these gene scores with variant 

pathogenicity predictions to further prioritize individual exonic variants based on the positive-

unlabeled learning framework with gene- and variant-score calibration. We demonstrate that 

this approach discriminates among variants between cases and controls at the high end of 

the prediction range. Finally, we experimentally validate our top-scoring de novo mutation 

NP 001243143.1:p.Phe309Ser in the sodium/potassium-transporting ATPase ATP1A3 to disrupt 

protein binding with different partners.

1 Introduction

Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with 

a strong genetic component [1–4]. The field of psychiatric genetics has worked vigorously 

for more than a decade to discover genetic contributors to the risk for ASD. As a result, 

it is now understood that the genetic architecture of ASD represents a combination of 

high-risk rare copy number variants [5–8], rare coding variants detected through whole-
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exome sequencing of ASD families [9–12], and common variants identified in genome-wide 

association studies [3]. Recently, however, non-coding variants identified through the large 

whole-genome sequencing studies [13–15] have also begun to accumulate evidence for 

involvement in ASD. The genetic etiology of ASD is likely intermediate, with polygenic 

variation contributing additively in the presence of a strong de novo variant [1, 16]. In 

particular, pathogenic de novo variation shows potential to account for ASD occurrence in 

simplex families; i.e., those with a single affected child. ASD cases in such families have 

been found to harbor twice as many de novo loss-of-function (LoF) variants than expected 

by chance, although the recurrence of any particular variant is low [17]. Other types of 

variants, primarily missense variants, have subtler group signatures [17] and have recently 

attracted increased attention [18–21].

Due to the complex genetic architecture of ASD, identification of dysregulated signaling and 

regulatory pathways has remained challenging. Based on the biological functions of genes 

that carry recurrent de novo mutations, convergence on chromatin remodeling, synaptic and 

neuronal signaling, transcriptional and translational regulation have emerged [12, 17, 22, 

23]. Collectively, mTor, MAPK and beta-catenin/Wnt signaling have all been implicated 

[24]. The integration of genetic data with other data types has further demonstrated 

that high-risk ASD genes are highly connected in co-expression and protein interaction 

networks, especially during late mid-fetal stages of brain development [25–29].

The abundance of available genetic and molecular data have led to the development of 

computational approaches to effectively identify new genes with association to ASD. For 

example, Mosca et al. [30] used a diffusion-based prioritization in a network to identify 

significantly connected gene modules associated with ASD. Krishnan et al. [31] performed 

a genome-wide prediction of ASD risk genes using a machine-learning approach based 

upon a brain-specific gene network, and used a case-control sequencing-study validation 

set to identify pathways and brain developmental stages to predict ASD risk genes with 

minimal or no prior genetic evidence. Similarly, Duda et al. [32] used a brain-specific 

functional relationship network for ASD risk gene prioritization. In the past several years, 

more comprehensive efforts have been made to integrate brain-specific gene expression data 

to further generate gene-level predictions for association with ASD [22, 33–38]. While these 

approaches have made strides in the identification of genes relevant to ASD, the challenge 

remains to incorporate this data with variant-level information to identify individual variants 

that significantly increase the risk for ASD.

Here, we seek to assess the utility of gene- and variant-scoring methods to prioritize 

impactful exonic de novo variation in individuals with ASD. We first quantify the strength 

of the relationship between a given gene and previously discovered high-confidence ASD 

risk genes by leveraging brain gene expression and protein-protein interaction data. We 

find that brain-specific co-expression networks improve model performance compared to the 

networks from other tissues, or to protein-protein interaction networks. Then, our approach 

integrates gene scores with variant pathogenicity predictions to prioritize individual exonic 

variants. The integration was carried out in a positive-unlabeled framework that allows 

for rigorous score calibration [39]. We apply this methodology to de novo variation 

derived from the Simons Foundation Collection families [9–11, 40, 41] and from other 
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large-scale sequencing studies [12, 17, 42–57], and achieve effective discriminative case/

control capacity on high-scoring variants. Finally, we validate one missense variant in an 

experimental follow-up study, confirming its putative contribution to ASD risk through the 

disruption of interactions with three protein-binding partners.

2 Materials and Methods

2.1 Systems data

To construct gene networks, we first integrated gene expression data and protein-protein 

interaction (PPI) data. We used the “RNA-Seq Gencode v10 summarized to genes” dataset 

from the BrainSpan atlas of the developing human brain [58, 59] to construct an expression 

matrix of 52,376 transcripts over 524 human brain samples derived from 57 postmortem 

brain specimens [58]. The 19,113 transcripts corresponding to protein-coding genes were 

subsequently grouped into 4 brain regions (Table 1) and 12 developmental periods (Table 2) 

as previously described [26, 28].

Next, we assembled a dataset of 303,040 binary protein-protein interactions by combining 

physical PPIs from BioGRID v3.4.159 [60], gene-level interactions from the Autism 

Spliceform Interaction Network [27], the human interactome from [61] and gene-level PPIs 

from [62].

2.2 Rare de novo variants

We obtained 9,174 protein-coding de novo variants of three types; i.e., missense, in-frame 

insertion/deletion (indel) and loss-of-function (LoF; stop gain and frameshifting indels) from 

whole-exome sequencing studies of the Simons Foundation Collection families [9–11, 41] 

and other studies [12, 17, 42–57]. Variants present in the gnomAD database [63] as well as 

variants shared between cases and controls were filtered out from the case dataset because 

of their high likelihood of being non-pathogenic [64]. Our final set contained 3,608 variants 

(Table 3).

2.3 Network construction

We used gene expression data to build a correlation network for all brain regions (R), 

developmental periods (P) and their combinations (RP). Genes constituted nodes in these 

networks, whereas the links were constructed by reliably estimating the correlation of 

expression profiles across relevant samples for all pairs of genes. As criteria for noise 

filtering, we required more than five pairs of independent samples supporting the calculation 

of a Pearson’s correlation coefficient (ρ) as well as that at least one gene from each pair 

had at least 0.5 Transcripts Per Million (TPM) expression. The same network construction 

steps were taken for processing co-expression data from GTEx [65] to construct tissue-

specific networks for our baseline approaches. GTEx data was available for multiple tissues, 

including adult human brain.

Gene co-expression networks were merged with PPI networks in two ways, referred to here 

as the “intersection” and “union” integration. In the “intersection” approach, the weight wij 

of the link between gene i and gene j was defined as
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wij = min I gi, gj ∈ PPI, rij ,

where Ic is an indicator function for the logical expression c, rij is the thresholded correlation 

coefficient ρij as described below, and | · | is an absolute value function. Similarly, the weight 

of each link in the “union” approach was defined as

wij = max I gi, gj ∈ PPI, rij .

In both approaches, we retained only co-expression edges with absolute values of at least 

0.75; i.e., rij = ρij ⋅ I ρij ≥ 0.75, where ρij is Pearson’s correlation between expressions of 

genes i and j over a set of samples in the BrainSpan dataset. In summary, three types of 

networks were built for each R, P, or RP for gene prioritization: (1) gene co-expression 

network without PPIs; (2) the intersection of co-expression and the PPI network; (3) the 

union of co-expression and the PPI network.

2.4 Gene and variant scoring

There may be hundreds or even thousands of genes involved in ASD [24, 66, 67], but 

the role of each gene and its contribution to the development of ASD is for the most part 

unknown. In the past decades, studies have identified about a hundred genes conferring 

high risk for ASD [4]. To prioritize the remaining genes, we used the functional flow 

network propagation approach [68] across spatio-temporal co-expression and PPI networks 

as described below.

The network seed genes (denoted as POS65; Supplementary Table S2) were derived from 

[11] and consisted of 65 highly confident genome-wide significant ASD risk genes. The 

performance of gene scoring was evaluated on an independent set of 63 genes (denoted 

as VAL63; Supplementary Table S2) assembled by removing POS65 genes from recently 

identified 102 high-risk autism genes [4]. As a negative control, additional evaluation 

datasets included 1000 lists of 63 genes, randomly sampled from BrainSpan to be similar in 

length and GC content (±10%) to the VAL63 genes.

The performance among methods with different parameter settings was compared along 

several dimensions: (i) edge weight normalization method in propagation: the original 

functional flow and its two variants (i.e., incoming and outgoing edge normalization); (ii) 

three different settings for edge cutoffs with controls of network sparsity; and (iii) number 

of propagation strides [68]. Through five-fold cross-validation, we identified the parameter 

settings with the best performance using 51 BrainSpan networks (4 regions, 12 periods 

and 35 region/period combinations) with and without PPI networks, and then used the best 

parameters for testing. Thirteen region/period combinations were omitted due to lack of 

samples.

The effect of missense variants was estimated with MutPred2 [19], loss-of-function 

variants with MutPred-LOF [69], and non-frameshifting indel variants and multi-residue 
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substitutions with MutPred-Indel [70]. These predictors were selected based on the fact that 

they were all trained using similar protocols, their good performance in the prediction of 

both pathogenicity and protein function disruption [71], as well as that all report molecular 

mechanisms potentially causative of pathogenicity. High-scoring variants with “loss of 

protein binding” as an underlying mechanism were of primary interest for downstream 

experimental validation.

Although we were interested in variants that alter protein function, we note that exonic 

variants could lead to phenotypic changes via other molecular mechanisms, such as splicing 

disruption or impact on RNA stability and folding. Our approach has not directly considered 

such events.

2.5 Probabilistic model for autism-specific variant scoring

We propose a simple semi-supervised probabilistic model that combines the risk that a 

gene is involved in ASD with the probability that the variant disrupts the function of this 

gene. Before describing the model, we argue that both gene scoring and variant scoring 

can be approached through positive-unlabeled learning, a form of semi-supervised binary 

classification in which all labeled data is positive and unlabeled data is a mixture of positive 

and negative examples at unknown proportions [72]. In our problem, known ASD genes can 

be considered positive, whereas other genes can be considered to be unlabeled. The task of 

a gene prioritization model is then to identify remaining positive genes among unlabeled 

genes. Similarly, in variant scoring, we are given a set of disease-causing variants, such 

as those from the Human Gene Mutation Database [73], and a set of unlabeled variants 

from gnomAD. The task of a variant interpretation model is then to identify remaining 

disease-causing variants among unlabeled variants.

A common approach to positive-unlabeled learning is to develop classifiers by training 

positive against unlabeled data [74]. This approach was in fact shown to be optimal for a 

range of loss functions for model learning [75, 76], in the sense that minimizing the loss 

function from positive and unlabeled data (models referred to as non-traditional classifiers 
[74]), simultaneously minimizes the loss if one were to train a model from positive and 

negative data (models referred to as traditional classifiers [74]). Unfortunately, although 

ranking objectives such as area under the ROC curve fall under this scenario, the scores 

outputted by non-traditional classifiers are not calibrated to represent posterior probabilities 

[39]. As such, the outputs from gene prioritization tools and variant interpretation tools 

cannot be formally combined as probabilities. We will address the score calibration models 

after the model is introduced.

Let D (diagnosis) be a binary random variable indicating the diagnosis of ASD and v a 

single variant occurring in some gene g. We focus on a single variant at a time because 

the average number of de novo coding variants in an individual is around one [77]. Let 

now E (effect) and R (risk) denote binary random variables whether the function of a 

protein product of g is disrupted in the presence of v and whether g is an ASD risk gene, 

respectively. We can then use marginalization to write the probability of diagnosis d as
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p(d ∣ v) = ∑
e ∈ 0, 1

∑
r ∈ 0, 1

p(d ∣ e, r, v)p(e, r ∣ v),

where d, e, and r are realizations of the random variables D, E, and R, respectively, variant 

v can be thought of as a realization of a random variable V, and p denotes an appropriate 

probability mass function; e.g., p(d|v) = P(D = d|v), etc. We are primarily interested in 

identifying new risk genes and variants and, thus, we focus on P(D = 1|v).

We now observe that nonfunctional variants cannot contribute to the positive diagnosis and 

neither can variants outside of the group of the ASD risk genes; i.e., P(D = 1|E = e, R = r, v) 

= 0 unless both e = 1 and r = 1. Hence, we can write the probability of the ASD diagnosis 

given variant v as

P (D = 1 ∣ v) = P (D = 1 ∣ E = 1, R = 1, v)P (E = 1, R = 1 ∣ v)

since all other terms reduce to 0. We now make an assumption that any variant disrupting 

the function of an ASD risk gene causes the phenotype with certainty. Then, by applying 

conditional independence between a variant disrupting gene function and that gene being an 

ASD risk gene, we obtain a probabilistic model of ASD diagnosis in the presence of a de 
novo variant v as

P (D = 1 ∣ v) = P (E = 1, R = 1 ∣ v)
= P (E = 1 ∣ R = 1, v)P (R = 1 ∣ v)
= P (E = 1 ∣ v)P (R = 1 ∣ g) .

(1)

The last two terms on the right-hand side of Eq. (1) correspond to a variant-level score and 

a gene-level score, respectively. We have further replaced the probability P(R = 1|v) with 

P(R = 1|g) to clarify that the probability that g is a risk gene is strictly a gene property, as 

long as variant v is within g. Probabilities P(E = 1|v) and P(R = 1|g) are first obtained by 

applying a dedicated variant- or gene-prediction tool, which are then calibrated to be proper 

probabilities, as described in Section 2.6. To avoid multiplying small probabilities, we have 

scored each variant using a logarithm transform

log P (D = 1 ∣ v) = log P (E = 1 ∣ v) + log P (R = 1 ∣ g) . (2)

This model described above is appropriate for phenotype-specific prioritization of highly 

penetrant variants. However, even in complex phenotypes such as ASD, it has been observed 

that the polygenic effect can be modulated in the presence of a strong de novo variant [1]. 

Therefore, although we expect a lower performance levels compared to Mendelian disorders, 

we believe that a useful diagnostic signal can still emerge. Polygenic scores corresponding 

to the set of individuals considered here were not available for the development of more 

sophisticated models.

2.6 Score calibration in the positive-unlabeled setting

According to the above derivation, the gene score P(R = 1|g) and variant score P(E = 

1|v) can be simply multiplied to yield the probability that the variant v in gene g leads 
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to ASD. However, the outputs of the gene and variant scoring tools require calibration 

before they can be considered good approximations of the posteriors and multiplied together. 

To illustrate this seeming subtlety, we will digress to discuss model development in a 

positive-unlabeled setting.

Consider a binary classification problem of mapping inputs x ∈ X into outputs Y = 0, 1  on 

the dataset drawn i.i.d. from a fixed but unknown probability distribution p(x, y), where (x, 
y) is a realization of a random vector (X,Y) of inputs (X) and outputs (Y). In a traditional 

supervised setting, we are given a set of positive examples obtained from p(x|Y = 1) and 

a set of negative examples obtained from p(x|Y = 0), roughly available at proportions 

P(Y = 1) and P(Y = 0), respectively. In contrast, a positive-unlabeled setting considers a 

training data obtained through a selection process to contain a set of positive examples 

drawn from p(x|Y = 1) and a set of unlabeled examples drawn from the marginal distribution 

p(x) = ∑y ∈ Y p(x, y).

Using S to represent a binary random variable that a data point is labeled (S = 1 indicates 

labeled and S = 0 unlabeled), we can train a classifier to approximate the posterior 

distribution between labeled and unlabeled data as P(S = 1|x). Jain et al. [78] derived a 

formula to then convert P(S = 1|x) into P(Y = 1|x) as

P (Y = 1 ∣ x) = P (S = 0)
P (S = 1) ⋅ P (S = 1 ∣ x)

P (S = 0 ∣ x) ⋅ P (Y = 1), (3)

where P(S = 1) = 1 − P(S = 0) is the probability of observing a (positively) labeled example 

in the training data and P(Y = 1) is the probability of observing a positive example in the 

unlabeled data. Therefore, to estimate the posterior probability of the positive output given 

some input x, two conditions must be fulfilled: (1) we must train a non-traditional classifier 

that estimates P(S = 1|x), and (2) we must estimate P(Y = 1).

The first condition can be reasonably achieved by training models that approximate the 

posterior distributions in a binary classification setting. Posterior approximation has been 

covered in the literature; e.g., Rojas [79] demonstrated it for neural networks, whereas Platt 

[80] gave a post-processing algorithm for learners such as support vector machines. The 

second condition requires a complex step of nonparametric estimation of class priors in 

unlabeled data [39, 78]. The class prior P(Y = 1) in this work was estimated using the 

AlphaMax algorithm [39, 78] and the fraction P(S = 0)/P(S = 1) was estimated as the 

fraction of unlabeled and labeled training examples. The uncalibrated probability P(S = 1|x) 

was the output of a dedicated tool in either gene prioritization or variant interpretation, as 

applicable. Finally, we note that errors in estimating P(S = 1|v) and P(Y = 1) can lead 

to undesired situations that the calibrated probability is greater than 1. The (monotonic) 

logarithmic transform from Eq. (2) allowed us to disregard such problems.

2.7 Clinical significance of variant scoring

Evaluation of variant interpretation for complex clinical phenotypes is a difficult task owing 

to the mostly low-to-moderate penetrance of pathogenic variants. Even when penetrance 

is high, de novo variation, compound heterozygosity, or structural variation could all be 
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contributing factors for different subsets of individuals [24], which presents evaluation 

problems for de novo variation because the ground truth is unavailable. Therefore, standard 

machine learning approaches that include ROC curves, precision-recall curves and their 

derivatives (e.g., area under the curve) cannot be effectively used to evaluate the quality of 

predictive models.

To evaluate potential clinical impact of our scoring of de novo variation, we use the positive 

likelihood ratio (LR+), defined as the ratio of posterior and prior odds of pathogenicity 

[81]. Let P(Y = 1) be the fraction of pathogenic variants in the population of interest and 

P(Y = 1|f(x) = 1) be the fraction of pathogenic variants in the same population but when a 

computational model f :X Y gives a positive prediction. Then, the likelihood ratio for the 

positive prediction f(x) = 1 is defined as

LR+ = posterior odds
prior odds , (4)

where the prior odds are defined as the ratio of P(Y = 1) and P(Y = 0), and the posterior 

odds are defined as the ratio of P(Y = 1|f(x) = 1) and P(Y = 0|f(x) = 1). The likelihood ratio 

is therefore the increase in odds of pathogenicity due to the positive prediction. It can be 

shown that LR+ is independent of the class prior P(Y = 1) and can be computed as the ratio 

of the true positive rate and false positive rate [81].

The positive likelihood ratio is related to the Diagnostic Odds Ratio (DOR) that has been 

often used for risk assessment, particularly in cancer studies [82]. The relationship is 

expressed as

DOR = LR+

LR−,

where LR− is defined as the ratio of the false negative rate and true negative rate [81]. Since 

LR− is limited to a [0, 1] interval for predictors whose ROC curve never drops below the 

identity line, LR+ is generally lower than DOR and thus gives a more conservative view on 

clinical utility.

2.8 Experimental validation

As a proof of principle, we selected one missense variant for experimental validation. This 

variant was selected based on the following criteria: (1) the gene was not in the list of 

POS65 or 102 genes from [4]; (2) the gene was highly scored by top-performing BrainSpan 

networks to suggest that it was likely an ASD risk gene; (3) the mutation was scored with 

a high MutPred score to suggest pathogenicity; (4) the mutation was not present in either 

the Human Gene Mutation Database [73] or ClinVar [83]; (5) no variants from controls were 

found in the gene.

2.8.1 Plasmid cloning and cell transfection—The ORF clones of the gene 

of interest, ATP1A3, and its interacting partners were obtained from the ORFeome 

Collaboration [84]. The genes were transferred from the donor plasmid pDONR223 to 
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destination plasmids, pDEST40 and pDEST47, using LR Gateway reaction (Invitrogen) 

following manufacturer’s instructions. The gene of interest was introduced into pDEST40 

to obtain ATP1A3-V5 tagged, and the partners were transferred to pDEST47, to obtain 

GFP-tagged proteins.

HEK 293T cells were seeded at 5 × 105 cells per well in 60 mm plates (Genesee 

Scientific). After 24h, cells were transfected using Lypofectamine 3000 (Invitrogen) 

following manufacturer’s instructions and then harvested after additional 48h.

2.8.2 Co-Immunoprecipitation and Western Blot—HEK 293T cells were harvested 

and rinsed once with ice-cold 1xPBS, pH 7.2, and lysed in immunoprecipitation lysis buffer 

(20 mM Tris, pH 7.4, 140 mM NaCl, 10% glycerol, and 1% Triton X-100) supplemented 

with 1xEDTA-free complete protease inhibitor mixture (Roche) and phosphatase inhibitor 

cocktails-I, II (Sigma Aldrich). The cells were centrifuged at 16000 × g at 4°C for 30 

min, and the supernatants were collected. Protein concentration was quantified by modified 

Lowry assay (DC protein assay; Bio-Rad). The cell lysates were resolved by SDS-PAGE 

and transferred onto PVDF Immobilon-P membranes (Millipore). After blocking with 5% 

nonfat dry milk in TBS containing 0.1% Tween 20 for 1hr at room temperature, membranes 

were probed overnight with the appropriate primary antibodies. They were then incubated 

for 1h with the species-specific peroxidase-conjugated secondary antibody. Membranes were 

developed using the Pierce-ECL Western Blotting Substrate Kit (Thermo Scientific).

For immunoprecipitation experiments, samples were lysed and quantified as described 

above. Then, 1mg of total protein was diluted with immunoprecipitation buffer to achieve 

a concentration of 1 mg/ml. A total of 30 μl of anti-V5-magnetic beads-coupled antibody 

(MBL) was add-ed to each sample and incubated for 4h at 4°C in tube rotator. Beads 

were then washed twice with immunoprecipitation buffer and three more times with 

ice cold 1xPBS. The proteins were then eluted with 40 μl of 2xLaemli buffer. After 

a short spin, supernatants were carefully removed, and SDS-PAGE was performed. The 

following primary antibodies were used: anti-V5 (1:1000; Invitrogen), anti-GFP (1:1000; 

Cell Signaling), anti-GAPDH (1:5000; Cell Signaling).

3 Results

3.1 Brain-specific co-expression networks improve ASD gene prioritization

To assess the extent to which brain-specific gene co-expression networks and protein-protein 

interaction (PPI) networks help in autism gene prioritization, we ran a label propagation 

algorithm with POS65 as the seed genes on all gene networks described in the Methods 

section. We assessed the quality of the predicted gene scores of the algorithm with 

various parameters using stratified 5-fold cross-validation for the three network types (i.e., 

co-expression networks and the “union” and “intersection” with PPI). The final parameter 

set included ρ = 0.75 for co-expression network construction and 5 strides with outgoing 

weight normalization for the functional flow procedure [68].

Figure 1A shows the area under the Receiver Operating Characteristic (ROC) curve (AUC) 

evaluated over all region-, period-, and region/period-specific networks with or without 
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the PPI data; for detailed results see Supplementary Table S3. We observed that in most 

cases, networks constructed using the union of co-expression and PPI networks performed 

better than co-expression networks without the PPI information. Similarly, many of the 

networks using region- and period-specific brain co-expression data outperformed the 

PPI-only network. Region-wise, all brain regions performed similarly well, with R1 and 

R2 displaying a slightly better performance than other regions. Period-wise, P5 (16–18 

pcw) and P10 (1–5 yrs) performed best. With regard to region/period networks, P10 in 

combination with any region, but especially R2-P10 and R4-P10 combinations, had superior 

performance. Top region/period-specific networks with the union of PPI outperformed 

region- and period-specific networks as well as the PPI-only network.

Next, we evaluated the quality of gene scoring obtained by a one-time propagation of 

POS65 but on an independent validation dataset VAL63. The classification performance was 

only slightly lower than POS65 cross-validation performance (Figure 1B; Supplementary 

Table S3). However, in agreement with cross-validation results, period P10 by itself, or 

P10 in combination with various regions remained the best performing networks on the 

out-of-sample VAL63 dataset. Again, the addition of PPI data improved the performance for 

the majority of datasets. As a negative control, we also generated 1000 simulated gene lists, 

each of which consisted of 63 brain-expressed genes with similar length and GC content 

as VAL63. The performance of gene scoring on these control networks (Figure 1C) was 

considerably lower than on the VAL63 gene set.

To understand whether region- and period-specific brain expression data was indeed 

important for the ASD risk gene prioritization, we repeated the experiment with the same 

network construction procedures for gene scoring, only using tissue-specific gene expression 

data from the GTEx database v.7 instead of BrainSpan. We found that all GTEx networks, 

including those from the brain, showed inferior performance even to the protein-protein 

interaction network (Figure 2; Supplementary Table S3). Of note, GTEx brain datasets 

are derived from adult brain samples. This suggests that spatio-temporal developmental 

brain transcriptome from BrainSpan, and especially from fetal and early postnatal periods, 

significantly improves ASD gene prioritization.

3.2 Estimating prior probabilities

To further prioritize individual exonic variants, the variant scores were calculated by an 

appropriate tool from the MutPred family; i.e., MutPred2 [19] was used on missense 

variants, MutPred-LOF [69] on frameshifting indels and stop variants (LOF variants), and 

MutPred-Indel [70] on non-frameshifting indels and multiresidue substitutions. The gene 

scores were calculated by gene prioritization tools described in Section 2.

After non-traditional scores were obtained, we used the AlphaMax algorithm [39, 78] to 

estimate the prior probability of pathogenicity caused by different types of variants; i.e., 

missense, loss-of-function (LoF) and indel to be 1.5%, 2.5% and 5%, respectively, while 

the prior probability for a gene being categorized as an ASD risk gene was estimated at 

10%. All raw prediction scores were then re-scaled according to Eq. (3) to acquire calibrated 

scores.
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3.3 Gene scoring improves discriminatory power of highly scored variants

We next demonstrate that the integration of gene-scoring with variant-scoring from Eq. 

(1) increases the discriminatory power of highly scored variants between autism cases and 

controls. After re-weighting with gene scores, we defined high-risk variants as those whose 

final scores were larger than 90% of control variants. This score corresponds to the variants 

with the one-sided p-value below 0.1 given an empirical null distribution defined by the 

control variants. We then applied Fisher’s exact test to determine whether the proportion of 

high-risk de novo variants is higher among probands than in their healthy siblings. A more 

stringent threshold corresponding to the 95% showed similar results, although we considered 

it less reliable due to the relatively small sample sizes of LoF and indel variants at this 

threshold.

We benchmarked the discriminating power of our gene prioritization with brain-specific 

networks against several baseline gene scoring methods: (i) POS65 – the known 65 risk seed 

genes were assigned the probability of 1, while all other genes were assigned the probability 

of 0; (ii) MutPred – this baseline scoring scheme does not use any gene prioritization 

and scores variants simply based on the outputs of MutPred; (iii) Krishnan – the gene 

probabilities were obtained from [31]; (iv) Duda – the gene probabilities were obtained 

from [32]; (v) PPI – the genes were scored by propagating over the PPI network. The blue 

dashed line indicates the significance value corresponding to the p-value of 0.05 in each plot, 

whereas the gray dashed line indicates the Bonferroni-corrected p-value (Figures 3–5).

Our scoring method based on BrainSpan networks was more powerful in discriminating 

high-risk variants between case and control groups than PPI networks and two other 

published methods [31, 32]. Interestingly, all scoring approaches performed better on LoF 

mutations compared to missense and indel variants. This is consistent with the notion that 

LoF mutations are generally more pathogenic, and that ASD patients have an excess of LoF 

variants compared to controls. Across region-based networks, R1 and R2 cortical regions 

generally outperformed other regions, which is consistent with previous observations from 

the literature [25, 26, 28, 29]. Across period-based networks, P3 (early fetal) for all mutation 

types, and P11 (middle and late childhood) for LoF generally outperformed other periods. 

This is a surprising finding since previously P6 (late mid-fetal) period has been strongly 

implicated in ASD based on the gene network-level [26, 28]. This suggests that adding 

variant scoring to the networks may pick up additional signals that were not present in 

the gene-based models. Furthermore, predictions using region-period combination networks 

(Figure 5) generally performed better than region-based (Figure 3) or period-based (Figure 

4) did individually. Some of the region/period network-based predictions significantly 

outperformed the existing methods; i.e., R2-P5 and R3-P3 for missense, R1-P11 and R3-P3 

for LoFs, and R2-P8 and R4-P5 for indels (Figure 5). Note that the addition of gene scoring 

increased predictive performance compared to just pure variant scoring by MutPred. In 

most cases, combination of gene and variant scoring on certain region/period combinations 

improved upon POS65. This suggests that our method improves the predictions of novel 

ASD risk genes and variants. We note that the statistical signal also holds when POS65 were 

completely removed from the networks (Supplementary Materials).
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3.4 Assessing clinical significance

Recent guidelines on variant interpretation in the clinic allow for the use of computational 

models [85] with concrete likelihood ratio values proposed by Tavtigian et al. [86]. While 

these recommendations are relatively new and, for now, mostly apply to known Mendelian 

genes, the numerical values of likelihood ratios on the strength of clinical support can be 

seen as a form of guidance. In this light, we computed positive likelihood ratios (Eq. 4; 

Section 2.7) for our method when the decision threshold for the raw scores of the predictor 

was set at the level of the top 10th (and top 5th) percentile of the empirical null distribution 

defined by the scores from control variants. For easier interpretation, we also report the 

estimates of the diagnostic odds ratio (DOR). Areas under the ROC curve are reported in 

Supplementary Table S5.

The averaged and maximum values of LR+ and DOR are shown in Table 4. These 

results indicate that the expected increase in odds of pathogenicity is around 1.5 for 

missensse variants, around 4.5 for loss-of-function variants, and around 2 for indels, with 

their maximum values being higher, depending on the best-performing network. Following 

Tavtigian et al. [86], we can classify the increase in odds of pathogenicity as informative for 

clinical decision-making. We observe, however, that LR+ values do not completely reflect 

the results from Section 3.3 because of the discrepancy in the number of variants from 

each group. That is, we found useful statistical signal for the missense variants but their 

diagnostic value is the lowest, whereas the small dataset size of indel variation resulted 

in a loss of statistical signal despite a generally informative diagnostic value. The most 

trustworthy results in interpreting variation are therefore provided by our scoring of the LoF 

variants, where both statistical significance and moderate diagnostic signal were found.

3.5 Experimental validation

To validate functional effect of missense mutations predicted by our ASD variant 

effect predictor, we selected one highly ranked mutation (Supplementary Table S4), and 

investigated its impact on protein-protein interactions using co-immunoprecipitation. We 

selected the mutation NP_001243143.1:p.Phe309Ser in the sodium/potassium-transporting 

ATPase ATP1A3 gene, which had a score of 0.92 and was annotated by our model as 

“altered PPI hotspot”. This mutation was initially identified by the exome sequencing of 

ASD families [12]. The ATP1A3 gene carries several more de novo missense mutations 

from other ASD or developmental delay sequencing studies [87–89]; however, the 

pathogenicity of F309S or other mutations in ATP1A3 is unknown.

We tested the interaction of the wild type (WT) and F309S mutant (MT) ATP1A3 proteins 

for interaction with its three interacting protein partners, TOMM22, VDAC1 and TGFβ1 
(Figure 6B). All these PPIs had highly confident interaction scores in the BioGRID 

database. To investigate the impact of the mutation on PPIs with these three partners, we 

tagged the WT and MT forms of ATP1A3 with the V5-tag, and the interacting partners with 

the GFP tag (Section 2.8). We then co-transfected the WT or MT forms with one of its 

partners into HEK 293T cells, and assessed the strength of interaction by performing a V5 

immunoprecipitation and blotting against GFP.
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We observed a reduction in the interaction of F309S MT form of ATP1A3 with all three 

partners compared to the WT ATP1A3 (Figure 6A). We did not observe significant reduction 

in the expression of MT ATP1A3 or its partners after transfection, as evident from full 

lysate inputs before the immunoprecipitation (Figure 6A). Thus, the observed reduction 

in interaction strength is not due to lower expression levels of the MT protein or the 

partners. The reduction of the interaction was around 50% for all interacting partners (Figure 

6C). These results suggest that the F309S mutation weakens or disrupts the interaction 

of ATP1A3 with its partners, in agreement with our prediction. In addition to ASD, 

heterozygous mutations in ATP1A3 gene are also implicated in other neurological disorders 

including alternating hemiplegia of childhood 2 [OMIM 614820], CAPOS syndrome 

[OMIM 601338], and dystonia-12 [OMIM 128235]. This example demonstrates the utility 

of our combined gene- and variant-scoring model for formulating and validating testable 

hypothesis with regards to the functional impact of missense mutations in ASD.

4 Discussion

As a result of whole-exome and whole-genome sequencing of affected families, the number 

of genes and variants potentially implicated in complex neurodevelopmental diseases 

will continue to grow. It is therefore increasingly important to be able to interpret the 

significance of the newly found variants in the disease context and identify molecular 

mechanisms, in the form of specific alterations of molecular function [90, 91], underlying 

the development of the phenotype. In this work, we proposed a probabilistic framework 

to prioritize exonic de novo variation and evaluated the usefulness of gene- and variant-

scoring methods to discriminate between individuals with and without ASD. We found 

that the higher-resolution systems data was beneficial to prioritization; i.e., that brain 

region-specific and developmental period-specific gene co-expression networks provide a 

valuable source of information for prioritizing ASD genes. We have also shown that gene 

scoring based on a network propagation method using a combination of co-expression 

and protein-protein interaction networks outperforms each single source of information, 

suggesting complementarity between the two types of data. Furthermore, co-expression 

networks focusing on particular brain regions and developmental periods, especially with 

inclusion of fetal and early postnatal brain development, were more powerful in scoring 

ASD genes than general tissue-specific networks, including adult brain networks from 

GTEx.

A novel aspect of this study is that formal integration of gene and variant scoring was 

based on formulating the inference in a positive-unlabeled setting through which we were 

able to convert general-purpose variant- and gene-scoring methods into a disease-specific 

variant interpretation method. We have shown that the final variant-level scores were 

accurate in distinguishing high-risk exonic de novo variants of all types between case and 

control individuals. A combination of these scoring methods is advantageous for predicting 

molecular mechanisms of pathogenicity in ASD risk genes and, more broadly, offers a 

probabilistic model for comparing the impact of multiple variants in an individual’s genome. 

Although we have only evaluated the impact of exonic de novo variants in the context 

of a pre-specified phenotype, we anticipate that this formulation has the potential to be 
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incorporated into polygenic risk scoring schemes that combine common and rare variation 

[92].

While our results are generally positive, there are also limitations that merit discussion. 

First, from a technical perspective, the calibration method used in this work depends on the 

ability of the underlying methods to estimate prior and posterior distributions in the positive-

unlabeled setting. Both problems remain open and actively researched in machine learning 

[93, 94]. Second, our probabilistic framework for scoring variants in a disease-specific 

context relied on simplifying assumptions; e.g., any variant that disrupts gene function in 

a known disease gene was automatically assumed to be disease-causing. This limitation 

will be difficult to overcome until such a time as gene function can be predicted at the 

level of protein domains or, optimistically, in a residue-specific manner for all aspects of 

protein function. Third, we relied on the MutPred family of tools to capture disease-causing 

variants based on our familiarity with these models, their good performance, and their 

ability to predict specific types of functional alteration. These tools, however, have not 

been benchmarked against others in this project and thus a higher performance may be 

achievable. Fourth, our main evaluation strategies were based on our ability to discriminate 

cases and controls for high-scoring variants. We have selected this evaluation because only 

a small fraction of cases may be caused by exonic de novo variation. Since this fraction is 

unknown and difficult to estimate, we could not apply the available correction strategies to 

give robust performance estimates [95, 96]. Consideration of the top 5–10% of high-scoring 

variants to evaluate the accuracy of our models was simply pragmatic. Finally, as recent 

studies have demonstrated [97], bulk gene expression data could be confounded by cell 

type-specific gene expression signals. Thus, using single-cell transcriptomic data could be 

beneficial in the context of the current study, although it is not yet available across multiple 

brain developmental periods and regions.

The probabilistic framework and findings from this study have led to encouraging results in 

prioritizing de novo variation in a disease-specific context. They have also lead to candidates 

that could be experimentally evaluated and thus contribute to the knowledge of complex 

neurodevelopmental disorders. The F309S variant in ATP1A3 is one such candidate that 

significantly reduces protein-protein interaction propensity and is therefore a candidate for 

further studies of causality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Heatmap plot of the performance of gene scoring of BrainSpan networks with POS65 as 

seed genes. (A) cross-validated performance with POS65 as seed genes. (B) Using POS65 as 

seed genes but evaluated on the VAL63 genes. (C) Using POS65 as seed genes but evaluated 

on the 1000 lists of simulated genes with similar length and GC content as VAL63. Each 

pie chart represents the estimated AUC on one BrainSpan region, period or region/period 

combination. The three patches in each pie chart represent: (top) the original BrainSpan 

network; (lower-left) the intersection of BrainSpan and PPI network; (lower-right) the union 

of BrainSpan and PPI network. More detailed results are shown in Supplementary Table S3
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Figure 2: 
Performance of gene scoring on networks constructed from 31 GTEx tissues. Black bar 

corresponds to the performance of the PPI network. The bars show average AUC and 

standard error over 100 restarts of network propagation through cross-validation.
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Figure 3: 
Fisher’s exact test for discriminating case and control exonic de novo variants by using gene 

scores from various brain region networks. From left to right: missense, LoF, and indel. Each 

region has three bars (color coded from light to dark) corresponding to the co-expression 

network, and merged networks with PPI using the “intersection” and the “union” methods, 

respectively. Dotted lines show the thresholds for statistical significance, with p′ being the 

Bonferroni-corrected value.
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Figure 4: 
Fisher’s exact test for discriminating case and control exonic de novo variants by using gene 

scores from various period networks. From left to right: missense, LoF, and indel. Each 

period has three bars (color coded from light to dark) corresponding to the co-expression 

network, and merged networks with PPI using the “intersection” and the “union” methods, 

respectively. Dotted lines show the thresholds for statistical significance, with p′ being the 

Bonferroni-corrected value.
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Figure 5: 
Fisher’s exact test for discriminating case and control exonic de novo variants by using gene 

scores from various region/period combination networks. From left to right: missense, LoF, 

and indel. Each combination has three bars (color coded from light to dark) corresponding to 

the co-expression network, and merged networks with PPI using the “intersection” and the 

“union” methods, respectively. Dotted lines show the thresholds for statistical significance, 

with p′ being the Bonferroni-corrected value.

Jiang et al. Page 29

Hum Genet. Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
(A) Representative images of Western Blot for ATP1A3 interaction with its selected 

partners. Numbers below the anti-GFP blot represent the percentage of densitometry 

intensity for each mutant partner compared to its WT counterpart. (B) Table representing 

different relevant parameters for ATP1A3 and the selected partners. (C) Graph representing 

the percentage of interaction for each partner, comparing the F309S mutant against its WT 

counterpart (n = 3, paired ratio t-test, *p < 0.05).
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Table 1:

Brain region groupings for the BrainSpan dataset. Samples collected from various regions of the brain were 

separated into 4 groups, indexed from 1 to 4, as previously described [26, 28].

Index Brain Regions

1 Occipital neocortex, posterior (caudal) superior temporal cortex (area 22c), inferolateral temporal cortex (area TEv, area 20), 
posteroventral (inferior) parietal cortex, primary auditory cortex (core), primary visual cortex (striate cortex, area V1/17), temporal 

neocortex.

2 Anterior (rostral) cingulate (medial prefrontal) cortex, dorsolateral prefrontal cortex, orbital frontal cortex, parietal neocortex, primary 
motor cortex (area M1, area 4), primary motor-sensory cortex (samples), primary somatosensory cortex (area S1, area 3, 1, 2), 

ventrolateral prefrontal cortex.

3 Amygdaloid complex, caudal ganglionic eminence, hippocampus (hippocampal formation), lateral ganglionic eminence, medial 
ganglionic eminence, striatum.

4 Cerebellar cortex, cerebellum, dorsal thalamus, mediodorsal nucleus of thalamus, upper (rostral) rhombic lip.
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Table 2:

Time period groupings for the BrainSpan dataset. Samples collected at various stages of brain development 

were separated into 12 groups, indexed from 2 to 13, as previously described [26, 28].

Index Periods Index Periods

2
Early fetal

8
Neonatal and early infancy

8–9 pcw 0–5 mos

3
Early fetal

9
Late infancy

10–12 pcw 6–11 mos

4
Early mid-fetal

10
Early childhood

13–15 pcw 1–5 yrs

5
Early mid-fetal

11
Middle and late childhood

16–18 pcw 6–11 yrs

6
Late mid-fetal

12
Adolescence

19–23 pcw 12–19 yrs

7
Late fetal

13
Young adulthood

24–37 pcw 20–40 yrs

Period abbreviations: pcw = post-conception weeks, mos = months, yrs = years.
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Table 3:

Breakdown of the de novo variants used in this study.

Missense LoF Indel Total

Case (proband) 2022 633 62 2717

Control (sibling) 737 132 22 891

Total 2759 765 84 3608
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Table 4:

Aggregated positive likelihood ratio (LR+) and diagnostic odds ratio (DOR) over the BrainSpan datasets. Each 

entry shows the average LR+ and DOR over all networks in a category and the maximum LR+ and DOR 

in parentheses. The cutoff represents the percentile of scores over control variants used to define pathogenic 

variants in cases.

Metric Cutoff Networks Missense LoF Indel

LR+

90%

Regions 1.42 (1.59) 3.25 (3.58) 1.67 (2.31)

Periods 1.38 (1.67) 3.35 (4.41) 2.00 (3.55)

Combinations 1.41 (1.70) 3.26 (4.38) 2.11 (4.79)

95%

Regions 1.64 (1.93) 4.44 (5.24) 2.04 (2.48)

Periods 1.64 (2.02) 4.84 (6.20) 2.62 (4.97)

Combinations 1.71 (2.11) 4.61 (6.91) 3.02 (7.81)

DOR

90%

Regions 1.49 (1.70) 4.33 (4.98) 1.80 (2.65)

Periods 1.45 (1.81) 4.56 (7.03) 2.29 (4.76)

Combinations 1.48 (1.85) 4.36 (6.94) 2.45 (7.71)

95%

Regions 1.87 (2.19) 5.54 (6.88) 2.15 (2.67)

Periods 1.67 (2.24) 6.24 (8.74) 2.90 (6.13)

Combinations 1.77 (2.23) 5.86 (10.33) 3.48 (11.55)
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