Skip to main content
. 2022 Mar 21;8(2):869–890. doi: 10.3390/tomography8020071

Table 4.

Comparison of test result for pre-trained and ensemble model for main dataset in one holdout run. Bold indicates the model holds the highest accuracy.

Model Accuracy Precision Sensitivity F1 Specificity
ResNet50V2 0.9347 0.9224 0.9456 0.9339 0.9243
DenseNet201 0.9347 0.9388 0.9312 0.9350 0.9383
MobileNet 0.9571 0.9184 0.9956 0.9554 0.9242
F-EDNC 0.9755 0.9787 0.9641 0.9713 0.9814
O-EDNC 0.9632 0.9551 0.9710 0.9795 0.9630
FC-EDNC 0.9714 0.9837 0.9602 0.9718 0.9833
CANet 0.9163 0.9061 0.925 0.9155 0.908