Skip to main content
. 2022 Mar 21;8(2):869–890. doi: 10.3390/tomography8020071

Table 7.

Average test result for pre-trained model for the main dataset in five runs. Bold means these three models have the highest accuracy.

Model Accuracy Precision Sensitivity F1 Specificity
DenseNet201 0.9388 0.9610 0.9231 0.9412 0.9565
VGG16 0.8918 0.8612 0.8792 0.8701 0.8692
InceptionV3 0.8734 0.8490 0.8489 0.8491 0.8560
ResNet50 0.7285 0.7224 0.7314 0.7269 0.7287
ResNet50V2 0.9408 0.9306 0.9502 0.9403 0.9320
ResNet152V2 0.9224 0.8980 0.9442 0.9205 0.9027
Xception 0.8939 0.8410 0.9406 0.8880 0.8571
VGG19 0.8776 0.8980 0.8627 0.8800 0.8936
ResNet101 0.7429 0.5673 0.8742 0.6881 0.6798
ResNet101V2 0.9306 0.9061 0.9527 0.9289 0.8764
NASNet 0.8980 0.8530 0.9372 0.8931 0.8652
MobileNetV2 0.9020 0.9836 0.8456 0.9094 0.9805
MobileNet 0.9510 0.9383 0.9661 0.9520 0.9407
MobileNetV3Small 0.5000 0 0 0 0.5000
InceptionResNetV2 0.9020 0.8776 0.9227 0.8996 0.8832
EfficientNetB7 0.5000 1.0000 0.5000 0.6667 0