Skip to main content
. Author manuscript; available in PMC: 2022 Mar 22.
Published in final edited form as: IEEE J Biomed Health Inform. 2019 Jul 31;24(4):1180–1187. doi: 10.1109/JBHI.2019.2928831

Algorithm 1:

Generative process for the sLDA model.

For each individual d ∈ [1,...,D]:
 a. Draw topic mixture proportions:
  θd ~ DirichletK(α),
  where α is a hyper-parameter.
 b. For each “word” n ∈ [1,...,Nd] within individual d:
  i. Draw a topic assignment: zd,n ~ Multinomial(θd).
  ii. Draw an image / genetic feature: wd,n ~ Multinomial(βzd,n).
 c. Draw the discrete response variable:
  ydzd,1:Nd,μ~softmax(μTz¯d)
  where z¯d=1Ndn=1Ndzd,n is the empirical frequencyvector of different topics in subject d, and μ is the classification weighting matrix to be estimated.