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Abstract

Gut microbes modulate host phenotypes and are associated with numerous health effects 

in humans, ranging from cancer immunotherapy response to metabolic disease and obesity. 

However, difficulty in accurate and high-throughput functional analysis of human gut microbes 

has hindered defining mechanistic connections between individual microbial strains and host 

phenotypes. One key way the gut microbiome influences host physiology is through the 

production of small molecules1–3, yet progress in elucidating this chemical interplay has been 

hindered by limited tools calibrated to detect products of anaerobic biochemistry in the gut. 

Here we construct a microbiome-focused, integrated mass-spectrometry pipeline to accelerate 

the identification of microbiota-dependent metabolites (MDMs) in diverse sample types. We 

report the metabolic profiles of 178 gut microbe strains using our library of 833 metabolites. 
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Leveraging this metabolomics resource we establish deviations in the relationships between 

phylogeny and metabolism, use machine learning to discover novel metabolism in Bacteroides, 

and employ comparative genomics-based discovery of candidate biochemical pathways. MDMs 

can be detected in diverse biofluids in gnotobiotic and conventional mice and traced back to 

corresponding metabolomic profiles of cultured bacteria. Collectively, our microbiome-focused 

metabolomics pipeline and interactive metabolomics profile explorer are a powerful tool for 

characterizing microbe and microbe-host interactions.

Introduction

The human gut microbiota encode diverse metabolic pathways. Enriched in anaerobic 

pathways that process diverse diet- and host-derived molecules, gut microbes make 

numerous novel compounds with relevance for human health and untapped therapeutic 

potential. Many of these microbial products in the gut subsequently enter the host’s tissue 

and circulation, where additional metabolic steps can add to the chemical diversity1–3. 

Several recent studies have shown that microbiota-dependent metabolites (MDMs) influence 

immune function4, metabolism5,6, cardiovascular health7, and cognition and behavior8. 

In many cases, MDMs exert these effects on host biology by binding to specific host 

receptors9 and activating downstream signaling pathways10. Discovery of how individual 

prevalent human gut microbes mechanistically contribute to host phenotypes has been 

hampered by the difficulty in accurately monitoring the diverse universe of molecules 

produced by gut microbes. To address this gap, recent studies in the field have leveraged 

improvements in high resolution mass spectrometry11 as well as growing mass spectra and 

compound databases12 (e.g. MoNA, METLIN13, HMDB14, and KEGG15). Nevertheless, 

because of 1) fundamental differences between anaerobic metabolism in the gut vs. aerobic 

biochemistry, and 2) under-representation of anaerobic microbial products in existing 

databases, the full metabolic capability of the microbiota remains understudied. Here 

we present a microbiome-focused, integrated mass-spectrometry pipeline to facilitate the 

identification of microbiota-dependent metabolites in diverse sample types, and to associate 

these metabolites with microbial strains and genetic pathways.

Microbiome-focused metabolomics

To enable interrogation of microbiome metabolism, we 1) constructed a mass spectrometry-

based reference library to detect anaerobic biochemistry and an analytical pipeline to 

integrate large metabolomic datasets; 2) validated our methods to ensure applicability to 

the broader scientific community; and 3) enabled interactive, public access to our datasets 

(https://sonnenburglab.github.io/Metabolomics_Data_Explorer) (Fig. 1, Extended Data Fig. 

1–3, Supplementary Table 1–4, Methods).

Next, we leveraged this tool to create a reference dataset of metabolomic profiles for 

individual bacterial strains to enable multiple modes of analysis and discovery. 178 

individual prevalent human gut microbes representing 130 species and spanning 6 phyla 

were acquired from ATCC, DSMZ, and BEI (Supplementary Table 5, 6). To create the 

most comparable dataset of metabolism, we cultivated all supported strains (158/178) in 
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mega medium – a rich, undefined medium known to support growth of diverse bacteria and 

collected culture supernatant between mid-log to stationary phase (Extended Data Fig. 4a, 

b, Supplementary Methods). The remaining 20 strains were grown in 9 additional media as 

detailed (Supplementary Table 6), 29 strains were grown and analyzed across multiple media 

types (Supplementary Table 7, Extended Data Fig. 4c).

To assess large-scale metabolite production and consumption patterns, we hierarchically 

clustered individual bacterial strains (Extended Data Fig. 4d–f, Supplementary Table 

7). In some cases, two closely related species exhibiting distinct metabolomic profiles 

punctuated with metabolite-level similarities (Clostridium sporogenes and Clostridium 
cadaveris, Extended Data Fig. 5a, b). In others, phylogenetic proximity is accompanied 

by similarity in metabolic patterns (four Bacteroides fragilis strains, Pearson r > 0.80 for 

all pairwise comparisons, Extended Data Fig. 5a, b). Conversely, hierarchical clustering 

of species by metabolomic profile distance reveals unexpectedly shared metabolic patterns 

among phylogenetically distant species (Atopobium parvulum, Phylum Actinobacteria and 

Catenibacterium mitsuokai, Phylum Firmicutes) (Extended Data Fig. 6a–c).

In addition to the large-scale metabolic patterns, we discovered unique high producers or 

consumers of specific metabolites within our strain collection. For example, Enterococcus 
faecalis and Enterococcus faecium significantly produce high levels of tyramine (Extended 

Data Fig. 4e), a biogenic amine known to modulate host neurological functions16. In 

contrast, Clostridium cadaveris significantly consumes high levels of pantothenic acid 

(vitamin B5) (Extended Data Fig. 4f), a molecule associated with inflammatory bowel 

diseases17. This large-scale in vitro screen enables us to identify numerous high-abundance, 

variably conserved, microbially-derived metabolites that can be tracked in vitro and in vivo 
(Extended Data Fig. 6d).

Metabolonomy distinct from phylogeny

We next addressed large-scale relationships between strain metabolism (metabolonomy) and 

phylogeny, a complex topic addressed with different approaches in previous studies18–21. 

Bacterial metabolism is a product of a microbe’s genetic metabolic toolkit and the chemical 

environment. Comparing metabolomic and phylogenetic trees for the same set of 158 

mega-medium grown strains revealed broadly conserved topology with the strains most 

often clustering by phyla (Fig. 2a, Extended Data Fig. 6a, 7a, Supplementary Methods). 

However, this similarity is punctuated by significant divergences where the relative location 

of specific strains in the two trees differs substantially (magenta and gold colored branches, 

Fig. 2a). Notably, these patterns of clustering are preserved when metabolites are weighted 

by chemical similarity (Extended Data Fig. 7b, c; Mantel test: r2 = 0.863, P = 0.001).

To quantify these differences we compared metabolomic distance between strains to their 

evolutionary distance (Extended Data Fig. 7d, Supplementary Table 7). Using V4 16S 

the relationship between phylogenetic distance and metabolomic distance is linear (r2 = 

0.30, P < 1e-92) below ~0.11 branchlength units, approximating a difference of taxonomic 

‘Class’ in our data. Above a branchlength of 0.11, 16S distance explains almost none of the 

variance in metabolomic distance (r2 = 0.02, P < 10−9). These patterns are robust to data 

transformation and evolutionary distance derived from full-length 16S genes (Extended Data 
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Fig. 7e–j). Comparing metabolic distance of bacteria grouped by taxonomic rank alone (e.g., 

distance between different strains of the same species) reveals a similar pattern of saturation 

(Extended Data Fig. 7d, Supplementary Table 7). These data indicate that when two strains 

are grown in the same complex medium, differences in detected microbial metabolism are 

smaller on average than what would be extrapolated linearly from evolutionary or taxonomic 

relationships, particularly for distantly related bacteria. Importantly, the high variance 

in metabolic distance between microbes of any relatedness (taxonomic or phylogenetic) 

reaffirms the utility of metabolite profiles when comparing specific strains.

We next leveraged our strain-resolved metabolomic and genomic data to examine the 

correlation between bacterial genetic and metabolic variations in the context of a single 

pathway, polyamine biosynthesis (Fig. 2b, Extended Data Fig. 7k). Gut microbially-derived 

putrescine and its precursor ornithine have both been implicated in influencing aspects 

of host physiology22,23. Their biosynthetic enzymes have been functionally characterized 

in select bacterial species (e.g., ornithine-producing arc genes24, putrescine-producing spe 
genes25).

We discovered two groups of phylogenetically distant strains in two phyla, Firmicutes 

and Actinobacteria (Fig. 2b, orange and purple phylum borders respectively), that 

accumulate high levels of ornithine and citrulline in the absence of significant downstream 

polyamine production. We performed iterative comparative genomics starting with the 

ornithine-producing arc genes described in Enterococcus faecalis and found their conserved 

presence (Extended Data Fig. 7k) among the ornithine-accumulating strains, such as 

the Lactobacillales (Fig. 2b, strain names highlighted in orange). Notably, these genes 

are not detectable in the non-ornithine-accumulating phylogenetic neighbors, for both 

the Lactobacillales and Actinobacteria. These examples illustrate that when metabolic 

phenotypes depart from phylogeny, orthologous gene-to-metabolite relationships may be 

preserved. We next identified strains that accumulate high levels of downstream putrescine 

and/or agmatine within three phyla: Proteobacteria, Fusobacteria, and Firmicutes (Fig. 2b, 

green, red, and orange phylum borders respectively). While several putrescine-accumulating 

Proteobacteria strains (Fig. 2b, strain names highlighted in green) share the putrescine-

producing spe gene cluster described in E. coli (Extended Data Fig. 7k), these genes 

are not detectable in the Fusobacteria. These data indicate limited ability of phylogeny 

or genome-based prediction of metabolic functions in bacterial strains and reinforce the 

utility of measuring metabolic phenotypes to identify strains and genes producing specific 

metabolites that have the potential to impact host biology.

Metabolic phenotype-to-gene discovery

Metabolite production and consumption have long been used as mechanisms to group 

and identify organisms (e.g., indole production). Here, we used our comprehensive mega 

medium-derived metabolomic data along with simple machine learning (random forest; RF) 

models to identify sets of metabolites distinguishing different taxonomic groups. Simple RF 

models could accurately classify the taxonomic origin of microbial supernatants (Fig. 3a, 

Supplementary Methods). While the total metabolome is not clearly predictive of taxonomy 
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(Fig. 2a, Extended Data Fig. 7d) these RF’s revealed subsets of the chemical features that 

were highly conserved and predictive of taxonomic identity (Extended Data Fig. 8a).

The most discriminating features selected by the RFs for differentiating phyla had an 

overrepresentation in amino acid (AA) metabolism (Extended Data Fig. 8a). Intriguingly, 

Bacteroidetes were differentiated by their consumption of most of the glutamine (Gln; 

median consumption 83%) and asparagine (Asn; median consumption 96%) in the mega 

medium (Fig. 3b). Classic work showing Bacteroides could not use free AAs as sole 

nitrogen sources (NS) failed to test Asn and Gln26. Based on the data from the 60 

Bacteroidetes taxa in the collection, we hypothesized that Gln and Asn might serve as 

sole NS. To test this, we grew all 60 Bacteroides and Parabacteroides species in a minimal 

medium that lacked free ammonium, but contained 10 mM Glutamate (Glu), Gln, or Asn. 

Strikingly, the Asn or Gln sufficed as the NS for 50 of 60 Bacteroidetes tested (Fig. 3c, 

Extended Data Fig. 8b, c). To determine the genetic basis of Asn utilization, we searched 

the Bacteroidetes genomes for homologs of E. coli enzymes that consume asparagine and 

release ammonia (Fig. 3c, red rows). For taxa with available genomes, an L-asparaginase II 

homolog (ansB; > 59% identity) strongly correlated (Pearson r = 0.91) with max OD when 

grown on Asn. Using a transposon mutant in the Bacteroides thetaiotaomicron type strain 

(Bt VPI 5482 2757-3983-), we confirmed that this L-asparaginase II homolog was necessary 

for growth with Asn as a sole NS (Fig. 3d). The effect we observed was not dependent on 

presence of cysteine; Bt VPI 5482 and Bt VPI 5482 2757-3983- grew with sodium sulfide 

substituted as reduced sulfur source and the pattern of growth was maintained (Extended 

Data Fig. 8d). We next examined Bacteroides amino acid consumption patterns in vivo. 

In the cecum of mice monocolonized with Bt VPI 5482, Asn was the most depleted AA 

(median decrease of 86.9%) compared to germ-free control animals (Extended Data Fig. 

8e). This observation is consistent with in vivo Asn utilization by Bt, but does not exclude 

colonization-dependent changes in host Asn utilization. These findings demonstrate the 

power of combining strain-resolved metabolomics with simple statistical models, in this case 

to discover a major metabolic capacity for nitrogen assimilation for the most abundant genus 

in the industrialized microbiota.

Metabolomic impact of community and host

Pursuit of mechanism in microbiome studies can be aided by reverse translation of findings 

from complex communities (humans or conventional animals) into highly controlled (e.g., 

gnotobiotic) models. We have recently demonstrated the utility of our in vitro strain 

metabolite profiles in reverse translation by recreating metabolic phenotypes of interest 

to study IBD mechanisms27. Based on two metabolites detected in human biofluids28 and 

conventional mice, we asked whether we could reconstitute the production of microbially-

derived metabolites in the host gut and/or circulation by colonizing mice with the highest 

in vitro producing strain in our collection. One candidate, agmatine, is a polyamine 

with neuroprotective roles in mammals29, and a substrate for transporters in kidney and 

liver cells30. The other candidate, alpha-ketoglutaric acid, is a tricarboxylic acid cycle 

intermediate that extends lifespan in nematode C. elegans and increases autophagy in 

mammalian cells31.
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Consistent with our in vitro observations, agmatine and alpha-ketoglutaric acid levels were 

both significantly increased in the feces of mice mono-associated with a high in vitro 
producer: Citrobacter portucalensis and Anaerostipes sp., respectively (Fig. 4a, Extended 

Data Fig. 9a). Further, we bolstered agmatine levels in the host circulation (e.g., urine) 

relative to the germ-free controls (Fig. 4a). These examples provide a proof-of-concept 

application of our in vitro dataset to reconstitute specific microbially-derived metabolism in 

a mouse model, enabling potential mechanistic studies relevant to host physiology.

We leveraged our unique strain-resolved metabolomic data set combined with gnotobiotic 

colonization (Supplementary Table 8) and asked whether specific in vivo gut bacteria-

derived metabolites serve as biomarkers for a given taxonomic group. Among the 

34 significantly produced metabolites in both colonized mice and individual strain 

cultures, we found several phylum-specific metabolites (e.g., 5-Aminopentanoic acid and 

Indolepropionic acid by Firmicutes; Malic acid and Melatonin by Bacteroidetes) (Extended 

Data Fig. 9b, Supplementary Table 9). These data highlight that taxa-specific metabolites 

may serve as biomarkers for aspects of microbiome composition.

We next assessed the extent to which metabolites produced in vitro are reconstituted in 

gnotobiotic mice colonized with the same microbes. At the metabolomic profile level, 

Clostridium sporogenes (Cs)- or Bacteroides thetaiotaomicron (Bt)-mono-associated murine 

feces and cecal contents correlated with Cs or Bt in vitro culture when compared against 

158 mega-medium grown taxa (Cs, top 1%; Bt, top 10%; Extended Data Fig. 9c). The lack 

of correlation in serum and urine (~0, Extended Data Fig. 9c) is likely due to the inability 

of bacterial culture to recapitulate host-encoded metabolism (e.g., phase I/II enzymes). 

At the individual metabolite level, 8 out of 20 (40%, Cs) and 3 out of 29 (10%, Bt) 
significantly produced cecal metabolites in vivo were also produced by the same strain in 
vitro (Extended Data Fig. 9d). Further, when assessing a six-species defined microbiota, 15 

out of 46 (33%) significantly produced cecal metabolites were also produced by one or more 

of the six species in vitro (Extended Data Fig. 9d). Collectively, these data illustrate that 

metabolites produced in a standard rich medium can inform a portion of the microbially-

derived metabolites produced in the gut environment.

To better understand whether and how microbe-dependent metabolites in the gut can 

inform circulating metabolites in the host, we examined enteric and systemic metabolic 

contributions in the host by Cs and Bt. We measured metabolite profiles of four sample 

types (feces, cecal contents, serum, and urine) in different colonization states (Fig. 4b). 

Principal Component Analyses (PCA) reveal that metabolomic profiles cluster by sample 

types (e.g., cecal contents vs. serum) from mice colonized with the same microbes, as 

well as by colonization states (e.g., Cs mono-association vs. Cs-containing six-member 

community) (Extended Data Fig. 9e, f). We identified a distinct set of known and candidate 

host-microbial co-metabolites that are significantly elevated in the serum and/or urine, and 

are strongly associated with the presence of either Cs or Bt in the gut (Fig. 4b, Extended 

Data Fig. 9g, h). Notably, in both serum and urine, accumulation of N-(cinnamoyl)glycine is 

Cs-dependent, whereas accumulation of Indoxyl sulfate is Bt-dependent (Fig. 4b, Extended 

Data Fig. 9g, h). Our systematic and high-throughput detection of microbe and host-

microbe metabolites across different sample types (e.g., from cecum to serum) enables 
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identification of intermediates within known or candidate host-microbial co-metabolism 

pathways (Extended Data Fig. 10a).

To determine whether enteric presence of Cs is necessary for the elevation or reduction 

in specific metabolites in host circulation, we omitted Cs from the original six-member 

community. Metabolites shown are significantly elevated or reduced by at least four-fold 

in the serum, urine, or cecal contents of mice with the six-member community, relative to 

their germ-free controls (Fig. 4c, Extended Data Fig. 10b, c). In contrast, the five-member, 

Cs-lacking community either abrogated the production or restored the depletion of a subset 

of these metabolites in the serum or urine, indicating that enteric presence of Cs is necessary 

for modulating levels of these metabolites in the host circulation (Fig. 4c, Extended Data 

Fig. 10b) and illustrating the potential of microbiome editing to alter MDMs that circulate in 

the host blood.

Discussion

Untargeted metabolomics has led to many discoveries of microbiota-dependent metabolic 

pathways9,10 and metabolites linked to host diseases17,32–34, yet there is exceptional 

untapped potential. Here we present a customizable and expandable method of constructing 

a chemical standard library-informed metabolomics pipeline tailored to detecting products 

of gut anaerobic biochemistry. Using this method, we construct an atlas of gut microbiota-

dependent metabolic activities in vitro and in vivo, enabling functional studies of gut 

microbial communities. Complementary to recent studies using phylogenetic (16S)35 

or metagenomic comparisons36 to predict gene functions, we used strain-resolved 

metabolomics to provide expansive biochemical profiles of individual strains. These 

profiles demonstrate that substantial metabolic variation is common even between 

closely related strains. Our findings, along with emerging studies on microbiome-focused 

metabolomics37–39 and gut microbial metabolism40,41, reinforce the limits of phylogeny or 

genome-scale analysis to provide direct measurement or prediction of metabolic phenotypes 

and the molecules that link the microbiota to host physiology. Our existing strain-specific 

genome-by-metabolic profile data provides a rich resource for comparative discovery of 

genes and pathways that underlie bacterial phenotypic variation. Furthermore, this data and 

approach can be used as a direct reference or readily implemented platform for improving 

MDM identification in biological samples. Adding novel microbially-derived metabolites, 

along with new strains such as those isolated from diverse human populations, will 

uncover new mediators of host-microbiota interaction and molecular targets for therapeutic 

interventions.

Materials and Methods

Metabolomic pipeline construction logic

Accurate identification and analysis of diverse small molecules in complex biological 

samples (e.g., those present in the mammalian gut) is challenging due to a wide variety 

of technical factors including chemical structural diversity, matrix effects, and linearity 

of ion detection. To ensure our LC/MS pipeline is relevant for biological samples and 

that it is useful to the broader scientific community, we highlight six key points of our 
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approach: 1) detectability of diverse chemical classes of compounds that characterize 

bacterial and host metabolism using three complementary analytical methods42,43 (Extended 

Data Fig. 1d, 3a–c); 2) retention time (RT) shifts that occur in divergent matrices (e.g., 

culture supernatant vs. host serum) to determine whether metabolites in a biological sample 

could be faithfully identified using RT data from our mz-RT reference library (Extended 

Data Fig. 3d, e, Supplementary Table 2); 3) linearity of signal over a large range of 

concentrations, a prerequisite for performing sample comparisons and determining fold-

change differences (Extended Data Fig. 3f, Supplementary Table 2); 4) use of MS/MS 

fragmentation to validate the high-abundance metabolites identified in biological samples 

(Extended Data Fig. 1e, Supplementary Table 2); 5) construction of an MS/MS spectra 

reference library of 750+ authentic standards on two distinct types of MS instrument (qTOF 

and Q Exactive) at multiple standard collision energies (Supplementary Table 3), enabling 

Level 1 confidence annotation when used in conjunction with our mz-RT reference library, 

and 6) implementation of our mz-RT reference library on different types of MS instruments 

following minimal non-linear RT correction44 (Extended Data Fig. 3g, Supplementary Table 

4). For data analysis, we constructed an integrated pipeline combining 1) mass spectrometry 

analysis tools45 that leverage our reference library for compound identification (Extended 

Data Fig. 1f), with 2) a custom bioinformatics pipeline that enables computation and 

statistics on large datasets (Extended Data Fig. 2).

Authentic chemical standard collection

The authentic metabolite standard collection is composed of individually curated and 

commercially available standards (Mass Spectrometry Metabolite Library of Standards, 

IROA Technologies). Individually curated metabolites (303 metabolites) were weighed (2 

mg minimum) and transferred from original manufacturer’s stock bottles (e.g. Sigma, Fisher, 

Acros, etc) into 2 mL Eppendorf tubes and reconstituted with 50% LC-MS grade methanol 

to reach a stock concentration of 10 mM. Additional compounds (284 metabolites) were 

purchased as 10 mg stocks from MetaSci (MetaSci Custom Library). Dried power from 

company stock tubes were transferred (2 mg minimum) into 2 mL tubes and reconstituted 

with 50% methanol to reach 10 mM. Metabolites from the IROA metabolite standard library 

(634 metabolites), supplied in much smaller amounts (~ 5 μg per well), were reconstituted 

with various amount of methanol in water (v/v) per manufacturer’s instructions, but due to 

limited mass, their concentrations were less precise. Individual pools (12-30) of metabolite 

standards, which do not share the same molecular weight, were generated by combining 

stocks and diluted with 50% MeOH to reach a final concentration of 200 μM. A subset 

of these pools (377 metabolites) was also serially diluted in 50% methanol. Individual 

metabolite pools and dilutions were analyzed using three LC/MS analytical methods.

Mass spectrometry LC/MS methods

Instrumental and chromatographic settings.—Compounds were separated using an 

Agilent 1290 Infinity II UPLC (binary pumps) and detected using an Agilent 6545 LC/MS 

Quadrupole Time-of-Flight (qTOF) instrument equipped with a dual jet stream electrospray 

ionization source (ESI) operating under extended dynamic range (EDR 1700 m/z) in the 

positive (ESI+) or negative (ESI-) ionization modes. Published C18 methods42 and HILIC 

method43 were used with minor modifications. See Supplementary Methods for details.
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Metabolomics sample preparation.—Five different sample types were processed 

with a similar sample preparation protocol detailed in Supplementary Methods. In brief, 

samples were homogenized, protein was precipitated in a methanol-based recovery buffer 

that contains extraction standards. Samples were centrifuged, and their supernatant was 

collected, evaporated, and a reconstitution buffer containing internal standards was added. 

Reconstituted samples were filtered and subsequently analyzed by three analytical methods 

on the LC/MS-qTOF.

Mass spectrometry mz-RT reference library

The exact mass-to-charge ratio (m/z) of each metabolite standard was calculated by 

combining monoisotopic mass of the metabolite (PubChem) and adding or subtracting the 

mass of a proton (1.007276 Da) depending on the default adduct ion ([M+H]+ for ESI+ 

and [M−H]− for ESI−). The Agilent MassHunter Qualitative Data Analysis software (Qual, 

v. B.07.00) was used to match individual extracted-ion chromatogram (EIC) peaks within a 

± 10 ppm window from the predicted m/z of each metabolite standard. Alternative adducts 

ions were identified via “Search by Molecular Feature” in Qual; when multiple adducts were 

identified, the adduct ion with the greatest area under the curve was used in the reference 

library. An RT was assigned to a metabolite when a single EIC peak was identified. When 

multiple chromatographic peaks were identified, likely resulting from degradation products, 

different isotopes, or adducts of other molecules in the mixture, a subsequent injection of 

that metabolite standard alone was conducted to identify the RT for that metabolite. For 

metabolites run in dilution series, RTs at all concentrations at which the same metabolite 

was detected were used to produce an averaged RT for this metabolite in the reference 

library. The averaged RT was used to 1) increase accuracy by averaging small injection 

to injection variations, and 2) distinguish true signal from background noise by validating 

peaks whose ion counts proportionally increase with concentrations.

To address how the same reference library performed on different instruments, we compared 

two different LC-MS systems: an Agilent 6545 LC-qTOF, the instrument where the 

original library was constructed, and a second instrument, an Agilent 6530 LC-qTOF or 

a Thermo orbitrap Q Exactive (QE). While these different instruments shared the same 

chromatographic conditions (i.e., analytical methods, solvents, columns), they differed 

in resolution and ESI ion source parameters optimized to support each instrument. To 

compare inter-instrumental RT shifts, a subset of the full reference library (219 metabolite 

standards spanning diverse RTs) was reconstructed on the second qTOF instrument, and 773 

metabolite standards were reconstructed on the QE instrument. For each analytical method, 

RT correction was done by cubic polynomial transformation of the original library44 

based on inter-instrumental RT shifts of 10-20 robustly detected metabolites (i.e., internal 

standards) that span the detected RT range. For each analytical method, using the corrected 

library with a RT tolerance window of 0.2 min, ~99% for the 219 metabolites tested on the 

second qTOF instrument, and ~94% of the 773 metabolites tested on the QE instrument, 

were correctly identified.
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MS/MS spectra library construction

MS/MS raw data were collected from individual pools (12-24 compounds/pool) for 833 

authentic library standards, using three liquid chromatography methods applied to two 

distinct types of mass spectrometry instruments (Agilent qTOF 6545, Thermo Orbitrap Q 

Exactive (QE)). For qTOF, auto MS/MS preferred ions settings with individual input list of 

m/z and RT information specific to the compounds in each pool were used to collect spectra 

at three collision energies (CEs: 10, 20, 40 eVs). For QE, Full MS / dd-MS2 settings with a 

single shared inclusion list containing m/z and RT information for all the compound pools 

were used for data collection at the stepped normalized collision energy of 20-30-40%. A 

scan range of 60 to 900 m/z was used to collect centroid type data. On both instruments, ± 

0.5 minute was used as an RT search window for MS1 peak selection, based on RT provided 

by the qTOF reference library. Accurate mass windows were ± 10 ppm on both instruments. 

RTs identified during the MS1 peak selection for the 773 compounds detected on the QE 

instrument were reported in the mz-RT library for the “QE_rt” column (Supplementary 

Table 1).

MS/MS spectra were extracted from MS/MS raw data files (mzml format) using an 

automated Python script (extract_ms2_spectra.ipynb) via the pymzML parsing library46. For 

each compound, the intensity of each spectral fragment was normalized to the fragment with 

the highest intensity (set to 1000). Spectral fragments with intensities below 0.5% relative 

to the highest intensity fragment were filtered out. Compound metadata (e.g., InChIKey, 

collision energy) and fragmentation information (e.g., m/z, intensity) were reported for each 

compound. Spectra from the same compound collected using different analytical methods 

(e.g., C18 positive and C18 negative) are all reported. In limited instances, spectra from the 

same compound were collected multiple times due to representation in multiple compound 

pools. All of the information above was compiled in Supplementary Table 3, and are 

publicly available at the MoNA spectra database under query phrase “Sonnenburg Lab MS2 

library”. In summary, spectra from 750 and 773 unique compounds were collected on the 

qTOF and QE instrument, respectively.

Mass spectrometry experimental validations

Linear dynamic range.—For large-scale metabolomics experiments, it is typically 

assumed that instrument response varies linearly with analyte concentration. To test 

concentration linearity objectively, we constructed dilution series of 377 metabolites (from 

pools generated as above), in 3-fold serial dilutions spanning five orders of magnitude 

(from 1 nM to 200 μM). These diluted compound pools were then analyzed using the three 

analytical methods. Linear regression of log-transformed concentrations vs. log-transformed 

ion counts was performed and the coefficient of determination (r2) was calculated. Across 

all metabolites, the average r2 and slope (on log-log plots) were both very close to 1 (0.99 

and 0.92 respectively), providing a strong indication of linearity.

Matrix effects.—The biochemical complexity of biological samples such as feces and 

serum may alter RT and/or detected signal of individual metabolites. To determine whether 

accurate identification was significantly affected by RT shifts in multiple matrices, we 

spiked in 132 metabolite standards into five distinct biological matrices (germ-free murine 

Han et al. Page 10

Nature. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feces, serum, urine, human charcoal-stripped serum, and mega medium) and a library 

control condition (50% MeOH, v/v) at a final concentration of 10 μM, analyzed each matrix 

using all three analytical methods. Three biological replicates for each matrix were used, 

and RT and ion count for each spiked-in metabolite standard in each of these matrices 

were determined. The difference in RT between a biological matrix and the library control 

condition was calculated (50% methanol in water v/v) for individual spike-in metabolites. 

For all 132 of the metabolites in all five matrices, differences in RT were minimal, falling 

within a conservative ± 0.1 minute window. Changes in total ion count (area under the 

curve) between a biological matrix and the library control condition were determined by first 

removing matrix-specific, background ion counts for a small number of metabolites present 

in specific matrix prior to spike-in. Next, the ratio between spike-in metabolite ion counts in 

biological matrices and those in library blank controls was calculated (relative fold change, 

log2 transformed). The majority of spiked-in metabolites exhibit less than 4-fold change 

in ion counts relative to those detected at the library control condition (97% in murine 

feces, 83% in serum, 95% in urine, 88% in human serum, and 71% in mega medium). See 

code details in “calculate_biological_matrix_effect.ipynb”. The relatively minor impact of 

different biological matrices on RTs of the reference library metabolites helped establish the 

identification parameter (± 0.1 min RT window) for our subsequent biological experiments.

MS/MS validation.—To verify the accuracy of compound identification obtained by our 

MS1 mz-RT library built from authentic standards, we unbiasedly searched MS/MS spectra 

of mz-RT matched individual metabolites against the Mass Bank of North America (MoNA) 

spectra database. MoNA-reported similarity scores based on spectra comparisons were 

recorded (Supplementary Table 2). For each analytical method, using the qTOF’s auto 

MS/MS preferred ions settings, MS/MS spectra were generated at three collision energies 

(CEs:10, 20, 40 eVs) from MS1 peaks identified by m/z and RT from our reference library. 

For biological samples, MS/MS spectra were collected for 162 high-abundance metabolites 

identified in QC samples from in vitro (bacterial supernatants) and in vivo experiments (Bt- 
and Cs-mono-associated murine samples: serum, urine, fecal/cecal contents). QC samples 

were generated on a per-experiment basis, by pooling equal volume from each biological 

replicate from the same experiment (3-8 biological replicates per condition across the entire 

96-well plate) to provide a representation of the highest number of metabolites in that 

experiment. To establish a baseline of MoNA similarity scores, MS/MS spectra were also 

collected from a corresponding set of library authentic standards.

MS/MS spectra were extracted using an automated Python script by first extracting MS/MS 

spectra for individual mz-RT matched metabolites using pyMZML46, and next searching 

individual extracted spectra against the MoNA spectra database. The search results were 

restricted to spectra generated using 1) LC/MS instruments, and 2) ESI+ ionization mode 

(for C18 positive and HILIC positive spectra) or ESI- ionization mode (for C18 negative 

spectra). Each spectral search used the MoNA-default similarity score threshold of 500, and 

returned the top five matches with the highest similarity scores computed by the built-in 

MoNA algorithm. Among these top matches, the highest similarity score with the correct 

metabolite name was recorded (Supplementary Table 2). Because MoNA search results 

contained data from various LC/MS instrument platforms such as qTOF, Orbitrap, and 

Han et al. Page 11

Nature. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Triple-Quadrupole, in some cases there are data collected from multiple MS platforms 

or multiple CEs, we would opt for the qTOF and a similar CE to our search spectra. 

Each MS/MS spectral comparison corresponding to the recorded score was also manually 

inspected. For individual metabolites repeatedly detected in the same sample type (e.g., 

bacterial supernatant, feces) in more than one experiment, an averaged similarity score 

among MS/MS spectra for the same metabolite was calculated and recorded in the summary 

table (Supplementary Table 2). Collectively, all similarity scores between our MS/MS 

spectra and MoNA spectra for the same set of metabolites have a median score of 992 

(library standards, s.d. = 36.78) and 923 (biological samples, s.d. = 114) relative to a perfect 

score of 1000, indicating good agreement between our data and what has been previously 

reported.

Data analysis

MS-DIAL analysis.—The MS-DIAL software45 (v. 3.83) was used for analyzing all in 
vitro and in vivo data on a per-experimental run and per-analytical method basis. QC 

samples from each experimental run were used for peak alignment. Chemical assignment 

of molecular features in samples was performed by comparison of recorded RT and 

m/z information to our reference library constructed from authentic standards. Tolerance 

windows were set to 0.1 minute RT and 0.01 Da m/z for the C18 methods and 0.2 minute RT 

and 0.01 Da m/z for the HILIC method. When a large RT shift was observed in the internal 

standards (e.g., following an instrument repair), a library RT correction was done prior to 

MS-DIAL analysis, via polynomial transformation of the library based on inter-instrumental 

RT shifts of 10-20 robustly detected metabolites (e.g., internal standards). RT The minimal 

peak count (height) filter was set to 3000 for all experiments except for select experiments in 

which the MS exhibited reduced sensitivity. The MS-DIAL analysis generated a list of m/z, 

RT, and ion counts (area under the curve) for high-confidence annotations (matched to the 

reference library) as well as unknown molecular features. Based on the list of annotations 

for each experiment, each set of aligned peaks was manually checked using the MS-DIAL 

graphical user interface. Select metabolite features were removed from this list when: 1) two 

adjacent but distinct peaks were concurrently assigned to a single molecular feature, 2) odd 

curvature/shape of the peak led to integration of several “peaks” from separate sections of 

the same peak, or 3) features were only detected in blank controls. Annotated peaks that 

passed this inspection were reported in the final output file.

Custom bioinformatics—After MS-DIAL analysis, data were analyzed with a set of 

custom bioinformatics pipelines. In short, these pipelines implemented a set of filtration 

and normalization procedures with the goal of reducing technical variability and controlling 

for batch effects. The pipelines, including all code for the in vitro and in vivo sample data 

cleaning and standardization, are detailed at length in Supplementary Methods.

Distance calculations and classifiers—Comparisons between metabolomic and 

phylogenetic distance (Fig. 2a, Extended Data Fig. 7), and metabolite-based classification 

(Fig. 3a, Extended Data Fig. 8a) were done with custom Python code detailed in 

Supplementary Methods. For all these analyses, the metabolomic distance matrix used 

Euclidean distance generated from log2 transformed, media blank, delta, and variance 
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filtered fold change data. Only the 158 strains that grew in mega medium were used for 

these analyses to prevent conflation of metabolic and starting medium differences.

Bacterial culture

The bacterial strains and associated metadata (taxonomy, original repository, 16S sequence, 

etc.) used in this work are recorded in Supplementary Table 6. All bacterial inoculation 

and growth occurred in a Coy Laboratories anaerobic chamber kept at an atmosphere 

of approximately 80:15:5 (N2: CO2: H2, percent). All incubations occurred at 37°C, all 

bacterial stocks were stored at −80°C, and all optical densities (ODs) were recorded at 

600nm using a BioTek Epoch 2 plate reader.

Stock preparation—Bacterial strains were acquired from various culture collections 

including ATCC, DSMZ, NCTC, and BEI. Source cultures were plated on a rich medium, 

single colonies picked, cultured in rich medium, and stored as 1mL frozen cultures 

(25:25:50 v/v glycerol:H2O:culture) in ThermoFisher Matrix Tubes. The solid and liquid 

media used for stock generation are recorded in Supplementary Table 6 (worksheet ‘media’). 

Source cultures that exhibited multiple morphologies on agar plates were purified and 

morphologies separated and retained if the 16S sequence matched the expected 16S 

sequence. For all cultures, the purity of the final cultures was checked by 16S rRNA 

sequencing (see Supplementary Methods).

Bacterial media—All media used in this study are recorded in Supplementary Table 6 

(worksheet ‘media’). Note that in some cases we grew and recorded metabolites from taxa in 

multiple media. For the media used for particular supernatant samples and metabolomics see 

Supplementary Table 7 (worksheet ‘aggregated_md’).

Mega medium was prepared according to the protocol in Supplementary Methods. The 

recipe is slightly adapted from a previous publication47. In our usage of mega medium, each 

batch was autoclaved, moved into the anaerobic chamber, and allowed to become anaerobic 

for at least 24 hours before use. For taxa that would not grow in mega medium, a different 

medium was selected based on literature. In each case, we referenced an ATCC, DSMZ, 

or media manufacturer (e.g., Hardy Diagnostics) recipe as outlined in Supplementary 

Table 6 (worksheet ‘media’). In all cases, these media were prepared for use similarly to 

mega medium. Specifically, adjustment of pH was done prior to autoclave, filter sterilized 

vitamins and sterile blood were added after autoclave, and media was moved immediately 

from autoclave to anaerobic chamber and allowed to become fully anaerobic for at least 24 

hours prior to use.

For identification of nitrogen utilization in Bacteroidetes, Salyer’s minimal medium (SMM) 

was prepared (see Supplementary Methods) slightly modified from published protocols26,48. 

In short, SMM base was prepared (SMM without hematin, nitrogen source, or reduced 

sulfur source) and allowed to become anaerobic in foil-covered bottles. SMM was prepared 

without nitrogen source to avoid spontaneous glutamine degradation49. Immediately prior to 

use, SMM base was amended with filter sterilized solutions of hematin (final concentration 

0.5mg/100ml), nitrogen source (glutamine, asparagine, glutamic acid, or ammonium sulfate, 

final concentration 10 mM), and reduced sulfur source (cysteine or sodium sulfide, final 
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concentration 4.12 mM). Taxa were plated (mega medium or brain heart infusion with 

blood) and a single colony picked into freshly prepared SMM. Preculture for 24 hours was 

followed by subculture into freshly prepared SMM for 12-36 hours. OD readings were taken 

as above.

In vitro growth for metabolomics—Bacterial supernatants included in the in vitro 
data were generated according to the following protocol. Cultures were inoculated into 

anaerobic medium (~4 μL: 1600 μL) in triplicate in 2 mL 96-well blocks and incubated 

for 24-72 hours depending on the taxa selected. Therefore, a single biological replicate 

from the bacterial culture experiments represents an individual well or tube of bacterial 

culture growth from an independent 4 uL aliquot from a frozen glycerol culture stock. These 

pre-cultures were subcultured into mega medium (~4 μL: 1600 μL) and similarly incubated 

for 12-60 hours. 200 μL of subculture was incubated in a plate reader so that OD readings 

could be taken to monitor growth phase. The remaining cell cultures were harvested when 

OD readings showed late log or early stationary phase. Harvested culture was immediately 

removed from the anaerobic chamber, centrifuged to pellet cells (5,000 g, 10 min), and 

cell-free supernatant was either frozen at −80°C or immediately extracted as described in 

Supplementary Methods.

For purity analysis, sequencing protocol, and phylogenetic tree reconstruction see 

Supplementary Methods for details.

Mouse experiments

Mouse experiments were performed on gnotobiotic Swiss Webster germ-free mice (males, 

10-14 weeks of age, n = 3-8 per group for all experiments) or Swiss-Webster Excluded 

Flora mice (“conventional mice”, males, 10-14 weeks of age, n = 3 per group) maintained in 

aseptic isolators, and originally obtained from Taconic Bioscience. Mice were maintained on 

a 12-hour light/dark cycle at 69 °F in ambient humidity, fed ad libitum, and maintained in 

flexible film gnotobiotic isolators for the duration of all experiments (Class Biologically 

Clean, Madison WI). For mono-association experiments, mice were colonized with 

Bacteroides thetaiotaomicron VPI 5482, Clostridium sporogenes ATCC 15579, Citrobacter 
portucalensis BEI HM-34, or Anaerostipes sp. BEI HM-220by oral gavage (200 uL, ~1 

x 107 CFU) and were maintained on a standard chow (LabDiet 5K67). For the defined-

community experiment, mice with a six-member community were colonized with a 200 uL 

mixture consisting of equal volumes from saturated cultures of Bacteroides thetaiotaomicron 
VPI 5482 (8.7 x 109 CFU), Clostridium sporogenes ATCC 15579 (1.4 x 108 CFU), 
Edwardsiella tarda ATCC 23685 (3.6 x 1010 CFU), Collinsella aerofaciens ATCC 25986 (1.4 

x 109), Eubacterium rectale ATCC 33656 (6.9 x 106 CFU), and Parabacteroides distasonis 
ATCC 8503 (1.5 x 109 CFU). Mice with a five-member community were colonized with all 

cultures mixed at the same volumes as described above except for Clostridium sporogenes 
ATCC 15579, which was not included. Successful colonization and stable community 

members were determined by 16S amplicon sequencing of the V4 (515f, 806r) region of 

microbial populations present in the feces and cecal contents from individual mice.

Han et al. Page 14

Nature. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For all experiments, mice were euthanized by CO2 asphyxiation nine days (mono-

colonization with Citrobacter portucalensis BEI HM-34 or Anaerostipes sp. BEI HM-220) 

or four weeks (all other experiments) following colonization, and four sample types (serum, 

urine, feces, and cecal contents) were harvested from each mouse. A single biological 

replicate in the mouse experiments represents a specific sample type (e.g., serum) harvested 

from an individual mouse (i.e., each biological replicate is from a different mouse). Prior 

to euthanization, urine and feces were collected. Whole blood was collected by cardiac 

puncture and serum was obtained using microcontainer serum separator tubes from Becton 

Dickinson following manufacturer’s instructions. The intact cecum was harvested and snap-

frozen in liquid nitrogen. A single cecal sample was harvested for mono-association and 

conventional experiments, and three samples at three different sections of the cecum were 

harvested for the defined-community experiment. All mouse experiments were conducted 

under a protocol approved by the Stanford University Institutional Animal Care and Use 

Committee.

Comparative genomics

Genome annotation and database.—Bacterial isolates from the culture collection 

were manually linked up to their respective NCBI BioProject ID numbers. The Rentrez 

package (https://cran.r-project.org/package=rentrez) was used to link BioProject ID numbers 

with existing GenBank or RefSeq assemblies or with reads from the Sequence Read 

Archive (SRA) for isolates which were previously sequenced but not assembled. Isolates 

lacking assembly accession numbers Supplementary Table 6 (worksheet ‘full_taxonomy’) 

were assembled using previously described methods50. Briefly, reads were trimmed using 

Trimmomatic51 and assembled using SPAdes v3.9.152 using the following parameters: 

k=21,33,55 --careful --cov-cutoff auto. Contigs smaller than 1500bp were removed, and 

assemblies were gene-called and annotated using prokka v1.14.553. MultiGeneBlast54 

(v1.1.13) was used to build a database containing all assembled and downloaded genomes 

listed in Supplementary Table 6.

Gene and gene cluster searches—The arc gene cluster from Lactococcus lactis and 

the spe gene cluster from Escherichia coli were used as the query to search publicly 

available, assembled genomes of strains within our collection. Comparative genomics 

analyses were conducted using the “Architecture Search” feature of the MultiGeneBlast 

software (v. 1.1.13) with default parameters with one modification which set the “maximum 

distance between genes in locus (kb)” to 40 kb. For identification of Asparaginase-

containing genomes, the custom BLAST database described above was queried for 

homologs to E. coil genes (ansA, ansB, and aspA) that encode asparagine-consuming 

enzymes.

Metabolomics Data Explorer

The Metabolomics Data Explorer (https://sonnenburglab.github.io/

Metabolomics_Data_Explorer) was constructed in JavaScript and generates scatter plots of 

our in vitro and in vivo fold-change data based on user input. In vitro and in vivo metadata 

and fold-change data files are used as data input and are parsed using the Papa Parse library 

to extract the data and populate the dropdown menus on each page. The dropdown menus 
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enable users to pick the desired taxonomy, metabolite, media (in vitro), and colonization, 

metabolite, sample type (in vivo). The Nivo library is used to render interactive scatter plots 

of the fold change data relative to media blank controls (in vitro) or to germ-free controls (in 
vivo). Each dot represents an independent biological replicate, and all metabolites (uniquely 

identified or co-eluting) are shown. In rare cases, the same metabolite may appear twice 

in the scatter plot if it is uniquely identified in one analytical method while co-eluting 

with other metabolites in another analytical method. The scatter plot presents all biological 

replicates from all independent experiments available in the dataset, and provides label 

details when hovering over data points to enable easy identification.

Data availability

All metabolomics raw data are publicly available on the Metabolomics Workbench under 

study number ST001683 for in vivo data and study number ST001688 for in vitro data. 

MS/MS spectra libraries generated on the qTOF and QE instruments are publicly accessible 

on the MoNA spectra database (https://mona.fiehnlab.ucdavis.edu), and can be queried using 

keywords “Sonnenburg Lab MS2 Library.”

Code Availability

Custom Python code was written to enable the construction of the MS/MS spectra libraries, 

the processing and visualization of the in vitro and in vivo LC/MS data, the optical density 

and growth curve data, the bioinformatic analysis of 16S and whole genomes, and the 

analysis of the metabolomics data. Full code55 for each of these steps is available at https://

doi.org/10.5281/zenodo.4890994. The JavaScript code56 supporting the interactive, web-

based Metabolomics Data Explorer is available at https://doi.org/10.5281/zenodo.4890999.
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Extended Data

Extended Data Fig. 1, Summary statistics on mass spectrometry reference library metabolites, 
their detection, and validation.
a, Chemical similarity network of the compound library. Network nodes: library compounds 

colored by their superclasses. Node size: monoisotopic mass. Edges between nodes: 

substructure similarity values above a z-score threshold of 1 standard deviation from the 

mean. b, Scatter plots and histograms of chemical properties of 833 library metabolites. 

c, Venn diagram of library compounds that are detected by each of the three methods. 
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d, Venn diagram of compounds (by PubChem CID) identified in the reference compound 

library (Supplementary Table 1), in vitro conditions (Supplementary Table 7, “count.ps”), 

and in vivo conditions (Supplementary Table 8, “istd_corr_ion_count_matrix”). In vitro 
conditions include all media types, and in vivo conditions include all sample types: urine, 

serum, feces, and cecal contents, and all colonization states. e, Scatterplot of all pairwise 

similarity scores (biological sample vs. library) of the same compound searched against the 

MoNA spectra database. All library standards (median similarity score = 992) and 97.3% of 

corresponding compounds from biological samples (median similarity score = 923) exhibit 

similarity scores ≥ 600, and 2.7% of those compounds from biological samples score below 

600. Confidence levels are determined based on both similarity scores and visual validation 

of the MS/MS spectra. f, Schematic of the metabolomics pipeline’s data collection and 

analysis workflow. Created with Biorender.com

Extended Data Fig. 2, Schematic of a custom bioinformatics analysis pipeline that generates a 
metabolite fold-change matrix.
The pipeline integrates data across multiple experimental runs and minimizes intra-replicate, 

intra-experiment, and inter-experiment variability. The four steps detailed here are explained 

in depth in the Supplementary Methods (Custom bioinformatics: in vitro pipeline). Step 1: 

A database recording sample metadata (organism, media, growth data, etc.) and MS-DIAL 

output files are integrated into data matrices specific to each analytical method. Step 2: All 

data are grouped by replicate (Biological Sample Groups; BSGs) and analyzed to remove 

replicates with low intra-replicate correlation. Replicates are then grouped by experiment 

(EXPs) to assess inter-experiment variability. Transformations reducing inter-experiment 

variability are identified and compared. For metabolites that are detected by multiple 

methods, their ion counts are compared on a per-replicate and per-experiment basis to 

identify one or more methods that consistently detect these metabolites. Step 3: Using 

an internal standard-based correction, ion counts for individual samples are adjusted and 
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transformed into different fold-change data matrices. Step 4: Data matrices corresponding to 

each method are combined into a single data matrix representing all detected metabolites.

Extended Data Fig. 3, High-throughput identification and analysis of diverse metabolites in 
complex biological matrices.
a, Number of unique compounds (by PubChem CID) within distinct chemical superclasses 

detected in the mz-RT reference library (n = 815, 11 superclasses), in vitro dataset (n = 458, 

9 superclasses), or in vivo dataset (n = 551, 9 superclasses), excluding internal standards. 

Nine of the 11 chemical superclasses in the reference library are represented in metabolites 
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detected in vitro and in vivo. The two remaining library superclasses (Organosulfur and 

Organometallic compounds) not represented in the experimental data contain one compound 

each. b, Diverse classes of metabolites identified in the conventional murine cecum. 

Representative metabolites shown are significantly elevated (≥ 4-fold, corrected P < 0.05) in 

the conventional mice vs. germ-free controls in one experiment with n = 3 (conventional) 

and n = 4 (germ-free) mice. P values: two-tailed t-test with Benjamini-Hochberg correction 

for multiple comparisons. c, Examples of precursor, intermediate, and products from the 

tryptophan fermentation pathway being identified by our methods both in vitro (Cs culture 

supernatant) and in vivo (Cs mono-association cecal contents). Extracted ion chromatogram 

peaks representing relative ion counts for each metabolite are shown. d, e, Histograms of 

changes in retention time (RT) (d) and total ion count (e) for 132 spike-in metabolites in five 

complex biological matrices using three analytical methods. All spiked-in metabolites show 

minimal change in RT, falling within a conservative ± 0.1 minute search window from their 

RTs as determined in the library control condition (d). The majority of spiked-in metabolites 

(e.g., 97% in feces) exhibit less than 4-fold change in ion counts relative to those detected 

at the library control condition (e). Representative examples of RT shifts (d) and changes in 

total ion counts (e) in individual metabolites in the mouse fecal matrix are shown. Mean ± 

s.e.m. of one experiment with n = 3 biological replicates. ean. f, Histograms of linear ranges 

of 377 reference library metabolites measured in serial dilutions. A representative linear 

range of 5-Hydroxyindole is shown. g, Violin plots (median, quartiles) of differences in 

RTs measured by three analytical methods between distinct mass spectrometry instruments: 

qTOF 6454 where the library was built vs. a second instrument qTOF 6530 for a shared 

panel of 219 reference library metabolites (upper panel) or vs. a second instrument orbitrap 

Q Exactive for a shared panel of 773 reference library metabolites (lower panel). Mean 

RT differences (in minutes) between two instruments by each method (C18 positive, C18 

negative, and HILIC positive, respectively): qTOF vs. qTOF, upper panel (pre-correction: 

0.238, 0.044, −0.110; post-correction: −0.023, −0.020, 0.015); qTOF vs. QE, lower panel 

(pre-correction: 0.151, 0.027, 0.196; post-correction: −0.040, −0.021, 0.026). Per method, 

RT correction was performed by polynomial transformation of the library based on inter-

instrumental RT shifts of 10-20 robustly detected metabolites. Per method, using the 

corrected library with a RT tolerance window of 0.2 min, ~99% of the 219 metabolites 

tested on the second qTOF and ~94% of the 773 metabolites tested on the QE were correctly 

identified.
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Extended Data Fig. 4, Conserved and unique metabolomic signatures across bacterial taxa.
a, Schematic of our high-throughput bacterial culture and sample collection workflow. 

Created with Biorender.com b, Intra-replicate Pearson correlation coefficients (triplicates 

and greater) stratified by 14 independent bacterial culture experiments and three analytical 

methods. For each experiment, Pearson correlation r values were calculated for all 

supernatant and media sample replicate groups: n = 346 (C18 positive), n = 344 (C18 

negative), and n = 344 (HILIC positive). Total ion count data were corrected by internal 

standards and log transformed, standardized and scaled, prior to computing Pearson 
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correlation values. Box: median, 25th, and 75th percentile; whiskers: Tukey’s method. 

c, Left panel: Number of medium-specific or common metabolites detected in the same 

bacterial strain grown in two different media (29 strains cultured in two or more of the 

12 different media). Each dot represents the total number of metabolites from a single 

comparison between two media in which a strain has been grown: n = 58 (co-detected in 

two media), n = 116 (detected in one of the two media), n = 33 (detected in the mega 

medium), and n = 16 (detected in polyamine-free medium). Box: median, 25th, and 75th 

percentile; whiskers: minimum and maximum. Right panel: Agmatine production levels 

by B. eggerthii. Mean ± s.e.m from two to three independent experiments, each with n 

= 3 biological replicates. P values: two-tailed t-test with Benjamini-Hochberg correction 

for multiple comparisons. d, Heatmap of metabolomic profiles of 158 mega medium-

grown bacterial strains, clustered by 16S phylogenetic distance. Individual metabolites are 

hierarchically-clustered (Ward’s method) using Euclidean distance between the fold-change 

(log2 transformed) values across all taxonomies. Metabolites shown are detected in at least 

50% of the 158 taxonomies to enable Ward clustering. e, f, Production or consumption 

patterns of tyramine and pantothenic acid across 158 mega-medium grown strains. Mean ± 

s.e.m from one to three independent experiments (by dot color), each with n ≥ 3 biological 

replicates.
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Extended Data Fig. 5, Metabolic profile variation among related bacteria.
a, Pairwise metabolomic profile comparisons between two closely related strains grown in 

mega medium: Clostridium sporogenes ATCC 15579 and Clostridium cadaveris HM-1039 

(subpanel 1), and among four strains of Bacteroides fragilis (subpanels 2-7): HM-710, 

HM-711, HM-714, and HM-20. Each dot represents an averaged fold-change value (log2-

transformed) from one to three independent experiments, each with n = 3 biological 

replicates. Pearson correlation r values of pairwise metabolomic profile comparisons, 

performed on standardized and scaled data: ATCC 15579 vs. HM-1039 (r = 0.063), HM-711 
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vs HM-710 (r = 0.859), HM-714 vs. HM-710 (r = 0.866), HM-714 vs. HM-711 (r = 0.880), 

HM-20 vs. HM-710 (r = 0.829), HM-20 vs. HM-711 (r = 0.845), and HM-20 vs. HM-714 

(r = 0.807). b, Metabolic similarities and variations among closely related species of C. 
sporogenes and C. cadaveris, and among different strains of the same species of B. fragilis 
grown in mega medium. Taxonomies shown are clustered by 16S phylogenetic distance, and 

are colored by distinct phyla. Mean ± s.e.m. from one to three independent experiments, 

each with n = 3 biological replicates
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Extended Data Fig. 6, Relationships between phylogeny, taxonomy, and metabolome.
a, Metabolomic profiles of 158 mega-medium grown bacterial strains. Individual 

taxonomies are clustered by metabolomic profile distances (fold change, log2 transformed) 

across all metabolites. Individual metabolites are hierarchically-clustered (Ward’s method) 

using Euclidean distance between the fold-change (log2 transformed) values across all 

taxonomies. Metabolites shown are detected in at least 50% of the 158 taxonomies to enable 

Ward clustering. b, Metabolic similarities between two phylogenetically distant species 

grown in mega medium. Taxonomies are clustered by metabolomic profile distances (fold 

change, log2 transformed) across all metabolites. Mean ± s.e.m. of one experiment with n = 

3 biological replicates. c, Scatter plot of pairwise metabolomic profile comparison between 

two phylogenetically distant species. Each dot represents an averaged fold-change value 

(log2-transformed) of one experiment with n = 3 biological replicates. Pearson correlation 

of pairwise metabolomic profile comparison between these two species, performed on 

standardized and scaled fold-change data, r = 0.7090. d, Venn diagram of unique and 

overlapping compounds (by PubChem CID) identified in culture supernatant of 158 mega-

medium grown strains and cecal contents of conventional mice.
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Extended Data Fig. 7, Multiple data transformations identify non-linear relationship between 
phylogenetic and metabolomic distance.
a, Heatmap showing comparison of phylogenetic and metabolomic tree topologies. Cells 

record the number of tips whose neighborhoods share more overlap than expected (P < 0.05; 

one-sided permutation test). Data are stratified by fractional overlap of neighborhoods and 

permutation probability (Supplementary Methods: Distance Comparisons). b, Histogram 

of chemical similarity scores (based on Tanimoto 2D structures) between each unique 

pair of compounds (by PubChem CID) detected in the in vitro dataset. 359 non-coeluting 
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compounds were used for this pairwise comparison. c, Metabolomic distance tree with 

each metabolite weighted based on their chemical similarity (left) or unweighted control 

metabolomic distance tree (right). The weighted and unweighted matrices were calculated 

using uniquely detected, non-coeluting compounds in the in vitro dataset, where a unique 

PubChem CID identifier can be assigned to each compound. Two-sided Mantel test for 

comparison between the weighted and unweighted distance matrices: r2 = 0.863, P = 

0.001. d, Left panel: Correlation of phylogenetic and metabolomic distance across pairs 

of strains colored by lowest shared taxonomic rank with a LOESS fit shown. Right panel: 

Metabolomic distance between pairs of strains binned by the lowest shared taxonomic 

rank. Species (n = 111), Genus (n = 1386), Family (n = 159), Order (n = 1222), Class 

(n = 34), Phylum (n = 1442), and Kingdom (n = 8442). Box: median, 25th, and 75th 

percentile; whiskers: Tukey’s method. Internal standard (IS)-corrected fold-change data 

(e-g) and IS-corrected total ion count data (h, i) were log-transformed and used to calculate 

pairwise metabolomic distances between microbial taxa. These distances were compared 

to the corresponding pairwise phylogenetic distances generated from a tree built with 

the V4 region of 16S (left column) or the full-length 16S gene (right column). Data are 

plotted with a LOESS fit. Set1: microbes grown in at least one experiment simultaneously. 

Set2: microbes grown in the same experiment only. j, Phylogenetic tree constructed using 

full 16S sequences of a subset of the mega-medium grown strains. Only strains with 

available full 16S sequences are shown (Supplementary Table 6). k, Left panel: Schematic 

of the pathway that synthesizes citrulline and ornithine, or synthesizes agmatine and/or 

putrescine. Right panel: The top six matches identified by the comparative genomics tool 

MultiGeneBlast within a 40-kb search window, when searched against a genomic database 

of our strain collection with sequenced genomes. Horizontal dashed lines between genes 

represent multiple other genes present within the search window.
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Extended Data Fig. 8, Asparagine and glutamine can be utilized as sole nitrogen sources by most 
tested Bacteroidetes.
a, Top panel: An example decision tree from a forest that can differentiate Bacteroidetes 

vs. bacteria from the other four represented phyla with > 97% accuracy. For each decision 

node, phylum-level elevation and reduction based on metabolite levels are shown (relative 

fold change to bacterial media controls, log2 transformed). Actinobacteria (n = 20), 

Bacteroidetes (n = 57), Firmicutes (n = 83), Fusobacteria (n = 3), and Proteobacteria (n 

= 10). Dashed line: metabolite threshold. Box: median, 25th, and 75th percentile; whiskers: 

Tukey’s method. Bottom panel: The 10 most important features differentiating the five tested 
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phyla. Data are shown as median metabolite log2 fold-change for each phylum; metabolites 

and phyla are ordered by Ward linkage distance. b, Representative growth curves from two 

independent experiments, each with n = 3 biological replicates for a subset of Bacteroides 

spp. using modified Salyer’s Minimal Medium (SMM) with indicated nitrogen source. 

Legend colors for sole nitrogen source are maintained for panels b-d. c, Representative 

growth curves of one experiment with n = 5 biological replicates for 60 Bacteroidetes 

using modified SMM with indicated nitrogen sources. d, Growth curves of wild-type and 

mutant Bt grown in defined minimal media with either cysteine (top) (one experiment, n = 

3 biological replicates) or sodium sulfide (Na2S, bottom) as sole reduced sulfur sources (one 

experiment, n = 3 biological replicates). e, Amino acid production and consumption levels in 

gnotobiotic mice mono-associated with Bacteroides thetaiotaomicron (Bt) (one experiment, 

n = 5 mice). Box: median, 25th, and 75th percentile; whiskers: Tukey’s method). Numeric 

labels in b and c correspond to the following: 1: B. acidifaciens DSMZ 15896, 2: B. 
caccae ATCC 43185, 3: B. caccae BEI HM-728, 4: B. cellulosilyticus BEI HM-726, 5: B. 
cellulosilyticus DSMZ 14838, 6: B. coprophilus DSMZ 18228, 7: B. dorei BEI HM-29, 

8: B. dorei BEI HM-717, 9: B. dorei BEI HM-718, 10: B. dorei BEI HM-719, 11: B. 
dorei DSMZ 17855, 12: B. eggerthii ATCC 27754, 13: B. eggerthii DSMZ 20697, 14: B. 
finegoldii BEI HM-727, 15: B. finegoldii DSMZ 17565, 16: B. fragilis BEI HM-20, 17: 

B. fragilis BEI HM-710, 18: B. fragilis BEI HM-711, 19: B. fragilis BEI HM-714, 20: B. 
fragilis NCTC 9343, 21: B. intestinalis DSMZ 17393, 22: B. ovatus ATCC 8483, 23: B. 
ovatus BEI HM-222, 24: B. pectinophilus ATCC 43243, 25: B. plebeius DSMZ 17135, 26: 

B. salyersiae BEI HM-725, 27: B. sp. BEI HM-18, 28: B. sp. BEI HM-189, 29: B. sp. BEI 

HM-19, 30: B. sp. BEI HM-22, 31: B. sp. BEI HM-23, 32: B. sp. BEI HM-258, 33: B. sp. 
BEI HM-27, 34: B. sp. BEI HM-28, 35: B. sp. BEI HM-58, 36: B. stercoris ATCC 43183, 

37: B. stercoris BEI HM-1036, 38: B. thetaiotaomicron 3730, 39: B. thetaiotaomicron 3731, 

40: B. thetaiotaomicron 633, 41: B. thetaiotaomicron 7330, 42: B. thetaiotaomicron 7853, 

43: B. thetaiotaomicron 8702, 44: B. thetaiotaomicron 8713, 45: B. thetaiotaomicron 8736, 

46: B. thetaiotaomicron 940, 47: B. thetaiotaomicron VPI 5482, 48: B. thetaiotaomicron 
wh302, 49: B. thetaiotaomicron wh305, 50: B. uniformis ATCC 8492, 51: B. vulgatus ATCC 

8482, 52: B. vulgatus BEI HM-720, 53: B. xylanisolvens DSMZ 18836, 54: P. distasonis 
ATCC 8503, 55: P. distasonis BEI HM-169, 56: P. johnsonii BEI HM-731, 57: P. johnsonii 
DSMZ 18315, 58: P. merdae ATCC 43184, 59: P. merdae BEI HM-729, 60: P. merdae BEI 

HM-730.
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Extended Data Fig. 9, Metabolic contribution by individual gut microbes in a multi-species 
community.
a, Alpha-ketoglutaric acid levels in feces of mice mono-colonized with Anaerostipes sp. 
BEI HM-220. Mean ± s.e.m. of two independent experiments, each with n = 4 mice 

(germ-free) or n = 5 or 7 mice (Anaerostipes mono-colonized). b, Left panel: MDMs were 

associated with specific bacterial phyla leveraging both in vivo and in vitro metabolomic 

data. Right panel: Number of mega-medium grown bacterial strains by phylum that produce 

MDMs identified in the cecal contents of mice colonized with Bacteroides thetaiotaomicron 
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(Bt, n = 5), or Clostridium sporogenes (Cs, n = 3), or a six-member community (n = 

3). Number of strains that produce at least one of these metabolites in vitro by phylum: 

Bacteroidetes: n = 52, Firmicutes: n = 60, Proteobacteria: n = 8, Actinobacteria: n = 16, 

and Fusobacteria: n = 3. Each metabolite shown was significantly produced both in vitro 
and in vivo (≥ 4-fold, corrected P < 0.05). Uniquely detected (non-coeluting) metabolites 

are shown (Supplementary Table 9) .c, Spearman correlation between metabolomic profiles 

(standardized and scaled, log2-transformed, fold-change data) of individual Bt- or Cs-mono-

associated host biofluids (cecal contents, feces, serum, or urine) and individual bacterial 

culture (158 mega-medium grown). Colored dots: Spearman’s rho values calculated by 

comparing metabolomic profiles of individual bacterial culture vs. individual biofluid 

of either Bt- or Cs-mono-associated mice. Black dots: Spearman’s rho calculated using 

metabolomic profiles of Bt or Cs, the same strains used for mono-association in mice. 

d, Venn diagram of overlapping metabolites that are significantly produced (≥ 4-fold, 

corrected P < 0.05) in culture and in the cecum of colonized mice. e, Principal component 

analysis (PCA) separates metabolomic profiles of identified metabolites by sample type in 

each colonization state. P values on metabolomic profile comparisons between different 

sample types of the same colonization state were determined using PERMANOVA: six-

member community (P = 0.073), and all other colonization states (P = 0.001). f, PCA 

separates metabolomic profiles of identified metabolites by colonization states. P values on 

metabolomic profile comparisons between different colonization states of the same sample 

type were determined using PERMANOVA: P = 0.001 for all four sample types. g, h, 

Example chemical structures of significantly produced metabolites (≥ 4-fold, corrected P 
< 0.05) in serum (g) or urine (h) by each colonization state corresponding to Fig. 4b. P 
values in a, b, d, g, h: two-tailed t-test with Benjamini-Hochberg correction for multiple 

comparisons.
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Extended Data Fig. 10, Metabolic contribution of multi-species communities in gnotobiotic mice.
a, Proposed host-microbial co-metabolism pathways that could lead to the synthesis of 

specific host-microbial co-metabolites in the urine and serum of mice colonized with the 

six-member community. b, c, Metabolite levels in urine (b) and cecal contents (c) of mice 

colonized with the six-member community (+Cs) or the five-member community (−Cs). 

Metabolites shown represent a panel of significantly elevated or reduced metabolites (≥ 

4-fold, corrected P < 0.05) in the six-member community. Superscript “1”: co-eluting 

metabolites as annotated in the mass spectrometry reference library (Supplementary 
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Table 1). Superscript “2”: co-eluting isomeric metabolites with truncated names in 

the figure (“2-Hydroxy-3-methylpentanoic acid, 2-Hydroxy-4-methylpentanoic acid”, and 

“Alpha-galactose 1-phosphate, Alpha-glucose 1-phosphate, Glucose-6-phosphate, Mannose 

6-phosphate”). Mean ± s.e.m. of one experiment with n = 6 (urine, six-member community), 

n = 7 (urine, five-member community), and n = 3 (cecal, both six-member and five-member 

communities). b, c, P values: two-tailed t-test with Benjamini-Hochberg correction for 

multiple comparisons. * P < 0.05, ** P < 0.01, *** P < 0.001. Venn diagram (b) of 

significantly elevated and reduced metabolites in individual host biofluids (cecal contents, 

serum, and urine) using the same threshold in b.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1, A microbiome-focused metabolomics pipeline enables mechanistic interrogation of 
microbiome metabolism.
Schematic of our metabolomics workflow, consisting of MS reference library construction 

and validation, producing in vitro and in vivo metabolomic profiles across diverse sample 

types. Our entire dataset is publicly accessible via a web-based, interactive Metabolomics 

Data Explorer.
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Fig. 2, Relationships between phylogeny, taxonomy, and metabolome.
a, Comparison of tree topology constructed based on phylogenetic (left) and metabolomic 

profile (fold-change data, right) distance matrices of 158 mega-medium grown strains 

spanning five phyla (one to three independent experiments, each with n ≥ 3 biological 

replicates). b, Metabolite accumulation patterns across all 158 mega-medium grown strains, 

clustered based on phylogenetic distance. Dot size: mean production levels of one to three 

independent experiments, each with n ≥ 3 biological replicates. For each metabolite, the 

largest dot represents the highest production level for that metabolite.
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Fig. 3, Discovery of nitrogen assimilation strategies in Bacteroides and novel gene-phenotype 
relationships.
a, Classification accuracy of Random Forest (RF) models at each taxonomic level, based 

on metabolomic profiles of 158 mega-medium grown bacterial strains from one to three 

independent experiments, each with n ≥ 3 biological replicates. Phylum (n = 5), Class (n 

= 11), Order (n = 15), Family (n = 27), Genus (n = 45), Species (n = 115), and Strain (n 

= 158). b, Amino acid production or consumption levels by Bacteroidetes strains from one 

to three independent experiments, each with n ≥ 3 biological replicates. Only uniquely 

detected (non-coeluting) amino acids are shown. a, b, Boxes: median, 25th, and 75th 

percentile; whiskers: Tukey’s method. c, Phylogenetic tree of Bacteroidetes strains, growth 

curve max optical density (OD600nm), and percentage of protein sequence identity for E. coli 
asparagine-consuming, ammonium-liberating enzymes. Nitrogen sources: ammonia (NH4), 

Glutamine (Gln), Asparagine (Asn). d, Representative growth curves of wild-type and 

mutant Bt (2757-3983-) in modified Salyer’s Minimal Medium from one experiment with n 

= 3 biological replicates. Nitrogen sources as in c: NH4, Gln, Asn.
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Fig. 4, Metabolic contribution by individual gut microbes in a multi-species community.
a, Quantification of agmatine levels. Mean ± s.e.m. of two independent experiments, 

each with n = 4 (germ-free) or n = 5 (Citrobacter mono-colonized) individual mice. 

b, Significantly produced metabolites associated with Clostridium sporogenes (Cs) or 

Bacteroides thetaiotaomicron (Bt) in serum (left panel) or urine (right panel). Violin plot: 

median and quartiles. Mean ± s.e.m. of one experiment with n = 4 (Cs, serum), n = 3 (Cs, 

urine), n = 5 (Bt, serum), n = 4 (Bt, urine), n = 7 (six-member, serum), n = 6 (six-member, 

urine), and n =9 germ-free mice pooled from both mono-association (n = 4) and community 

(n = 5) experiments. c, Serum metabolite levels in mice colonized with the six-member 

community (+Cs) or the five-member community (−Cs). Metabolites shown represent a 

panel of significantly elevated or reduced metabolites (≥ 4-fold, corrected P < 0.05) in 

the six-member community. Mean ± s.e.m. of one experiment with n = 7 (six-member 

community) and n = 8 (five-member community) mice. Venn diagram: significantly elevated 

or reduced metabolites in different host biofluids based on the same threshold defined 

above. a-c, P values: two-tailed t-test with Benjamini-Hochberg correction for multiple 

comparisons. * P < 0.05, ** P < 0.01, *** P < 0.001.
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