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ABSTRACT: Free electron beams such as those employed in
electron microscopes have evolved into powerful tools to
investigate photonic nanostructures with an unrivaled combination
of spatial and spectral precision through the analysis of electron
energy losses and cathodoluminescence light emission. In
combination with ultrafast optics, the emerging field of ultrafast
electron microscopy utilizes synchronized femtosecond electron
and light pulses that are aimed at the sampled structures, holding
the promise to bring simultaneous sub-Å−sub-fs−sub-meV space−
time−energy resolution to the study of material and optical-field
dynamics. In addition, these advances enable the manipulation of the wave function of individual free electrons in unprecedented
ways, opening sound prospects to probe and control quantum excitations at the nanoscale. Here, we provide an overview of
photonics research based on free electrons, supplemented by original theoretical insights and discussion of several stimulating
challenges and opportunities. In particular, we show that the excitation probability by a single electron is independent of its wave
function, apart from a classical average over the transverse beam density profile, whereas the probability for two or more modulated
electrons depends on their relative spatial arrangement, thus reflecting the quantum nature of their interactions. We derive first-
principles analytical expressions that embody these results and have general validity for arbitrarily shaped electrons and any type of
electron−sample interaction. We conclude with some perspectives on various exciting directions that include disruptive approaches
to noninvasive spectroscopy and microscopy, the possibility of sampling the nonlinear optical response at the nanoscale, the
manipulation of the density matrices associated with free electrons and optical sample modes, and appealing applications in optical
modulation of electron beams, all of which could potentially revolutionize the use of free electrons in photonics.

KEYWORDS: electron beam photonics, electron energy-loss spectroscopy (EELS), cathodoluminescence, PINEM,
ultrafast electron microscopy, light−matter interactions

The last two decades have witnessed spectacular progress
in our ability to control light down to deep-

subwavelength scales thanks to advances in nanofabrication
using bottom-up approaches (colloid chemistry1 and surface
science2) and top-down techniques (electron-beam3 (e-beam)
and focused-ion-beam4 lithographies), as well as combinations
of these two types of methods.5,6 In parallel, substantial
improvements in optics have enabled the acquisition of
spectrally resolved images through scanning near-field optical
microscopy7−9 (SNOM) and super-resolution far-field op-
tics,10,11 in which the diffraction limit is circumvented either by
relying on nanoscale scatterers (e.g., metallic tips7−9) or by
targeting special kinds of samples (e.g., periodic gratings11 or
fluorophore-hosting cells10). However, light-based imaging is
far from reaching the atomic level of spatial resolution that is
required to investigate the photonic properties of vanguard
material structures.
Spatial resolution down to the atomic scale can be achieved

by using electrons as either probes or drivers of the sampled
optical excitations. In particular, inelastically scattered beam

electrons carry information on the excited states of the
specimen, which can be revealed by performing electron
energy-loss spectroscopy (EELS),25−28 as extensively demon-
strated in the spectral and spatial mapping of optical modes
covering a broad frequency range, stretching from the
ultraviolet to the far-infrared.21−23,29−39 Several examples of
application are reviewed in Figures 1a−c and 2. In this field,
benefiting from recent advances in instrumentation,33,40,41

state-of-the-art transmission electron microscopes (TEMs)
operated at ∼30−300 kV acceleration voltages can currently
deliver spectrally filtered images with combined sub-Å and few-
meV space-energy resolution21−23,33−39 (see Figures 1c and
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2d,e). Indeed, the reduction in the width of the electron zero-
loss peak (ZLP) below ∼10 meV and the ensuing high spectral
resolution in EELS enable the exploration of optical modes
down to the mid-infrared, including phonons in graphene22

and silicon carbide,38 along with their modification due to
atomic-scale defects (Figure 2d), phonons and phonon
polaritons in graphite24 and hexagonal boron nitride23,24

(hBN) (Figure 2e,f), and low-energy plasmons in long silver13

(Figure 1b) and copper14 (Figure 1c) nanowires. In addition,
under parallel e-beam illumination, the inelastic electron signal
can be resolved in energy and deflection angle to provide
dispersion diagrams of surface modes in planar struc-
tures12,24,42−44 (see Figures 1a and 2f). A vibrant field of e-
beam vibrational spectromicroscopy has emerged in this

context (see Figure 2), with achievements such as the
determination of the sample temperature distribution with
nanometer precision thanks to the analysis of energy gains
produced in the electrons by absorption of thermally populated
modes14,21,34,45 (Figure 2b,c), thus adding high spatial
resolution to previous demonstrations of this approach20

(Figure 2a).
A limiting factor in TEMs is imposed by the requirement of

electron-transparent specimens with a total thickness of ≲100
nm. At the cost of reducing spatial resolution, low-energy
(∼50−500 eV) electron microscopy (LEEM) allows studying
thicker samples by recording surface-reflected electrons.46 This
approach enables the acquisition of dispersion diagrams in
planar surfaces by resolving the electron deflections associated

Figure 1. Probing nanoscale optical excitations. We show examples of mode dispersion relations (a, d, g), spatial mode distributions (b, e, h), and
spectrally narrow plasmons (c, f, i) probed through EELS (a−c), CL (d−f), and PINEM (g−i). (a) Plasmon dispersion measured in a self-standing
aluminum film through angle- and energy-resolved transmitted electrons. Adapted with permission from ref 12. Copyright 1975 American Physical
Society. (b) Plasmon standing waves in long silver nanowires (1.22 and 2.07 μm long in the top and bottom images, respectively) mapped by using
80 keV TEM electrons and having energies (in eV) as indicated by labels. Adapted with permission from ref 13. Copyright 2013 American Physical
Society. (c) Spectral features associated with high-quality-factor plasmon standing waves in a long copper nanowire (15.2 μm length, 121 nm
diameter) extending from the mid- to the near-infrared, as resolved through high-resolution EELS. Adapted with permission from ref 14. Copyright
2021 American Chemical Society. (d) Trivial and topological photonic crystal bands observed through 30 keV SEM-based angle-resolved CL from
two arrays of silicon pillars (200 nm high, 88 nm wide) deposited on a 10 nm thick Si3N4 membrane and arranged on a hexagonal superlattice (455
nm period) of either shrunken (138 hexagon side length) or expanded (168 side length) hexamers (see labels) formed by six pillars per lattice site.
Adapted with permission from ref 15. Copyright 2019 American Physical Society. (e) Polarization-resolved CL intensity (lower maps) and
emission Stokes parameters (center-right maps) produced by 80 keV electrons in a TEM as a function of e-beam position over a silicon sphere (250
nm diameter, see upper-right SEM image), as obtained by filtering 1.8 ± 0.1 eV photons emitted with an angle of 45° relative to the electron
velocity. Adapted with permission from ref 16. Copyright 2020 American Chemical Society. (f) Plasmon standing waves confined to circular
grooves of different radii (see labels) carved into a single gold crystal (see upper-right SEM image) and mapped through CL, with the azimuthal
number m defining the number of periods along the circumference, as shown in the lower-right inset. Adapted with permission from ref 17.
Copyright 2009 American Chemical Society. (g, h) Dispersion relation (g) and near-field maps (h) of TM and TE modes in a 2D 200 nm thick
Si3N4 photonic crystal formed by a hexagonal hole array of 600 nm period, mapped through PINEM using 80 keV electrons. Adapted with
permission from ref 18. Copyright 2020 Springer-Nature. (i) Silver nanowire plasmon standing wave spectrally resolved with 20 meV accuracy
(right) through the depletion observed in the zero-loss peak (ZLP; left) as the frequency of the PINEM laser is scanned over the mode resonance.
Adapted with permission from ref 19. Copyright 2017 American Chemical Society.
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with in-plane momentum transfers,47 even in challenging
systems such as monatomic rows of gold atoms arranged on a
vicinal silicon surface, which were neatly shown to support 1D
plasmons through LEEM.48 Likewise, using intermediate e-
beam energies (∼1−50 keV), secondary electron microscopes
(SEMs) offer the possibility of studying optical modes also in
thick samples through the cathodoluminescence (CL) photon
emission associated with the radiative decay of some of the
created excitations,29 as extensively demonstrated in the
characterization of localized17,49−52 and propagating53−55

surface plasmons (see an example in Figure 1f), as well as
optical modes in dielectric cavities16,56,57 (see Figure 1e) and
topological 2D photonic crystals15 (see Figure 1d), with spatial
resolution in the few-nm range.58 Some of these and other
related studies were performed in TEMs,16,49,57,59−61 where a
direct comparison between CL and EELS was found to reveal
similarities of the resulting spectra and those associated with
optical elastic scattering and extinction, respectively.61

Combined with time-resolved detection, CL permits determin-
ing the lifetime and autocorrelation of sample excitations
created by the probing electrons,62−67 while the analysis of the
angular distribution of the light emission provides direct
information on mode symmetries.16,50,56,57,68 Nevertheless,
EELS has the unique advantage of being able to detect dark
optical excitations that do not couple to propagating radiation

(e.g., dark plasmons), but can still interact with the evanescent
field of the passing electron probe.69−72 In this respect, the
presence of a substrate can affect the modes sampled in a
nanostructure, for example, by changing their optical selection
rules, therefore modifying the radiation characteristics that are
observed through CL.57,68 Additionally, by collecting spectra
for different orientations of the sample relative to the e-beam,
both EELS73 and CL74 have been used to produce tomo-
graphic reconstructions of plasmonic near fields.
The emergence of ultrafast transmission electron micros-

copy (UTEM) has added femtosecond (fs) temporal
resolution to the suite of appealing capabilities of e-
beams.75−78 In this field, fs laser pulses are split into a
component that irradiates a photocathode to generate
individual fs electron pulses and another component that
illuminates the sample with a well-controlled delay relative to
the time of arrival of each electron pulse75−77 (Figure 3b).
Slow (sub-ps) structural changes produced by optical pumping
have been tracked in this way,75,76 while the optical-pump−
electron-probe (OPEP) approach holds the additional
potential to resolve ultrafast electron dynamics.79,80 It should
be noted that an alternative method in UTEM, consisting in
blanking the e-beam with sub-ns precision, can be incorporated
in high-end SEMs and TEMs without affecting the beam

Figure 2. Electron-beam vibrational spectromicroscopy. (a) Spectral features of phonon polaritons in LiF recorded through energy losses and gains
experienced by 25 keV electrons transmitted through a thin foil, with the gains originating in thermally populated modes at room temperature T ≈
300 K and the loss-to-gain peak ratio approximately given by 1 + 1/nT(ω) = eℏω/kBT (∼7 at ℏω = 50 meV). Adapted with permission from ref 20.
Copyright 1966 American Physical Society. (b, c) Nanoscale e-beam thermometry based on high-resolution EELS of a MgO cube (b), whereby the
sample temperature is determined upon examination of the loss-to-gain intensity ratio (c). Adapted with permission from ref 21. Copyright 2018
American Chemical Society. (d) Atomic resolution in the mapping of vibrational spectra, here used to image the localization of the phonon density
of states produced by a Si defect in monolayer graphene. Adapted with permission from ref 22. Copyright 2020 American Association for the
Advancement of Science. (e) Strong coupling between hBN photon polaritons and silver nanowire plasmons observed through high-resolution
EELS by iterative e-beam drilling to shrink the wire length and scan one of its plasmon resonances over the phononic spectral region. Adapted with
permission from ref 23. Copyright 2020 American Chemical Society. (f) Phonon dispersion in graphite and hBN obtained by high-resolution angle-
resolved EELS. Adapted with permission from ref 24. Copyright 2019 Springer-Nature.
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quality,81 although with smaller temporal precision than the
photocathode-based technique.
The electron−sample interaction is generally weak at the

high kinetic energies commonly employed in electron
microscopes, and consequently, the probability for an electron
to produce a valence excitation or give rise to the emission of
one photon is typically small (≲10−4). Nevertheless, low-
energy electrons such as those used in LEEMs (and also in
SEMs operated below ∼1 keV) can excite individual nanoscale
confined modes with order-unity efficiency,82 although a yield

≪1 should be expected in general at higher electron energies.
The OPEP approach thus addresses nonlinear processes
triggered by optical pumping and sampled in a perturbative
(i.e., linear) fashion by the electron.75,76,80 Furthermore,
UTEM setups can produce multiple photon exchanges with
each beam electron, even if the specimen responds linearly to
the optical pulse. Indeed, while a net absorption or emission of
photons by the electron is kinematically forbidden in free
space,83 the presence of the sample introduces evanescent
optical field components that break the energy-momentum

Figure 3. Microscopies at the frontier of space-time-energy resolution. (a) We organize different microscopy techniques according to their spatial
(vertical axis), spectral (horizontal axis), and temporal (color scale) resolutions. The latter is limited to the sub-ns regime when relying on fast
electronics62 (green and blue), while it reaches the fs domain with optical pulses (yellow) and the attosecond range with X-ray pulses (red), but
also with ultrashort electron pulses. In particular, the measurement of CL driven by temporally compressed e-beams could potentially provide
simultaneous sub-Å−attosecond−sub-meV resolution (see main text). (b) Schematic illustration of an ultimate ultrafast electron microscope,
encompassing (1) a photocathode tip that acts as an electron source driven by photoemission upon laser pulse irradiation, (2) an electron-
modulation block based on PINEM-like interaction and subsequent free-space propagation that generates attosecond electron pulses, (3) a sample
stage accessed by synchronized electron and laser pulses, and (4) the acquisition of several types of signals that include angle-resolved EELS and
CL. The three fs laser pulses illuminating the photocathode, the sample, and the PINEM intermediate element are synchronized with attosecond-
controlled delays. Currently available TEM and SEM setups incorporate different partial combinations of these possibilities. (c) Schematic
illustration of time-resolved PEEM, where photoelectrons are used to construct fs- and nm-resolved movies by scanning the time delay between
pump and probe laser pulses. (d) Illustration of STML, which enables atomic resolution through the detection of luminescence produced by
inelastically tunneling electrons (right) and could be acquired with sub-ps temporal precision through modulation of the tip gate voltage.
Femtosecond resolution could be potentially achieved through the measurement of the laser-assisted electron tunneling current using pump−probe
optical pulses (left).
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mismatch, leading to a nonvanishing electron−photon
interaction probability, which is amplified by stimulated
processes in proportion to the large number of incident
photons (∝ laser intensity) contained in each optical pulse.
This effect has been argued to enable high spectral resolution
by performing electron energy-gain spectroscopy (EEGS)
while scanning the pumping light frequency,19,84−86 so that
energy resolution is inherited from the spectral width of the
laser, whereas the atomic spatial resolution of TEM setups can
be retained. A similar approach has been followed to push
energy resolution down to the few-meV range by analyzing the
depletion of the ZLP upon intense laser irradiation19 (see
Figure 1i). We reiterate that the potential degradation of beam
quality and energy width introduced at the photocathode can
be avoided by resorting instead to e-beam blanking in
combination with synchronized nanosecond laser pulses.81

In this context, intense efforts have been devoted to studying
nonlinear interactions from the electron viewpoint in UTEM
setups, assisted by the linear response of the sample to optical
laser pumping. As a manifestation of these interactions,
multiple quanta can be exchanged between the light and
electron pulses in what has been termed photon-induced near-
field electron microscopy (PINEM).18,19,77,81,83,87−91,93−116

The longitudinal (along the e-beam direction) free-electron
wave function is then multiplexed in a periodic energy comb
formed by sidebands separated from the ZLP by multiples of
the laser photon energy77,87,88,93,96,98 and associated with
discrete numbers of net photon exchanges (Figure 4a−c), the
probability of which can be expressed in terms of a single
coupling parameter β that encapsulates the electron interaction
with the optical near-field and depends on the lateral position
in the transverse e-beam plane (see below). Such transverse

Figure 4. Optical modulation of free electrons. (a) Energy comb of electron losses and gains produced by ultrafast interaction with evanescent light
fields in the PINEM approach: experiment77 and theory87 comparison. Adapted with permission from ref 87. Copyright 2010 American Chemical
Society. (b) Laser-amplitude dependence of the electron energy comb produced by PINEM interaction, revealing quantum billiard dynamics
among different electron energy channels separated by the photon energy ℏω. Adapted with permission from ref 88. Copyright 2015 Springer-
Nature. (c, d) Tilt-angle dependence of the PINEM energy comb produced by using a planar film (c) and associated transfers of lateral linear
momentum (d). Adapted with permission from ref 83. Copyright 2018 Springer-Nature. (e) PINEM in the intermediate-coupling regime showing
a (n + 1)/n loss−gain intensity ratio in the EELS spectra of silver nanoparticles with 100 keV electrons under ns-laser illumination, superimposed
on regular spontaneous EELS features, for beam positions as shown in the color-coordinated spots of the upper-left image, along with gain and loss
energy-filtered images in the upper-middle and -right plots. Adapted with permission from ref 81. Copyright 2019 Elsevier B.V. (f) Intense-coupling
regime resulting in a large number of PINEM energy sidebands under total-internal-reflection phase-matched illumination (i.e., with the electron
velocity matching the surface-projected light speed inside the glass). Adapted with permission from ref 89. Copyright 2020 Springer-Nature. (g)
Transfer of angular momentum between light and electrons, as revealed in a configuration similar to (c) through a donut shape of the electron
intensity in the Fourier plane after PINEM interaction. Adapted with permission from ref 90. Copyright 2019 Springer-Nature. (h) Electron
modulation into a train of attosecond pulses upon propagation from the PINEM interaction region over a sufficiently large distance to interlace
different energy sideband components in an electron microscope. Adapted with permission from ref 91. Copyright 2017 Springer-Nature. (i, j)
Single electron pulses produced by streaking a train of pulses following the scheme shown in panel (i) and experimental demonstration based on
the observation of the time-resolved electron current in a table-top e-beamline setup (j). Adapted with permission from ref 92. Copyright 2020
American Physical Society.
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dependence can be engineered to imprint an on-demand phase
pattern on the electron wave function, giving rise, for example,
to discretized exchanges of lateral linear momentum83,102,117

(see Figure 4d and also ref 117 for sharper features associated
with momentum discretization) and orbital angular momen-
tum90,105 (Figure 4g) between the light and the electron.
PINEM spectral features (i.e., the noted energy comb) do not
bear phase coherence relative to spontaneous excitations
associated with EELS,81 as experimentally verified for relatively
low laser intensities, which lead to stimulated (PINEM loss
and gain peaks) and spontaneous (EELS, only loss) energy
peaks in the observed spectra with comparable strengths
(Figure 4e). In this regime, single-loss and -gain peak
intensities are proportional to n + 1 and n, respectively,
where n is the population of the laser-excited sample mode to
which the electron couples. In contrast, we have n ≫ 1 at high
laser fluence, so gain and loss features configure a symmetric
spectrum with respect to the ZLP. As the intensity increases
(Figure 4a,b), multiple photon exchanges take place. These
events were predicted87 and subsequently confirmed in
experiment88 to give rise to a sub-fs quantum billiard dynamics
(Figure 4b). Enhanced order-unity electron−photon coupling
is achieved under phase-matching conditions when the
electron travels at the same velocity as the optical mode to
which it couples.108,118 Under this condition, the number of
PINEM energy sidebands is strongly enlarged89,112 (see Figure
4f), eventually reducing the loss−gain spectral symmetry,
presumably due to departures from phase-matching produced
by electron recoil. Incidentally, inelastic ponderomotive
interactions can also be a source of asymmetry, as we discuss
below, and so are corrections due to electron recoil.119

The optical near-field dynamics in nanostructures has been
explored through PINEM, as illustrated by the acquisition of
fs-resolved movies of surface plasmons evolving in nanowires96

and buried interfaces,97 as well as in the characterization of
optical dielectric cavities and the lifetime of the supported
optical modes18,112 (see Figure 1g,h). It should be noted that
analogous plasmon movies can be obtained through optical
pump-probing combined with photoemission electron micros-
copy (PEEM, Figure 3c) performed on clean surfaces,120 as
demonstrated for propagating plane-wave,121,122 chiral,6,123

and topological124 plasmons. Nevertheless, by employing
different types of particles to pump and probe (e.g., photons
and electrons), PINEM-modulated e-beams can potentially
enable access into the attosecond regime without compromis-
ing energy resolution, as we argue below.
Complementing the above advances, the generation of

temporally compressed electron pulses has emerged as a fertile
research area91,106,107,125−130 that holds potential to push time
resolution toward the attosecond regime. An initial proposal
relied on free-space electron-light interactions.125 Indeed,
electron energy combs can also be produced in free space
through ponderomotive interaction with two suitably oriented
light beams of different frequencies ω1 and ω2 as a result of
stimulated Compton scattering, subject to the condition ω1 −
ω2 = (k1 − k2)·v, where k1 and k2 denote the photon wave
vectors and v is the electron velocity. The resulting electron
spectrum consists of periodically spaced energy sidebands
separated from the ZLP by multiples of the photon energy
difference ω ωℏ −1 2 .

127 After a long propagation distance
beyond the electron−photon interaction region, different
energy components in the electron wave function, traveling
at slightly different velocities, become interlaced and can give

rise to a periodic train of compressed−probability−density
pulses with a temporal period π ω ω−2 / 1 2 . For sufficiently
intense light fields, these pulses were argued to reach sub-fs
duration,125 as neatly confirmed in free-space experi-
ments.127,128 In a separate development, compression down
to sub-fs pulses was achieved for spatially (∼100 μm) and
spectrally (∼30 keV) broad multielectron beams accelerated to
60 MeV126 using an inverse free-electron laser approach that
relied on the coupling to the optical near-field induced in a
grating by irradiation with sub-ps laser pulses. In a tour-de-
force experiment, PINEM-based production of attosecond
pulse trains (Figure 4h) was eventually pioneered in an
electron microscope91 at the single-electron level, yielding it
compatible with <1 nm e-beam spots and quasimonochromatic
incident electrons (<0.6 eV spread), thus raising the control
over the electron wave function to an unprecedented level and
simultaneously rendering temporally modulated electrons
accessible for use in spatially resolved spectroscopy. A
demonstration of attosecond compression followed soon
after using a table-top e-beamline setup,107 along with the
generation of single electron pulses by subsequent angular
sorting based on optical streaking92 (Figure 4i,j), which is
promising for the synthesis of individual attosecond electron
pulses, although its combination with sub-nm lateral e-beam
focusing in a microscope remains as a major challenge.
We organize the above-mentioned techniques in Figure 3a

according to their degree of space-time-energy resolution.
Notably, electron-based methods offer better spatial resolution
than all-optical approaches because of the shorter wavelength
of such probes compared to photons. Incidentally, for the
typical 30−300 keV e-beam energies, the electron wavelength
lies in the 7−2 pm range, which sets an ultimate target for the
achievable spatial resolution, currently limited by the numerical
aperture of electron optics (NA ∼ 10−2, leading to an e-beam
focal size of ∼0.5 Å). In contrast, far-field light optics and even
SNOM offer a lower spatial resolution. We include for
comparison laser-induced electron diffraction (LIED), which
relies on photoemission from spatially oriented individual
molecules produced by attosecond X-ray pulses, followed by
electron acceleration driven by a synchronized infrared laser
and subsequent elastic scattering back at the molecules; this
technique grants us access into the molecular atomic structure
with sub-Å−attosecond precision,131 and it also provides
indirect information on electronic potential-energy surfaces.132

Interestingly, time-resolved low-energy electron diffraction has
also been employed to study structural dynamics in solid
surfaces using photoemission e-beam sources analogous to
UTEM.133 In a radically different approach, scanning tunneling
microscope luminescence134 (STML, Figure 3d) provides
atomic spatial precision combined with optical spectral
resolution in the determination of electronic defects in
conducting surfaces,135,136 which can, in principle, be
combined with fast electronics to achieve sub-ns temporal
resolution similar to CL.62 Additionally, laser-driven tunneling
in the STM configuration can provide fs resolution by
measuring the electron current under optical pump−probe
laser irradiation134,137,138 (Figure 3c). In this Perspective, we
speculate that the team formed by synchronized ultrafast laser
and free-electron pulses combined with measurement of angle-
resolved CL (Figure 3b) holds the potential to reach the
sought-after sub-Å−attosecond−sub-meV simultaneous level
of resolution in the study of optical excitations, while even
higher accuracy is still possible from the point of view of the
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fundamental limits (see below). These ideas can be
implemented in TEMs, SEMs, and LEEMs, with the last two
of these types of instruments presenting the advantage of
offering stronger electron interaction with nanoscale optical
modes.

■ FUNDAMENTALS OF ELECTRON-BEAM
SPECTROSCOPIES

Theoretical understanding of electron microscopy has
benefited from a consolidated formalism for the analysis of
EELS and CL spectra, as well as new emerging results in the
field of UTEM. We present below a succinct summary of the
key ingredients in these developments.
Spontaneous Free-Electron Interaction with Sample

Optical Modes. For the swift electron probes and low
excitation energies under consideration, EELS and CL
transition probabilities can be obtained by assimilating each
beam electron to a point charge −e moving with constant
velocity vector, v = υz ̂ (nonrecoil approximation, see below),
and interacting linearly with each sample mode. The electron
thus acts as an external source of evanescent electromagnetic
field, and in particular, the frequency decomposition of the
electric field distribution as a function position r = (R, z) (with
R = (x, y)) for an electron passing by r = (R0, 0) at time zero
admits the expression29
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and γ υ= − c1/ 1 /2 2 is the relativistic Lorentz factor. The
time-dependent field is obtained through the Fourier transform

∫π
ω ω= ω
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−tE r E r( , )

1
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d ( , )e text ext i

At large radial separations R, the two modified Bessel functions
in F decay exponentially as ζ π ζ≈ ζ−K ( ) e /2m , whereas at
short distances, it is K1(ζ) ≈ 1/ζ that provides a dominant
divergent contribution and explains the excellent spatial
resolution of e-beams.139 The external field interacts with the
specimen giving rise to an induced field Eind that acts back on
the electron to produce a stopping force. By decomposing the
resulting energy loss in frequency components, we can write
the EELS probability as29
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This quantity is normalized in such a way that

∫ ω ωΓ
∞

Rd ( , )
0 EELS 0 is the total loss probability and

∫ ω ω ωℏ Γ
∞

Rd ( , )
0 EELS 0 is the average energy loss.

It is convenient to express the EELS probability in terms of
the 3 × 3 electromagnetic Green tensor G(r, r′, ω), implicitly
defined by the equation
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for structures characterized by a local frequency- and position-
dependent permittivity ϵ(r, ω) (and by an analogous relation
for nonlocal media140) and allowing us to obtain the induced
field created by an external current jext(r, ω) as

∫ω π ω ω ω= − ′ ′ · ′GE r r r r j r( , ) 4 i d ( , , ) ( , )ind 3 ind ext

The classical current associated with the electron is jext(r,ω) =
−e z ̂ δ(R − R0)e

iωz/υ, which upon insertion into the above
expression, in combination with eq 2, yields
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where we have replaced Gind by G because G − Gind produces a
vanishing contribution to the z integrals as a consequence of
kinematical mismatch between electrons and photons in free
space.29 We remark the quantum nature of this result, which is
revealed by the presence of ℏ, introduced through the lost
energy ℏω in the denominator as a semiclassical prescription
to convert the energy loss into a probability. This is also
corroborated by a first-principles quantum-electrodynamics
derivation of eq 4, which we offer in detail in the Methods
section under the assumption that the sample is initially
prepared at zero temperature.
An extension of this analysis to samples in thermal

equilibrium at finite temperature T allows us to relate the
EELS probability to the zero-temperature result in eqs 2 and 4
as

ω ω ω ωΓ = Γ | | [ + ]nR R( , ) ( , ) ( ) 1 sign( )T
TEELS 0 EELS 0 (5)

(with ω < 0 and ω > 0 indicating energy gain and loss,
respectively), also derived in detail from first-principles in the
Methods section.
The far-field components of the induced field give rise to

CL, with an emission probability that can be obtained from the
radiated energy (i.e., the time- and angle-integrated far-field
Poynting vector). The classical field produced by the external
electron source is thus naturally divided into frequency
components, so an emission probability (photons per incident
electron) is obtained by dividing by ℏω, remarking again the
quantum nature of the emission, which also reflects in how
individual photon counts are recorded at the spectrometer in
experiments. More precisely, using the external electron
current and the Green tensor defined above, the electric field
produced by the electron at a position r∞ far away from the
sample can be written as

∫ω π ω ω
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where fr ̂∞
CL(R0,ω) is the far-field amplitude. From the

aforementioned analysis of the Poynting vector, we find that
the CL emission probability reduces to
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is the angle- and frequency-resolved probability.
A large number of EELS and CL experiments have been

successfully explained using eq 2 and the approach outlined
above for CL by describing the materials in terms of their
frequency-dependent local dielectric functions and finding Eind

through numerical electromagnetic solvers, including the
boundary-element method141−146 (BEM; see open-access
implementation in ref 145), the discrete-dipole approxima-
tion147,148 (DDA), multiple scattering approaches,149,150 and
finite difference methods.151−153 Analytical expressions for the
EELS and CL probabilities are also available for simple
geometries, such as homogeneous planar surfaces, anisotropic
films, spheres, cylinders, and combinations of these elements
(see ref 29 for a review of analytical results), recently
supplemented by an analysis of CL from a sphere for
penetrating electron trajectories.16 It is instructive to examine
the simple model of a sample that responds through an
induced electric dipole, which admits the closed-form
expressions
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for the EELS and CL probabilities, where α̿(ω) is the
frequency-dependent 3 × 3 polarizability tensor, and the last
equation applies to isotropic particles with α α ω̿ = ( ) 3. We
remark that these results are quantitatively accurate even for
large particles (e.g., dielectric spheres sustaining Mie modes),
provided we focus on spectrally isolated electric dipole
modes.29 The above-mentioned properties of the Km functions
readily reveal that the interaction strength diverges in the R0 →
0 limit (i.e., when the e-beam intersects the point dipole).
However, the finite physical sizes of the particle and the e-
beam width prevent this divergence in practice. (Incidentally,
the divergence also disappears in a quantum-mechanical
treatment of the electron, which relates small R0 values to
large momentum transfers, limited to a finite cutoff imposed by
kinematics.) In virtue of the optical theorem154 (i.e., Im{−1/
α(ω)} ≥ 2ω2/3c3), we have ΓEELS ≥ ΓCL, as expected from the
fact that emission events constitute a subset of all energy
losses. Additionally, both EELS and CL share the same spatial
dependence for dipolar modes, contained in the function
F(R0, ω) (eq 1).
As we show below, the transition probabilities are

independent of the electron wave function, but a dependence
is obtained in the partial electron inelastic signal when a
selection is done on the incident and transmitted (final) wave
functions (ψi and ψf). Assuming a factorization of these wave

functions as ψ ψ∝| | ⊥
| Lr R( ) ( )e /i f i f

q zi i f z, , where L is the

quantization length along the beam direction, and integrating
over longitudinal degrees of freedom (the z coordinate), the
state-selected transition probability depends on the transverse
components as (see self-contained derivation in Methods)
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where G(r, r′, ω) is the electromagnetic Green tensor defined
in eq 3. Reassuringly, when summing Γf i(ω) over a complete
basis set of plane waves for ψf⊥(R), we find ∑fΓf i(ω) =
∫ d2R |ψi⊥(R)|

2ΓEELS(R, ω), so we recover eq 4 in the limit of
a tightly focused incident beam (i.e., |ψi⊥(R)|

2 ≈ δ(R − R0)).
Interestingly, the transition probability only depends on the
product of transverse wave functions ψf⊥(R)ψi⊥*(R). The
possibility of selecting sample excitations by shaping this
product has been experimentally confirmed by preparing the
incident electron wave function in symmetric and antisym-
metric combinations that excite dipolar or quadrupolar
plasmons in a sample when the electrons are transmitted
with vanishing lateral wave vector155 (i.e., for uniform ψf⊥ with
qf⊥ = 0). Similarly, under parallel beam illumination (uniform
ψi⊥ with qi⊥ = 0), angle-resolved Fourier plane imaging
provides maps of transition probabilities to final states ψf⊥ ∝
eiqf⊥·R of well-defined lateral momentum ℏqf⊥; actually, this
approach is widely used to measure dispersion relations in
planar films12,24 (see Figures 1a and 2f) while a recent work
tracks electron deflections produced by interaction with
localized plasmons.156 Analogously, the excitation of chiral
sample modes by an incident electron plane wave produces
vortices in the inelastically transmitted signal, an effect that has
been proposed as a way to discriminate different enantiomers
with nanoscale precision.157

Stimulated Free-Electron Interaction with Optical
Fields. Under intense laser irradiation in UTEM setups,
coupling to the optical near field in the sample region
dominates the interaction with the electron. For typical
conditions in electron microscopes, we can assume the
electron to always consist of momentum components that
are tightly focused around a central value q0 parallel to the z
axis (nonrecoil approximation). This allows us to recast the
Dirac equation into an effective Schrödinger equation,94
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where we separate a slowly varying envelope ϕ from the fast
oscillations associated with the central energy E0 and wave
vector q0 in the electron wave function
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and we adopt the minimal-coupling light-electron interaction
Hamiltonian158
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written in terms of the optical vector potential A(r, t) in a
gauge with vanishing scalar potential without loss of generality.
The nonrecoil approximation also implies that the initial
electron wave function can be written as

ψ ϕ= −− ℏt tr r v( , ) e ( )i
q z iE t

i
i /0 0

where ϕi defines a smooth invariant profile depending only on
the rest-frame coordinates r − vt. Assuming that this behavior
is maintained within the interaction region, the full electron
wave function admits the solution159
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We focus for simplicity on monochromatic light of frequency
ω, for which the vector potential can be written as A(r,t) =
(2c/ω)Im{E(r)e−iωt}, where E(r) is the optical electric field
amplitude contributed by both the external laser and the
components scattered by the sample. We are interested in
evaluating the electron wave function at a long time after
interaction, such that ψi vanishes in the sample region. In this
limit, combining the above results, we find that the transmitted
wave function reduces to
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describes the above-mentioned energy comb, associated with
the absorption or emission of different numbers l of photons of
frequency ω by the electron, as ruled by the coupling
coefficient

∫β
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which is determined by the optical field component along the
e-beam direction. The rightmost expression in eq 11 is derived
by applying the Jacobi-Anger expansion eiu sinθ =∑l Jl(u)e

ilθ (eq
9.1.41 of ref 160), with u = 2|β| and θ = arg{−β} + ωz/υ. The
two other factors accompanying the incident wave function in
eq 10 are produced by the ponderomotive force (i.e., the A2

term in the coupling Hamiltonian ̂
1). Namely, a phase
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where γυ α= m c/e plays the role of an effective mass and α
≈ 1/137 is the fine structure constant; and an extra energy
comb of double frequency given by eq 11 with ω substituted
by 2ω and β by
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We remark that the multiplicative factors in eq 10 depend on
the transverse coordinates R = (x, y). In the absence of a
scattering structure, β and β′ vanish, yielding = 10 as a result
of the aforementioned electron−photon kinematic mismatch,
although a spatially modulated ponderomotive phase φ can
still be produced, for example, by interfering two counter-
propagating lasers, giving rise to electron diffraction (the
Kapitza-Dirac effect161−164). From an applied viewpoint, this
phenomenon enables optical sculpting of e-beams in free
space.158,165−167

The relative strength of A2 interactions can be estimated
from the ratio |β′/β| ∼ |E|/Ethres (see eqs 12 and 14), where
Ethres = 2meγυω/e (≈5 × 1012 V/m for ℏω = 1.5 eV and 100
keV electrons) defines a threshold field amplitude that exceeds
by ∼4 orders of magnitude the typical values used in PINEM
experiments,83,88 although they should be reachable using few-
cycle laser pulses in combination with nonabsorbing high-index
dielectric structures.
Neglecting A2 corrections, the remaining PINEM factor

trivially satisfies the relation

β ω β ω β β ω× = +z z z( , , ) ( , , ) ( , , )0 1 0 2 0 1 2

(see eq 11), so that the effect of two simultaneous or
consecutive PINEM interactions with mutually coherent laser
pulses at the same photon frequency is equivalent to a single
one in which the coupling coefficient is the sum of the
individual coupling coefficients, as neatly demonstrated in
double-PINEM experiments.98 Additionally, β imprints a
lateral dependent phase l arg{−β(R)} on the wave function
component associated with each inelastic electron sideband,
where l labels the net number of exchanged photons; this effect
has been experimentally verified through the observation of
transverse linear83,117 and angular90 momentum transfers to
the electron (Figure 4d,g), and it has been predicted to
produce electron diffraction by plasmon standing waves in
analogy to the Kapitza-Dirac effect.102

The Schrödinger equation mentioned at the beginning of
this section neglects the effect of recoil, which can substantially
affect the electron over long propagation distances d beyond
the PINEM interaction region. Incidentally, recoil can even
manifest within the interaction region if it spans a relatively
large path length. Neglecting again A2 terms, the leading
longitudinal recoil correction results in the addition of an l-
dependent phase −2πl2d/zT to each term of the sum in eq 11,
where

π υ γ
ω

=
ℏ

z
m4

T
e

3 3

2

is a Talbot distance (e.g., zT ≈ 159 mm for ℏω = 1.5 eV and
100 keV electrons) that indeed increases with kinetic energy.
More precisely, the electron wave function becomes
ψ ψ β ω υ= [ − ]t t z tr r R( , ) ( , ) ( ), ,i d , where

∑β ω β= | | β ω υ π
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We remark that this result is valid if we neglect ponderomotive
forces and assume the e-beam to be sufficiently well collimated
as to dismiss lateral expansion during propagation along the
distance d. We also assume that ψi is sufficiently mono-
energetic as to dismiss its drift along d. Different l components
move with different velocities, resulting in a temporal
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compression of the electron wave function126 that has been
d emo n s t r a t e d t o r e a c h t h e a t t o s e c o n d r e -
gime.91,92,103,106,107,129,130

The above results refer to coherent laser illumination, but
additional possibilities are opened by using quantum light
instead, and in particular, we have predicted that the electron
spectra resulting from the PINEM interaction with optical
fields carry direct information on the light statistics111 (e.g., the
second-order autocorrelation function g(2)). Additionally,
temporal electron pulse compression can be accelerated
using phase-squeezed light (see Figure 7d), while the electron
density matrix acquires nontrivial characteristics with potential
application in customizing its eventual interaction with a
sample.115

The extension of the above results to multicolor illumination

opens additional possibilities, with the linear A term in ̂
1

producing multiplicative PINEM factors (one per light
frequency) that lead to asymmetric electron spectra.91 Also,
the ponderomotive-force A2 term introduces frequency-sum
and frequency-difference PINEM factors, which in free space,
with lasers arranged under phase-matching propagation
directions, can give rise to energy combs similar to PINEM
through stimulated Compton scattering;128 this effect,
combined with free-space propagation, has been exploited to
achieve attosecond electron compression without requiring
material coupling structures.127

Relation between PINEM and CL. In CL, the electron
acts as a source from which energy is extracted to produce light
emission, whereas PINEM is just the opposite: an external light
source exchanges energy with the electron. It is thus plausible
that a relation can be established between the two types of
processes if the sample exhibits a reciprocal response, so that
the electromagnetic Green tensor satisfies the property Gaa′(r,
r′, ω) = Ga′a(r′, r, ω), where a and a′ denote Cartesian
components. To explore this idea, we start from the PINEM
coupling coefficient defined in eq 12 and consider far-field
illumination from a well-defined direction r∞̂, as produced by
an external distant dipole pext ⊥ r∞̂ at the laser source position
r∞. Using the Green tensor to relate this dipole to the electric
field as E(r) = −4πω2G(r, r∞, ω)·p

ext, we find
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In the absence of a sample, the external laser field is obtained
from the far-field limit of the free-space Green tensor, giving
rise to an external plane-wave of electric field E(r) = Eexteik·r

with wave vector k = −r∞̂ω/c and amplitude Eext = (eiωr∞/c/r∞)
(ω2/c2)pext, which allows us to recast the coupling coefficient
into
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where we have used the noted reciprocity property. Now, we
identify the expression inside square brackets as the CL far-
field amplitude by comparison to eq 6. Finally, we find
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i
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2

2
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where the tilde in fr̃∞̂
CL(R0, ω) indicates that it has to be

calculated for an electron moving with opposite velocity (i.e.,

−v instead of v; cf. e±iωz/υ factors in eqs 6 and 16). Equation 17
establishes a direct relation between PINEM and CL: the
coupling coefficient in the former, for far-field plane-wave
illumination from a given direction r∞̂ (i.e., light propagating
toward −r∞̂), is readily obtained from the electric far-field
amplitude of CL light emitted toward r∞̂, but with the electron
velocity set to −v instead of v. A recent study has partially
verified this relation by exploring the spatial characteristics of
EELS, CL, and PINEM for the same single gold nanostar.168

For completeness, we provide the expression

β ω
υ γ

α ω ω=
ℏ

* ·e
R F R E( )

2i
( ) ( , )2

ext

obtained for an isotropic dipolar scatterer (see eqs 1 and 8)
under continuous-wave illumination conditions.
The high degree of control over the free-electron wave

function embodied by the above developments opens exciting
opportunities to explore new physics and applications.
However, before presenting some perspectives on these
possibilities, we discuss in more detail the role of the electron
wave function in the interaction with optical sample modes.

■ QUANTUM AND CLASSICAL EFFECTS
ASSOCIATED WITH THE FREE-ELECTRON WAVE
FUNCTION

Like for any elementary particle, the wave nature of free
electrons manifests in interference phenomena observed
through double-slit experiments and diffraction by periodic
lattices, which are typical configurations used to image material
structures and their excitation modes. Electron interference has
been extensively exploited in TEMs to this end,25−28,169−172 as
well as in photoelectron diffraction,173 low-energy electron
diffraction,174 and LIED.131 Shaping and probing the electron
wave function lies at the heart of these techniques, in which the
electrons are scattered elastically, and consequently, no final
sample excitations are produced. Likewise, interference is
expected to show up, associated with the creation of sample
excitations by e-beams, as demonstrated in the so-called
inelastic electron holography.175,176

It should be noted that electron beam spectroscopies involve
the creation of excitations in the sample by one electron at a
time when using typical beam currents ≲1 nA (i.e., ≲6
electrons per nanosecond). Such relatively low currents are
employed to avoid Coulomb electron−electron repulsion and
the resulting beam degradation and energy broadening, which
are detrimental effects for spatially resolved EELS, although
they can still be tolerated in diffraction experiments relying on
electron bunches to retrieve structural information,177 and also
in EEGS based on depletion of the ZLP with few-meV energy
resolution obtained by tuning the laser frequency.19 Under-
standably, the quantum character of individual electrons has
been explored to pursue applications such as cavity-induced
quantum entanglement,108,178 qubit encoding,109 and single-
photon generation.118

Now, a recurrent question arises,29,115,155,179−184 can the
excitation efficiency be modulated by shaping the electron
wave function? For single monoenergetic electrons, non-
retarded theory was used to show that the excitation
probability reduces to that produced by a classical point
charge, averaged over the intensity of the transverse beam
profile.179 This result was later generalized to include
retardation,29 and the predicted lack of dependence on
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transverse electron wave function was experimentally corrobo-
rated for Smith-Purcell radiation emission.180 Some depend-
ence can however be observed in EELS by collecting scattered
electrons only within a partial angular range, as neatly
demonstrated by Ritchie and Howie179 in the nonretarded
limit. This result was later generalized to include retardation.29

Specifically, for transmission along the center of the Fourier
plane in an electron microscope, wave function shaping was
experimentally demonstrated to actively select plasmon losses
of dipolar or quadrupolar symmetry in metallic nanowires.155

The dependence on the longitudinal wave function is not as
clear, and for example, a recent report182 based on a
semiclassical description of the electric field generated by
free electrons claims that the probability of exciting a sample
initially prepared in the ground state could be enhanced for an
individual electron distributed along a periodic density profile.
However, this conclusion is inconsistent with a fully quantum-
mechanical treatment of the electron−sample system (see
detailed analysis below). Importantly, the same study claims
that N electrons arriving at random times produce an overall
probability ∝N2 when they are previously PINEM-modulated
by the same laser, an effect that is indeed supported by a
quantum description of the electrons, as we show below. In
addition, a wave function dependence should be observed for
interaction with samples prepared in a coherent superposition
of ground and excited states that is phase-locked with respect
to the electron wave function, as experimentally illustrated in
double-PINEM experiments98 (see below). While PINEM
commonly relies on bosonic sample modes, an extension of
this effect to two-level systems has also been discussed in
recent theoretical works.178,181

In this section, we elucidate the role of the electron wave
function in the excitation of sample modes for any type of
interactions with matter, photons, and polaritons. We derive
analytical expressions from first-principles for the excitation
probability produced by single and multiple electrons with
arbitrarily shaped wave functions, based on which we conclude
that the excitation by single electrons with the specimen
prepared in any stationary state (e.g., the ground state) can be
described fully classically with the electron treated as a point
particle, regardless of its wave function, apart from a trivial
average over the transverse beam profile. In contrast, multiple
electrons give rise to correlations between their respective
wave functions, which enter through the electron probability
densities, whereas phase information is completely erased.
More precisely, the few-electron case (see analysis for two
electrons below) reveals a clear departure from the classical
point-particle picture, while in the limit of many electrons N, a
classical description prevails, leading to an excitation
probability ∝N2 if they are bunched with a small temporal
width relative to the optical period of the sampled excitation185

or if their probability density is optically modulated with a
common coherent light field.126,182,185−188 Crucially, these
results follow from the nonrecoil approximation (i.e., the fact
that the electron velocity can be considered to be constant
during the interaction), which accurately applies under
common conditions in electron microscopy (small beam-
energy spread and low excitation energies compared with the
average electron energy). Our hope is that the present
discussion clarifies current misunderstandings on the role of
the electron wave function in inelastic scattering and provides
simple intuitive rules to tackle configurations of practical
interest.

Lack of Wave-Function Dependence for a Single
Electron. We first consider a free electron propagating in
vacuum and interacting with arbitrarily shaped material
structures. Without loss of generality, the wave function of
this combined electron−sample system can be decomposed as

∑ψ α| ⟩ = | ⟩ε ω− +t t nq( ) ( )e
n

n
t

q
q

i( )nq

(18)

using a complete basis set of combined material (and possibly
radiation) states |n⟩ of energy ℏωn and electron plane-wave
states |q⟩ of well-defined momentum ℏq and energy ℏεq. The
elements of this basis set are eigenstates of the noninteracting

Hamiltonian ̂
0, so they satisfy ε ω̂ | ⟩ = ℏ + | ⟩n nq q( )nq0 .

This description is valid as long as no bound states of the
electrons are involved. Under common conditions in electron
microscopes, the states |n⟩ describe excitations in the sample,
including the emission of photons, but also undesired
excitations in other parts of the microscope (e.g., phonons in
the electron source). For simplicity, we assume the electron to
be prepared in a pure state α∑ | ⟩qq q

0 and the sample in a

stationary state n = 0 prior to interaction (i.e., αqn(−∞) =
δn0αq

0, subject to the normalization condition α∑ | | = 1q q
0 2 ), in

the understanding that the mentioned undesired excitations
can later be accounted for by tracing over different incoherent
realizations of the electron wave function in the beam.
By inserting eq 18 into the Schrödinger equation

ψ ψ̂ + ̂ | ⟩ = ℏ∂ | ⟩( ) i t0 1 , where the Hamiltonian ̂
1 de-

scribes electron−sample interactions, we find the equation of
motion

∑α αℏ ̇ = ⟨ | ̂ | ′ ′⟩ε ε ω ω

′ ′

− + −
′ ′

′ ′ n nq qi en
n

t
nq

q
q

i( )
1

n nq q

for the expansion coefficients αqn. Now, the results presented
in this section are a consequence of the following two
assumptions, which are well justified for typical excitations
probed in electron microscopy:29

(i) Weak Coupling. The electron interaction with the
sample is sufficiently weak as to neglect higher-order
corrections to the excitation probability beyond the first
order. This allows us to rewrite the equation of motion for

n ≠ 0 as α αℏ ̇ = ∑ ⟨ | ̂ | ′ ⟩ε ε ω
′

− +
′

′ nq qi e 0n
t

q q q
i( )

1
0nq q 0 (with ωn0 =

ωn − ω0), which can be integrated in time to yield the solution

∑α π δ ε ε ω α∞ = −
ℏ

− + ⟨ | ̂ | ′ ⟩
′

′ ′nq q( )
2 i

( ) 0n nq
q

q q q0 1
0

(19)

for the wave function coefficients after interaction. We remark
that n = 0 can be the ground state or any excited state in the
present derivation, as long as it is stationary.

(ii) Nonrecoil Paraxial Approximation. Electron beams
feature a small divergence angle (∼ a few mrad) and low
energy spread compared with the mean electron energy (i.e.,
αqn is negligible unless |q − q0| ≪ q0, where ℏq0 is the central
electron momentum). Additionally, we assume that the
interaction with the sample produces wave vector components
also satisfying |q − q0| ≪ q0. This allows us to write the
electron frequency difference as

ε ε− ≈ · − ′′ v q q( )q q (20)
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indicating that only momentum transfers parallel to the beam
contribute to transfer energy to the sample.29 The nonrecoil
approximation is generally applicable in the context of electron
microscopy, unless the excitation energy is a sizable fraction of
the electron kinetic energy.119,189

Putting these elements together and using the real-space
representation of the electron states ⟨r|q⟩ = V−1/2eiq·r with
quantization volume V in eq 19, we find that the probability
that a single beam electron excites a sample mode n, expressed
through the trace of scattered electron degrees of freedom

αΓ = ∑ | ∞ |( )n nq q
0 2, reduces to (see Methods)

∫ ψ βΓ = ̃r r Rd ( ) ( )n n
0 3 0 2 2

(21)

where

∫ψ
π

α= ·Vr
q

( )
d

(2 )
eq

q r0 1/2
3

3
0 i

(22)

is the incident electron wave function,

∫β
υ

̃ =
ℏ

⟨ | ̂ | ⟩ω υ

−∞

∞
−z nR r( )

1
d e 0 ( )n

zi /
1

n0

(23)

is an electron−sample coupling coefficient that depends on the
transverse coordinates R = (x, y), and we choose the beam
direction along z.̂ We note that this definition of β̃n coincides

with previous studies in which ̂
1 describes electron-light

PINEM interaction and n refers to optical modes.111,115 Also,
the PINEM coupling coefficient in eq 12 is obtained from eq
23 by multiplying it by the laser-driven amplitude associated
with mode n and summing over n.
We observe from eq 21 that the excitation probability does

not depend on the electron wave function profile along the
beam direction z,̂ because this enters just through an integral of
the electron density along that direction. Additionally, the
dependence on transverse directions R consists of a weighted
average of the probability |β̃n(R)|

2 over the transverse profile of
the beam intensity.
Wave-Function Dependence in the Correlation

among Multiple Electrons. The above analysis can readily
be extended to a beam bunch consisting of N distinguishable
electrons with incident wave functions ψ j(r) labeled by j = 0,
..., N − 1. The probability of exciting a sample mode n then
reduces to (see detailed derivation in Methods)

∫∑ ∑ψ βΓ = ̃ +
≠ ′

′*Q Qr r Rd ( ) ( )n
j

j
n

j j
n
j

n
jtotal 3 2 2

(24)

where

∫ β= ̃Q MR R Rd ( ) ( )n
j

n
j

n
2

(25)

and

∫ ψ= ω υ

−∞

∞
M zR r( ) d e ( )n

j z ji / 2
n0

(26)

The first term in eq 24 corresponds to the sum of uncorrelated
excitation probabilities produced by N independent electrons,
each of them expressed as a weighted average over the
transverse electron density profile, just like for a single electron
in eq 21. The second term accounts for two-electron
correlations, in which the phase of the electron wave functions
is also erased, but there is however a dependence on the
electron probability densities through their Fourier transforms

in eq 26. Interestingly, the factor |Mn
j(R)|2 is in agreement with

the result obtained for excitation with a classical charge
distribution having the same profile as the electron probability
density, which is well studied in the context of beam
physics.126,186 Also, this factor has recently been identified as
a measure of the degree of coherence of the electron in its
interaction with mutually phase-locked external light.183,184

Obviously, |Mn
j (R) |2 is bound by the inequality

∫ ≤MR Rd ( ) 1n
j2 , with the equal sign standing for any

value of the excitation frequency ωn0 in the limit of point-
particle electrons (i.e., |ψ j(r)|2 = δ(r − rj)), and also for a fixed
ωn0 and its multiples if the electron probability density is
periodically modulated as

i
k
jjjjj

y
{
zzzzz∑ψ ψ δ π υ

ω
= − −⊥ b z z

s
r R( ) ( )

2j j

s
j s

n

2 2
, 0

0 (27)

with arbitrary coefficients bj,s (i.e., a train of temporally
compressed pulses separated by a spatial period υ/ωn0).
Periodically modulated electrons with a limited degree of
compression are currently feasible through strong PINEM
interaction followed by free-space propagation.
In the derivation of these results, we have assumed electrons

prepared in pure states (i.e., with well-defined wave functions).
The extension to mixed electron states requires dealing with
the joint electrons-sample density matrix elements
ρ{q}n,{q′}n′ (t) and calculating Γn

total = ρ∑ ∞{ } { } { } ( )n nq q q, .

Starting with ρ −∞{ } { ′} ′ ( )n nq q, = δ δ ρΠ′ ′n n j
j

q q0 0
j j
, where ρ ′

j
q qj j

are the matrix elements of electron j before interaction, and

solving ρℏ ̂d dti ( / ) = ρ[ ̂ ]̂, to the lowest order contribution,
we find exactly the same expressions as above, but replacing

ψ r( )j 2
b y t h e p r ob ab i l i t y d e n s i t i e s ρ⟨ | ̂ | ⟩r rj =

ρ∑ ′ ′
− ′ ·V(1/ ) ej

qq qq
q q ri( ) , based on which we can deal with

electrons that have experienced decoherence before reaching
the sample region.
An important point to consider is that bunched electrons are

affected by Coulomb repulsion, which can increase the beam
energy width and introduce undesired lateral deflections. For
example, two 100 keV electrons traversing a sample interaction
region of length L ∼ 10 μm with a relative longitudinal
(transverse) separation distance of 1 μm undergo a change in
their energy (lateral deflection angle) of 14 meV (0.1 μrad).
These values are still tolerable when probing visible and near-
infrared optical excitations, but they increase linearly with L,
becoming a limiting factor for propagation along the
macroscopic beam column. We therefore anticipate that a
strategy is needed to avoid them, such as introducing a large
beam convergence angle (i.e., large electron−electron dis-
tances except near the sampled region) or separating them by
multiples of the optical period associated with the sampled
excitation (e.g., 4.1 fs for 1 eV modes, corresponding to a
longitudinal electron peak separation of 680 nm at 100 keV).

Bunched and Dilute Electron-Beam Limits. We first
consider N electrons sharing the same form of the wave
function, but separated by their arrival times tj = zj/υ at the
region of interaction with the sample (also, see below an
analysis of PINEM-modulated electrons, which belong to a
different category), so we can write the incident wave functions
as ψ j(R, z) = ψ0(R, z − zj), where ψ

0 is given by eq 22. Then,
eq 24 for the total excitation probability of mode n reduces to
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∑Γ = Γ + ω υ

≠ ′

−′N Q en n n
j j

z ztotal 0 0 2 i ( )/n j j0

(28)

with ∫ ψ β= | | ̃ω υQ r r Rd e ( ) ( )n
z

n
0 3 i / 0 2n0 and Γn

0 given by eq 21.
In addition, if the wave function displacements of all electrons
satisfy |zj − zj′| ≪ υ/ωn0, neglecting linear terms in N, the sum
in eq 28 becomes ≈N2|Qn

0|2, which can reach high values for
large N, an effect known as superradiance when n represents a
radiative mode. We note that this effect does not require
electrons confined within a small distance compared with the
excitation length υ/ωn0: superradiance is thus predicted to also
take place for extended electron wave functions, provided all
electrons share the same probability density, apart from some
small longitudinal displacements compared with υ/ωn0 (or also
displacements by multiples of υ/ωn0, see below); however, the
magnitude of Qn

0 will obviously decrease when each electron
extends over several υ/ωn0 spatial periods. Of course, if the
electron density is further confined within a small region
compared with υ/ωn0 (or if it consists of a comb-like profile as
given, for example, by eq 27), we readily find Γn

total ≈ N2Γn
0.

Superradiance has been experimentally observed for bunched
electrons over a wide range of frequencies185,187 and
constitutes the basis for free-electron lasers.190−192

In the opposite limit of randomly arriving electrons (i.e., a
dilute beam), with the displacements zj spanning a large spatial
interval compared with υ/ωn0 (even under perfect lateral
alignment conditions), the sum in eq 28 averages out, so we
obtain Γn

total = NΓn
0, and therefore, correlation effects are

washed out.
Superradiance with PINEM-Modulated Electrons.

When N electrons are modulated through PINEM interaction
using the same laser (and neglecting A2 corrections), their
probability densities take the form

ψ ψ β ω= zr r( ) ( ) ( , , )j
i
j

d
2 2 2

where the modulation factor β ω z( , , )d , defined in eq 15, is
shared among all of them and the PINEM coupling coefficient
β is taken to be independent of lateral position. Assuming well
collimated e-beams, we consider the incident wave functions to
be separated as ψi

j(r) = ψ⊥(R)ψi,∥
j(z) (i.e., sharing a common

transverse component ψ⊥(R) that is normalized as
∫ d2R |ψ⊥(R)|

2 = 1). Inserting these expressions into eqs
24−26, we find

∑Γ = Γ +
≠ ′

′*N Q M Mn n n
j j

n
j

n
jtotal 0 2

with

∫ ψ β ω= ω υ

−∞

∞
M z z zd e ( ) ( , , )n

j z j
d

i / 2
n0

where

∫
∫

ψ β

ψ β

Γ = ̃

= ̃

⊥

⊥Q

R R R

R R R

d ( ) ( ) ,

d ( ) ( )

n n

n n

0 2 2 2

2 2

are transverse averages of the electron−sample coupling
coefficient β̃n. In general, the envelopes |ψ∥

j(z)|2 of the
incident electrons are smooth functions that extend over
many optical periods (i.e., a large length L compared with υ/
ωn0) and varies negligibly over each of them, so we can
approximate

∫ β ω≈ ≡ ω υ

→∞ −
M M

L
z zlim

1
d e ( , , )n

j
n

L L

L
z

d
/2

/2
i / 2n0

In this limit, Mn is independent of the electron wave functions
and arrival times, so it vanishes unless the sampled frequency
ωn0 is a multiple of the PINEM laser frequency ω. In particular,
for ωn0 = mω, where m is an integer, using eq 15, we find

Figure 5. Interference in single- and double-electron interactions with a localized excitation. (a) Sketch of an electron wavepacket interacting with a
nanoparticle (top) and typical EELS spectrum (bottom) dominated by one resonance of frequency ωn0 and polarization p normal to the electron
velocity v. (b) Interaction with two electron wavepackets separated by a longitudinal distance a. If the wavepackets are part of a single-electron
wave function, the EELS probability is independent of a (one-electron solid curve). With two electrons, each of them in a different wavepacket, the
EELS intensity per electron oscillates with ωn0a/υ and presents a maximum at a = 0 (two-electron solid curve). For two electrons with their wave
functions equally shared among the two wavepackets, the oscillations with a exhibit less profound minima (two-electron dashed curve). (c)
Interaction with two electron wavepackets in symmetrically arranged beams. We find similar results as in (b), but now the two-electron probability
displays a minimum at a = 0. We consider wavepackets of width Δ defined by ωn0Δ/υ = 0.5 (see Methods). The EELS intensity is normalized to
the result for uncorrelated electrons.
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where the second line is in agreement with ref 178 and directly
follows from the first one by applying Graf’s addition theorem
(eq (9.1.79) in ref 160). The total excitation probability then
becomes

Γ = Γ + − | |N N N Q M( 1)n n n n
total 0 2

(30)

which contains an N2 term (i.e., superradiance). For tightly
focused electrons, such that |ψ⊥(R)|

2 ≈ δ(R − R0), we have
|Qn|

2 ≈ Γn
0, and consequently, eq 30 reduces to Γn

total = Γn
0[N +

N(N − 1)|Mn|
2]. This effect was predicted by Gover and

Yariv182 by describing the electrons through their probability
densities, treated as classical external charge distributions, and
calculating the accumulated excitation effect, which is indeed
independent of the arrival times of the electrons, provided they
are contained within a small interval compared with the
lifetime of the sampled mode n. Analogous cooperative
multiple-electron effects were studied in the context of the
Schwartz-Hora effect187 by Favro et al.,188 who pointed out
that a modulated “beam of electrons acts as a carrier of the
frequency and phase information on the modulator and is able
to probe the target with a resolution which is determined by
the modulator”. The obtained N2 term thus provides a
potential way of enhancing the excitation probability to probe
modes with weak coupling to the electron. Incidentally, by
numerially evaluating eq 29, PINEM modulation using
monochromatic light can be shown to yield184 |Mn|

2 ≤ 34%,
so additional work is needed in order to push this value closer
to the maximum limit of 100%, obtained for δ-function pulse
trains.
Interaction with Localized Excitations. For illustration

purposes, we consider a laterally focused Gaussian electron
wavepacket with probability density

ψ δ π| | ≈ − Δ− Δr R b( ) ( )e /( )z0 2 /2 2

interacting with a localized excitation of frequency ωn0 and
transition dipole p oriented as shown in Figure 5a. The EELS
probability is then described by a coupling coefficient that
depends on p and the direction of R as111 β̃0(R) ∝ p·R̂. Using
these expressions for a single electron arranged in the two-
wavepacket configurations of Figure 5b,c, we find from eq 21
an excitation probability Γn

0 = |β̃n(b)|
2 ∝ |p|2 that is

independent of the longitudinal (i.e., along the beam direction)
wavepacket separation a. In contrast, for two electrons with
each of them in a different wavepacket, we find from eqs
24−26

φ
Γ
Γ

= ± S
2

1 cos( )n

n

total

0
(31)

where φ = ωn0a/υ, S = e−ωn0
2 Δ2/2υ2, and the + and − signs apply

to the configurations of Figure 5b and c, respectively (see
Methods). Interestingly, for two electrons with their wave
functions equally shared among the two wavepackets, we also
observe oscillations with a as

φ
Γ
Γ

= + S
2

1 cos ( /2)n

n

total

0
2

(32)

in the a ≫ Δ limit for the configuration of Figure 5b (and the
same expression with cos replaced by sin for Figure 5c), which
corresponds to the situation considered in eq 28 for zj
independent of j and two electrons sharing the same wave
function. In general, for N laterally focused electrons (i.e., a
generalization of Figure 5b), each of them having a wave
function that is periodically distributed among L wavepackets
with separation a, we have

φ
φ

Γ
Γ

= + −
N

N
L

S
L

1
1 sin ( /2)

sin ( /2)
n

n

total

0 2

2

2
(33)

(see Methods), which presents a maximum excitation
probability Γn

total = N[1 + (N − 1)S]Γn
0 (for φ → 0 or a

multiple of 2π) independent of the number of periods L.
Interference in the Emission of Photons and Polar-

itons. When the sample possesses lateral translational
invariance, like in Figure 6, the excited modes possess well-

defined in-plane wave vectors kn∥, so the coupling coefficients
exhibit a simple spatial dependence, β̃n(R) ∝ β̃n(0)e

ikn∥·R.
Proceeding in a similar way as above for Gaussian wavepackets,
we find no dependence on the wave function for single
electrons, whereas for two electrons, we obtain the same results
as in eqs 31 and 32, with φ redefined as ωn0a/υ − kn·b. The

Figure 6. Interference in the interaction with delocalized modes. For
the two-wavepacket beam configuration of Figure 5c and a sample
that has lateral translational invariance, a single electron of split wave
function emits in-plane polaritons and transition radiation with an
intensity that is insensitive to the longitudinal and lateral wavepacket
separations a and b. This is in contrast to the emission intensity
observed when each wavepacket is populated by one electron (two-
electron solid curve) or when considering two electrons with each of
them equally shared among the two wavepackets (two-electron
dashed curve). We adopt the same beam parameters as in Figure 5
(see also Methods).
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emission probability thus oscillates with both longitudinal and
lateral wavepacket displacements, a and b, respectively, as
illustrated in Figure 6.
Incidentally, if the e-beam is laterally focused within a small

region compared to 2π/kn∥, polaritons emitted to the left and
to the right can interfere in the far field (i.e., the final state n is
then comprising the detection system through which
interference is measured by introducing an optical delay
between the two directions of emission), while the interference
is simply washed out as a result of lateral intensity averaging
over the transverse beam profile if this extends over several
polariton periods. This argument can be equivalently
formulated in terms of the recoil produced on the electron
due to lateral momentum transfer and the respective loss or
preservation of which way information in those two scenarios,
depending on whether such transfer is larger or smaller than
the momentum spread of the incident electron.194

Are Free Electrons Quantum or Classical Probes?
When examining a sample excitation of frequency ωn0 within a
classical treatment of the electron as a point charge, the
external source can be assimilated to a line charge with an
eiωn0z/υ phase profile. The excitation strength by such a classical
charge distribution coincides with |β̃n(R)|

2 (see eq 23), where
R gives the transverse position of the line. Actually, summing
over all final states to calculate the EELS probability

β δ ω ω∑ | ̃| −( )n n n
2

0 , we obtain a compact expression in terms
of the electromagnetic Green tensor of the sample140 (eq 4, see
detailed derivation in Methods), which is widely used in
practical simulations.29 Extrapolating this classical picture to
the configuration of Figure 6, we consider two point electrons
with lateral and longitudinal relative displacements, which
directly yield an emission probability as described by eq 31.
However, the classical picture breaks down for electrons whose
wave functions are separated into several wavepackets: for
single electrons, no classical interference between the emission
from different wavepackets is observed, as the excitation
probability reduces to a simple average of the line charge
classical model over the transvese beam profile; likewise, for
multiple electrons the excitation probability depends on the
electron wave function in a way that cannot be directly
anticipated from the classical picture (cf. solid and dashed
curves in Figures 5 and 6). The effect is also dramatic if the
incident electrons are prepared in mutually entangled states, as
discussed in a recent study,193 while entangled electrons have
also been proposed as a way to reduce beam damage in
transmission electron microscopy.195

The classical model provides an intuitive picture of
interference in the CL emission from structured samples,
such as in Smith-Purcell radiation196 from periodic,197,198

quasiperiodic,199 and focusing200 gratings. In our formalism,
the coherent properties of the emitted radiation are captured
by the z integral in eq 23, where the matrix element of the
interaction Hamiltonian reduces to the electric field associated
with the excited mode.111 In CL, the excited state n refers to a
click in a photon detector, and therefore, the sample must be
understood as a complex system composed of the structure
probed in the microscope, the optical setup, and the detector
itself.
We remark that our results hold general applicability to any

type of interaction Hamiltonian whose matrix elements

⟨ | ̂ | ⟩n r( ) 01 are just a function of electron position r (see eq
23). This includes arbitrarily complex materials and their

excitations, as well as the coupling to any external field. In
particular, when describing the interaction with quantum
electromagnetic fields through a linearized minimal-coupling

Hamiltonian ̂ ∝ ̂r A r( ) ( )1 , where Â(r) is the vector potential
operator, the present formalism leads to the well-known EELS
expression in eq 4 (see derivation in Methods), which does
account for coupling to radiation, and in particular, it can
readily be used to explain the Smith-Purcell effect in
nonabsorbing gratings29 (i.e., when ΓCL = ΓEELS). This
corroborates the generality of the present procedure based
on treating the sample (i.e., the universe excluding the e-beam)
as a closed system, so its excitations are eigenstates of infinite
lifetime. In a more traditional treatment of the sample as an
open system, our results can directly be applied to excitations
of long lifetime compared with the electron pulse durations.
Additionally, coupling to continua of external modes can be
incorporated through the Fano formalism201 to produce, for
example, spectral CL emission profiles from the probabilities
obtained for the excitation of confined electronic systems (e.g.,
plasmonic nanoparticles).
We hope that this discussion provides some intuitive

understanding on the role of the wave function in e-beam
inelastic scattering, summarized in the statement that the
excitation process by an individual swift electron (in EELS and
CL) can be rigorously described by adopting the classical
point-particle model, unless recoil becomes important (e.g., for
low-energy electrons or high-energy excitations). In contrast,
the excitation by multiple electrons is affected by their
quantum mechanical nature and depends on how their
combined wave function is initially prepared. The predicted
effects could be experimentally corroborated using few-
electron pulses produced, for instance, by shaped laser pulses
acting on photocathodes or via multiple ionization from
ultracold atoms or molecules.202 Besides its fundamental
interest, the dependence of the excitation probability on the
wave function for multiple electrons opens the possibility of
realizing electron−electron pump−probe imaging with an
ultimate time resolution that is fundamentally limited by
approximately half of the electron period π/υq0 (e.g., ∼10−20 s
for 100 keV electrons).

■ OUTLOOK AND PERSPECTIVES

We conclude this Perspective with a succinct discussion of
several promising directions for future research at the
intersection of electron microscopy and photonics. The
following is not an exhaustive list, but we hope that the reader
can find in it some of the elements that are triggering a high
degree of excitement in the nascent community gathered
around this expanding field, including the promise for radical
improvements in our way to visualize optical excitations with
unprecedented space−time−energy resolution, as well as the
opening of new directions in the study of fundamental
phenomena.

Toward Combined Sub-Å−Attosecond−Sub-meV
Resolution. PINEM-based UTEM is already in place to
simultaneously combine nm−fs−sub-eV resolution inherited
from focused e-beams, ultrafast optics, and EELS detection
(see Figure 4 and references therein). The implementation of
this technique in state-of-the-art aberration-corrected micro-
scopes could push it further to the sub-Å range, which,
combined with fine-tuning of the laser frequency, could lead to
simultaneous sub-meV resolution via EEGS.85,206 Temporal
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resolution is then limited by the uncertainty principle σEσt ≥
ℏ/2∼ 300 meV × fs, relating the standard deviations of the
electron pulse energy spread and time duration (σE and σt,
respectively) if the probe that is used to provide temporal
resolution (i.e., the compressed electron) is also energy-
analyzed to resolve the excitation frequency through EELS.
However, this limitation can be overcome if two different
particles are employed to provide energy and time resolutions,
respectively (i.e., the uncertainty principle affects each of them
individually, but not their crossed uncertainties). This
possibility could be realized, for instance, by using single
attosecond electron pulses to achieve time resolution with
respect to a phased-locked optical pump, in combination with
detection of the CL signal produced by the electron, as
indicated by the red colored CL blob in Figure 1a; sub-meV
spectral resolution could then be gained through optical
spectroscopy (see Figure 7a). Besides the technical challenge
of combining fs-laser and attosecond-electron pulses,92

detection of CL emission can be difficult because it may be
masked by light scattered from the laser, so it needs to be
contrasted with the optical signal observed in separate
measurements using only electrons or laser irradiation, or

alternatively, laser scattering could be interferometrically
removed at the light spectrometer.

Noninvasive Imaging: Interferometric and Quantum
Electron Microscopies. Sample damage is a major source of
concern in electron microscopy, particularly when investigating
soft and biological materials. Besides cooling the sample to
make it more resistant (cryogenic electron microscopy207),
various strategies can be followed to combat this problem,
essentially consisting in enhancing the signal contrast produced
by the specimen with a minimum interaction with the
electrons. This is the principle underlying the proposed
quantum electron microscope203 (see Figure 7c), inspired in
a previously explored form of interaction-free optical
microscopy,208 and consisting in initially placing the electron
in a cyclic free path (upper potential well) that has a small
probability amplitude T of transferring into a second cyclic
path (lower potential well) during a cycle time period τc. The
second path is taken to intersect the sample, and therefore, the
quantum Zeno effect resolves the question whether a given
pixel contains material or is instead empty: when the lower
path passes through a filled sample pixel, the electron wave
function collapses, so the overall transfer into this path after a

Figure 7. Future directions in photonics with electron beams. (a) Combination of a fs laser pump synchronized with an attosecond electron pulse
and detection of CL as an approach toward sub-Å−attosecond−sub-meV resolution. (b) Interferometric detection of a small sample object through
electron energy-gain spectroscopy (EEGS) measurements yielding the PINEM coupling coefficient |βref + βsample|2 ≈ |βref|2 + 2Re{βref* βsample}, where
the sample signal βsample (≪1) enters linearly and is amplified by an order-unity reference βref. Alternatively, a similar scheme can be followed with
the CL far-field intensity ICL = |fref + fsample|2 ≈ |fref|2 + 2Re{fref* · fsample}. (c) Quantum electron microscopy for interaction-free imaging based on the
quantum Zeno effect, whereby the presence of an object produces unity-order effects in the electron signal without the electron ever intersecting
the sample materials. Adapted with permission from ref 203. Copyright 2009 American Physical Society. (d) Electron temporal compression after
propagating a distance z beyond the region of PINEM interaction (at time tp) using classical and quantum light; the contour plots show the
electron probability density as a function of propagation-distance-shifted time τ = t − tp − z/υ. Adapted with permission from ref 115. Copyright
2020 Optical Society of America. (e) Sampling the nonlinear response of materials with nanoscale precision through the observation of harmonic-
assisted asymmetry in the PINEM spectra. Adapted with permission from ref 204. Copyright 2020 American Chemical Society. (f) Electron-beam-
induced nonlinearities in small nanostructures, whereby low-energy electrons act equivalently to a high-fluence light pulse (left, for 25 eV electrons)
and modify the EELS or CL spectra relative to the linear-interaction limit (right). Adapted with permission from ref 205. Copyright 2020 American
Chemical Society.
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time Nτc (i.e., after N roundtrips) reduces to ∼N|T|2; in
contrast, when the lower path passes through an empty sample
pixel, the accumulated transfer of probability amplitude
becomes ∼NT, and the transferred probability is instead
∼|NT|2. Consequently, for large N and small |T|, such that
|NT|2 ∼ 1, detection of the electron in the upper path indicates
that a filled pixel is being sampled, involving just a marginal
probability ∼ N|T|2 of electron-sample collision; on the
contrary, an empty sample pixel is revealed by a depletion
∼|NT|2 in the electron probability associated with the upper
path, equally avoiding sample damage because there is no
material to collide. An international consortium is currently
undertaking the practical implementation of this challenging
and appealing form of microscopy.209 An extension of this idea
to incorporate the detection of sample optical excitations and
their spectral shapes would be also desirable in order to
retrieve valuable information for photonics.
Interferometry in the CL signal offers a practical approach to

study the response of small scatterers by using the electron as a
localized light source that is positioned with nanometer
precision in the neighborhood of the object under study.57,68

In a related development, CL light produced by an engineered
metamaterial reference structure has been postulated as a
source of ultrafast focused light pulses that could be eventually
combined with the exciting electron in a pump−probe
configuration.210,211 These studies inspire an alternative way
of reducing sample damage (Figure 7b, CL emission), also in
analogy to infrared SNOM:7 by making the electron to traverse
a reference structure (e.g., a thin film), followed by interaction
with the sample, the CL far-field amplitudes fref and fsample
produced by these events are coherently superimposed (i.e.,
both of them maintain phase coherence, just like the emission
emanating from the different grooves of a grating in the Smith-
Purcell effect196), giving rise to a CL intensity ICL = |fref +
fsample|

2 ≈ |fref|
2 + 2Re{fref* ·fsample}, where the sample signal in the

second term is amplified by a stronger reference signal (i.e., we
take |fref| ≫ |fsample|) that can be calibrated a priori. This
strategy can provide a large sample signal compared with direct
(unreferenced) CL detection (i.e., |2Re{f*ref·fsample}| ≫
|fsample|

2), and thus, the electron dose needed to collect a
given amount of information is reduced, or alternatively, there
is some flexibility to aim the e-beam a bit further apart from
the specimen to reduce damage.
In the context of UTEM, the demonstration of coherent

double-PINEM interactions98 opens a similar interferometric
avenue to reduce sample damage by associating them with
reference and sample structures (Figure 7b). The PINEM
spectrum responds to the overall coupling strength |βref +
βsample|

2 (see the discussion on the addition property of
β ω z( , , )0 after eq 11), which contains an interference term

2Re{βref* βsample} that can again amplify a weak PINEM signal
from an illuminated sample by mixing it with a strong
reference. This effect has also been studied in connection with
the interaction between a free electron and a two-level
atom,178,181,212 where the inelastic electron signal is found to
contain a component that scales linearly with the electron-
atom coupling coefficient if the electron wave function is
modulated and the atom is prepared in a coherent super-
position of ground and excited states that is phase-locked with
respect to the electron modulation (in contrast to a quadratic
dependence on the coupling coefficient if the atom is prepared
in the ground state). We remark the necessity of precise timing
(i.e., small uncertainty compared with the optical period of the

excitation) between the electron modulation and the
amplitudes of ground and excited states in the two-level
system. This condition could be met in the double-PINEM
configuration, giving rise to an increase in sensing capabilities,
so that a smaller number of beam electrons would be needed
to characterize a given object (e.g., a fragile biomolecule).
It should be noted that, despite their appeal from a

conceptual viewpoint, individual two-level Fermionic systems
present a practical challenge because the transition strength of
these types of samples is typically small (e.g., they generally
contribute with ≲1 electrons to the transition strength, as
quantified through the f-sum rule213,214), and in addition,
coupling to free electrons cannot be amplified through PINEM
interaction beyond the level of one excitation, in contrast to
bosonic systems (e.g., linearly responding plasmonic and
photonic cavities, which can be multiply populated). Never-
theless, there is strong interest in pushing e-beam spectros-
copies to the single-molecule level, as recently realized by using
high-resolution EELS for mid-infrared atomic vibra-
tions22,36,37,215 (see Figure 2d), which are bosonic in nature
and give rise to measurable spectral features facilitated by the
increase in excitation strength with decreasing frequency.
However, e-beam-based measurement of valence electronic
excitations in individual molecules, which generally belong to
the two-level category, remains unattained with atomic-scale
spatial resolution. In this respect, enhancement of the
molecular signal by coupling to a nanoparticle plasmon has
been proposed to detect the resulting hybrid optical modes
with the e-beam positioned at a large distance from the
molecule to avoid damage.216 The interferometric double-
PINEM approach could provide another practical route to
addressing this challenge. The N2 excitation predicted for
PINEM-modulated electrons182 (see eq 30) is also promising
as a way to amplify specific probed excitation energies while
still maintaining a low level of damage ∝N.
Interferometric CL and PINEM approaches should enable

the determination of the phase associated with the emitted and
induced optical near-fields, respectively. In CL, this could be
achieved without modifying the e-beam components of the
microscope by introducing a tunable optical delay line in the
light component emanating from the reference structure before
mixing it with the sample component. In PINEM, the delay
line could be incorporated in the laser field illuminating the
reference structure. The quantities to be determined are the
complex scattering amplitude (CL) and the near field
(PINEM), which are actually two sides of the same coin,
related through eq 17. If the reference signal is well
characterized and in good correspondence with theory (e.g.,
transition radiation from a thin film217), this procedure should
enable the determination of the frequency-dependent optical
phase. In addition, self-interference of the CL signal (e.g., by
mixing different emission directions through a biprism) could
provide a simple method to measure the angular dependence
of the far-field complex amplitude, while the interferometric
detection discussed above can supply the missing information
from the spectral dependence of the phase.

Interference between E-Beam and External Light
Excitations. Recent reports183,184 have revealed that CL
emission can interfere with external light that is synchronized
with the electron wave function. This effect has been found to
be controlled by the same coherence factors Mn

j that intervene
in the interference among different beamed electrons (eq 26).
An extension of those results to general excitations in the
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specimen can be obtained by following the procedure used in
the derivation of eq 21, but including the interaction with a
weak (i.e., acting linearly) classical field (e.g., laser light) of
finite temporal duration. The latter can be introduced through
an additional time-dependent interaction Hamiltonian

∫ ω
π

ω̂ = ̂ ω−t( )
d
2

( )e t
2 2

i

This expression automatically implies synchronization of the
classical field and the beam electrons by selecting a common
time origin. Expanding the wave function of the system as in eq
18, we find the post-interaction coefficients given by eq 19, but
now supplemented by an additional term (−i/ℏ)

ω α⟨ | ̂ | ⟩n ( ) 0n q2 0
0. From here, proceeding in a way analogous

to the derivation of eq 21 in the Methods section, the
excitation probability of a mode n is found to be
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field
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is an excitation amplitude associated with the external classical
field, whereas Qn

0 is defined in eq 25. Finally, following the
same approach as in the derivation of eqs 24−26 in Methods,
we find an extension of this result to e-beams consisting of
multiple distinguishable electrons:
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where j and j′ are electron labels. We thus confirm that the
synchronized interactions between different electrons and light
with a sample are both governed by the coherence factors
defined in eqs 25 and 26. When the excitation mode
corresponds to an emitted photon, this equation produces
the angle- and frequency-dependent far-field photon proba-
bility
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which is derived in ref 184 from an alternative quantum
electrodynamics formalism and constitutes an extension of eq
7 to include the simultaneous interaction with multiple
electrons and an external light field. Here, the excitation
frequency is denoted ω = ωn0, the coherence factors are

renamed as M ω/υ
j (R) ≡ M n

j (R) (see eq 26), and the far-field
amplitude component f r∞̂

scat (ω) refers to the scattered laser
field arriving at the same photon detector as the CL emission,
either after scattering at the sample or directly from the
employed laser. We obtain eq 35 from eq 34 by multiplying by
δ(ω − ωn0), making the transformations

β π ω ω

β π ω ω

̃ → ℏ *

→ ℏ *

̂

̂

∞

∞

c

c

R f R

f

( ) /4 ( , )

/4 ( ),

n

n

r

r

2 CL

field 2 scat

and summing over modes n that contribute to the emission
direction ∞̂r . Obviously, in order to observe the interference
between CL and laser light, the latter has to be dimmed, so
that both of them have commensurate amplitudes, as
extensively discussed in ref 184. The coherence factor
M ω/υ

j (R) determines the ability of each electron j to interfere
with synchronized light. This factor is maximized

→ω υM R( ( ) 1)j
/ in the point-particle limit (see discussion

above). This analysis reveals that temporally compressed
electrons act as partially coherent, localized sources of
excitation (e.g., CL emission), tantamount to the external
light, but with the faculty of acting with sub-nm spatial
precision. Besides the prospects opened by these findings to
control nanoscale optical excitations, this approach offers an
alternative way of determining the absolute magnitude and
phase of f r∞̂

CL through the interference term in the above
equation.
Incidentally, we remark again that the above expressions are

directly applicable to electrons prepared in mixed states by

substituting ψ r( )j 2
by the electron probability density (see

above).
Manipulation of the Quantum Density Matrix

Associated with Sample Modes. In addition to the
aforementioned implementations of shaped electron beams
for microscopy and imaging, the modulated electron wave
function has been investigated as a means to manipulate the
quantum state of confined optical excitations. This is relevant
because of its potential to create states of light with nontrivial
statistics, enabling exciting applications in quantum comput-
ing,218 metrology,219 and information.220 An initially separable
joint electron−sample state is generally brought to a complex
entangled state after interaction, which upon partial tracing and
projection over the electron degrees of freedom, allows us to
modify the sample density matrix. Obviously, a wider range of
sample states could be accessed by controlling the incoming
electron density matrix, for example, through PINEM
interaction with nonclassical light115 (see below). For a
general initial electron−photon (e-p) density matrix ρe,p

i , the
joint final state after interaction can be written as

ρ ρ= ̂ ̂ †f i
e,p e,p in terms of the scattering operator ̂ . If the
electron is not measured, the resulting photonic density matrix
is obtained through the partial trace over electron degrees of
freedom, ρp

no‑meas = Tre{ρ e,p
f }. When the sample is initially

prepared in its ground state, the diagonal elements of ρp
no‑meas

define a Poissonian distribution, regardless of the incident
electron wave function,115 while off-diagonal terms exhibit a
pronounced dependence that can potentially be measured
through optical interferometry183 and direct mixing of CL and
laser light scattering.184 Incidentally, in the point-particle limit
for the electron, the interaction is equivalent to excitation of

ACS Photonics pubs.acs.org/journal/apchd5 Perspective

https://dx.doi.org/10.1021/acsphotonics.0c01950
ACS Photonics 2021, 8, 945−974

962

pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c01950?ref=pdf


the sample by a classical current, which is known to transform
an initial coherent state (e.g., the sample ground state) into
another classical coherent state221 (the excited sample). In
contrast, if the electron is measured (i.e., only instances of the
experiment with a given final electron state |q⟩ are selected),
the interaction-induced e-p entanglement leads to a wide set of
optical density matrices ρp

meas = Tre{|q⟩⟨q|ρ e,p
f } ≠ ρp

no‑meas that
can be postselected through the detection of a transmitted
electron with, for example, a specific wave vector q; obviously,
using more than one electron further increases the range of
possible outcomes. Single-photon generation triggered by
energy-momentum-resolved transfers from an electron to a
waveguide constitutes a trivial example of this strategy.118 This
approach has also been proposed to produce thermal,
displaced Fock, displaced squeezed, and coherent sample
states.222

Manipulation of the Electron Density Matrix. If no
measurement is performed on the sample, interaction with the
electron modifies the density matrix of the latter, which
becomes ρe

f = Trp{ρ e,p
f }. For example, after PINEM interaction

with laser light, we find (going to the Schrödinger picture)
ρe
f(r,r′,t) = ψ(r,t) ψ*(r′,t), where the wave function ψ(r,t) (eq

10) is controlled by a single coupling parameter β (eq 12).
Also, the tranformation of a general incident density matrix
ρi(r,r′,t) is mediated by the factors defined in eq 15 as
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More complex forms of ρ e
f are obtained when using

nonclassical light. In this respect, recent advances in quantum
light sources (e.g., squeezed light generation223) provide a
practical way to induce nonclassical sample states, which in
turn modulate the electron density matrix through PINEM-like
interaction.115 We illustrate this idea by showing in Figure 7d
the diagonal part of the density matrix (i.e., the electron
probability density) for both laser and nonclassical illumina-
tion. When the phase uncertainty in the light state is decreased
(phase-squeezed and minimum-phase-uncertainty224 optical
states), the electron density peaks are found to be more
compressed in time, and in addition, because of conservation
of the total probability, a complementary elongation takes
place along the propagation direction. In contrast, the opposite
trend is observed when using amplitude-squeezed light. In the
limit of illumination with maximum phase uncertainty, such as
Fock and thermal optical states, the electron does not undergo
compression because there is no coherence among sample
states of different energy.115

If the length of the e-beam−specimen interaction region is
sufficiently small as to assume that eq 20 holds during the
passage of the electron, the real-space representations of the
initial and final electron density matrices (before and after
interaction) depend on time as ρi,f (r − vt, r′ − vt). Then, after
linear interaction with a specimen prepared in the ground state,
these quantities are related as
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for v along z. We have derived a linearized form of this
expression (i.e., with eK substituted by 1 + K) only assuming
time reversal symmetry and the nonrecoil approximation as a
direct extension of the techniques used in the Methods section
when proving eqs 4 and 9. The full result (with eK) was
obtained elsewhere within a quantum-electrodynamics formal-
ism.140 Reassuringly, we have K(R, R, 0) = 0, so the norm
∫ d3r ρ(r, r) = 1 is preserved. In addition, the property
K*(R, R′, z − z′) = K(R′, R, z′ − z) guarantees the
Hermiticity of the transformed density matrix. We note that
the Im{ . . . } term originates in inelastic scattering, while the
remaining two terms are associated with elastic processes from
the electron viewpoint, which are essential to conserve the
norm.
For completeness, we note that, incorporating in eq 20 the

lowest-order nonrecoil correction (i.e., εq − εq′ ≈ v · (q − q′)
+ (ℏ/2meγ

3) (|q − q0|
2 − |q′ − q0|

2) with q0 = mevγ/ℏ), free
electron propagation over a distance d transforms the density
matrix as

∫ ∫
ρ

ρ

′ ′

= ″ ‴ − ″ ′ − ‴ ″ ′ ‴
−∞

∞

−∞

∞
z z t

z z T z z z z z z t

R R

R R

( , , , , )

d d ( , ) ( , , , , )

f

i

with T(z, z′) = (−iγ2q0/2πd) exp [(iγ2q0/2d)(z
2 + z′2)]. In

particular, this procedure readily yields eq 15 from eq 11.
Nanoscale Sampling of the Nonlinear Optical

Response. Electron beams potentially grant us access into
the nonlinear response of materials with unprecedented
nanoscale spatial resolution. Specifically, PINEM offers a
possible platform to perform nonlinear nanoscale spectrosco-
py204 (Figure 7e): under intense laser pulse irradiation, the
sample can generate evanescent near fields not only at the
fundamental frequency but also at its harmonics, which
produce a departure from the gain-loss symmetry in the
resulting EELS spectra. These types of asymmetries have
already been demonstrated by performing PINEM with
simultaneous ω and 2ω external irradiation91 (i.e., through a
combination of two PINEM interactions at such frequencies,
as described by eq 10, but with the 2ω component now
produced by external illumination having phase coherence
relative to the ω laser field).
At lower kinetic energies, electrons produce an increasingly

stronger perturbation on the sample, which has been
speculated to eventually trigger a measurable nonlinear
material response.205 The idea is that the electron acts as a
relatively high-fluence optical pulse (Figure 7f, left), so the
resulting nonlinear field emanating from the sample could be
traced through the shift in spectral features revealed by EELS
or CL as the e-beam velocity or impact parameter are scanned
(Figure 7f, right).
In a related context, nanoscale ultrafast probing could

eventually assist the exploration of quantum nonlinearites, such
as those imprinted on bosonic cavity modes due to
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hybridization with two-level systems (e.g., quantum emitters),
which have been a recurrent subject of attention in recent
years.111,225−228

Optical Approach to Electron-Beam Aberration
Correction. Advances in electron microscopy have been
fuelled by a sustained reduction in e-beam aberrations and
energy spread. In particular, both aberration-correction and
lateral beam shaping rely on our ability to control the lateral
electron wave function. This can be done with great precision
using static microperforated plates, which, for example, enable
the synthesis of highly chiral vortex electron beams.229,230

Dynamical control is however desirable for applications such as
fast tracking of sample dynamics. Substantial progress in this
direction is being made through the use of perforated plates
with programmable potentials that add a position-dependent
electric Aharonov-Bohm phase to the electron wave
function.231 In a separate development, intense laser fields
have been used to optically imprint a ponderomotive phase on
the electrons165−167 (i.e., as described by eq 13). Combined
with UTEM and structured illumination, one could use strong,
spatially modulated lasers to imprint an on-demand transverse
phase profile on the electron wave function in order to correct
aberrations and customize the focal spot profile. This general
approach has been theoretically explored through PINEM
interaction for light reflected on a continuous thin foil,232 as
well as by relying on the free-space ponderomotive elastic
phase.158 A recent study also proposes the use of PINEM
interactions with spectrally shaped light pulses to reduce e-
beam energy spreading.113 These advances constitute promis-
ing directions to enhance our control over the wave function of
free electrons for application in improved e-beam-based,
spectrally resolved microscopies.
Nanoscale Electron-Beam Photon Sources. By inter-

acting with material boundaries, the evanescent field carried by
electrons is transformed into propagating CL light emission.
This effect has been extensively exploited to produce efficient
light sources,233,234 for example with the e-beam flying parallel
to a grating surface (Smith-Purcell effect180,196,199,235,236),
where superradiance (i.e., when the emission intensity scales
quadratically with the e-beam current) has been demonstrated
in the generation of THz radiation.185 Electron wiggling
caused by periodic structures is equally used in undulators at
synchrotrons, while a nanoscale version of this effect has also
been proposed.237 A particularly challenging task is the
production of X-ray photons with nanometer control, which
recent studies have tackled following different strategies, such
as through the simultaneous generation of polaritons in a
nonlinear two-quanta emission process,238 or by an atomic-
scale version of the Smith-Purcell effect using atomic planes in
van der Waals materials as the periodic structure.239 Addition-
ally, a quantum klystron has recently been proposed based on
spatially modulated intense electron beams in a PINEM-
related configuration followed by free-space propagation,
giving rise to a periodic train of electron bunches that could
trigger superradiance from two-level emitters,240 in analogy to
the intriguing Schwartz-Hora effect,187,188 which modern
technology could perhaps revisit.
Toward Free-Space Nanoelectronics at Low Kinetic

Energies. In nanophotonics, there is a plethora of photon
sources that can be integrated in nanostructured environments
to control the flow of light for information processing, sensing,
and other applications. When using free electrons instead of
photons, things become more complicated because of the

unavailability of nanoscale sources. As a preliminary step to fill
this gap, multiphoton photoemission amplified by strong
plasmonic field enhancement at the nm-sized tips of metallic
nanoparticles has been demonstrated to provide a localized
source of free electrons that can be generated using relatively
weak light intensities down to the continuous-wave limit.241

Free-space nanoelectronics, consisting in molding the flow of
these electrons through nanostructured electric-potential and
magnetic-field landscapes, thus emerges as an appealing
research frontier with applications in micron-scale free-electron
spectroscopy for sensing and detection devices.
In a parallel approach, electrical and magnetic manipulation

of ballistic electrons has recently been achieved in
graphene242−245 and other 2D materials,246 sharing some of
the properties of free electrons, including the possibility of
generating single-electron wavepackets.247 Based on these
developments, we envision the implementation of photon-free
spectroscopy performed within 2D material devices, whereby
electrical generation and detection of inelastically scattered
ballistic electrons provides spectral information on the
surrounding environment. A recent exploration of this idea
has resulted in the proposal of ultrasensitive chemical
identification based on electrical detection of EELS-like
vibrational fingerprints from analytes placed in the vicinity of
a 2D semiconductor exposed to a nanostructured potential
landscape that could be achieved using existing gating
technology.248

■ METHODS

Expressing the EELS Probability in Terms of the
Electromagnetic Green Tensor: First-Principles Deriva-
tion of Equation 4. We start from eq 21 for the probability
Γn
0 of exciting a mode n, which is in turn derived below. The

spectrally resolved EELS probability is then given by

∫

∑

∑

ω δ ω ω

ψ β δ ω ω

Γ = Γ −

= ̃ −r r R

( ) ( )

d ( ) ( ) ( )

n
n n

n
n n

EELS
0

0

3 0 2 2
0

(36)

where β̃n(R) is defined in eq 23. Starting from the Dirac
equation, we derive an effective Schrödinger equation to
describe the electron and its interaction with an external light
field in the linearized-minimal-coupling and nonrecoil
approximations (see details in ref 111). The interaction
Hamiltonian then reduces to

̂ = · ̂e
c

r
v

A r( ) ( )1 (37)

where Â(r) is the vector potential operator, using a gauge in
which the scalar potential vanishes. Inserting eq 37 into eq 23,
and this in turn into eq 36, we find

∫ ∫ ∫
∑

ω ψ

δ ω ω

Γ =
ℏ

′ ″

× ̂ ′ ̂ ″ −

ω υ

−∞

∞

−∞
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″− ′e

c
z z

A z n n A z

r r

R R

( ) d ( ) d d e

0 ( , ) ( , ) 0 ( )

z z

n
z z n
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2

2 2
3 0 2 i ( )/

0

(38)

where we have used the hermiticity of Â(r) and taken v = υz.̂
This result can be expressed in terms of the electromagnetic
Green tensor, implicitly defined in eq 3 for local media (and by
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an analogous relation when including nonlocal effects140), by
using the identity (see below)

∑ δ ω ω

ω

̂ ̂ ′ −

= − ℏ { ′ }

A n n A

c G

r r

r r

0 ( ) ( ) 0 ( )

4 Im ( , , )

n
z z n

zz

0

2
(39)

which is valid for reciprocal materials held at zero temperature,
with n = 0 referring to the sample ground state. Combining eqs
38 and 39, we find

∫ ∫ ∫ω ψ

ω υ ω

Γ =
ℏ

′ ″

[ ″ − ′ ] × {− ′ ″ }
−∞

∞

−∞

∞e
z z

z z G z z

r r

R R

( )
4

d ( ) d d

cos ( )/ Im ( , , , , )zz

EELS

2
3 0 2

where we have transformed eiω (z″ − z′)/υ into a cosine function
by exploiting the reciprocity relation Gzz(r, r′, ω) = Gzz(r′, r,
ω). Finally, eq 4 is obtained by considering an electron wave
function that is tightly confined around a lateral position R =

R0 (i.e., for ∫ ψ δ| | ≈ −
−∞

∞
z r R Rd ( ) ( )0 2

0 ).

Derivation of Equation 39. Starting with the definition of
the retarded electromagnetic Green tensor in a gauge with zero
scalar potential at zero temperature,

π
θ′ − ′ = −

ℏ
[ ̂ ̂ ′ ′ ] − ′′ ′G t t

c
A t A t t tr r r r( , , )

i
4

0 ( , ), ( , ) 0 ( )aa a a
R

2

where a and a′ denote Cartesian components, whereas θ is the
step function, we introduce a complete set of eigenstates |n⟩ of
the light+matter Hamiltonian ̂

0 (i.e., ω̂ | ⟩ = ℏ | ⟩n nn0 ), use

the relation ̂ = ̂̂ ℏ − ̂ ℏtA r A r( , ) e ( )et ti / i /0 0 between operators
in the Schrödinger and Heisenberg pictures and apply the

integral ∫ = +
∞ +t sd e i/( i0 )st

0
i to write249
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where

∑ω δ ω ω′ = ̂ ̂ ′ −′ ′J A n n Ar r r r( , , ) 0 ( ) ( ) 0 ( )aa
n

a a n0

is the spectral tensor, ωn0 = ωn − ω0, and GR(r,r′,ω) =

∫ ′ω
−∞

∞
t G tr rd e ( , , )ti R . The electromagnetic Green tensor in

eq 40 can be shown250 to satisfy eq 3 (i.e., we have GR ≡ G),
provided the optical response of the system is assumed to be
described by a local, frequency-dependent permittivity ϵ(r, ω).
Now, we introduce the quantum mechanical version of the
time-reversal operator Θ̂. Under the assumption of time-
reversal symmetry, we have [ ̂ Θ̂] =, 00 , and consequently,

ω̂ |Θ̂ ⟩ = ℏ |Θ̂ ⟩n nn0 . Furthermore, assuming a nondegenerate
ground state |0⟩, it must obviously satisfy |Θ̂0⟩ = |0⟩, and
therefore, because the time-reversed eigenstates form a
complete basis set with the same energies, we can rewrite
the spectral tensor as

∑ω δ ω ω′ = ⟨Θ̂ | ̂ |Θ̂ ⟩⟨Θ̂ | ̂ ′ |Θ̂ ⟩ −′ ′J A n n Ar r r r( , , ) 0 ( ) ( ) 0 ( )aa
n

a a n0

Then, using the relation251 ⟨ | ̂| ′⟩* = ±⟨Θ̂ | ̂|Θ̂ ′⟩n O n n O n , which is
valid for any Hermitian operator Ô (e.g., with − for Ô = Â), we
find that J(r, r′, ω) = J*(r, r′, ω) is real. Finally, taking the
imaginary part of eq 40 and using the above property of J,

together with 1/(s + i0+) = P[1/s] − iπδ(s), we obtain
ω ω′ = − ℏ { ′ }′ ′J c Gr r r r( , , ) 4 Im ( , , )aa aa

2 , which reduces to eq
39 for a = a′ = z.

Inelastic Electron Scattering at Finite Temperature:
Derivation of Equation 5. The large kinetic energy of beam
electrons allows us to safely distinguish them from other
electrons in the sample. A free electron initially prepared in
state q can experience transitions to final states q′
accompanied by excitations i in the sample. The most general
Hamiltonian that describes this interaction, assuming linear
coupling to the sample and neglecting electron spin-flips, can
be written as

∑̂ = + *
′

′
†

′ ′
†c c V a V a( )

i
i i i i

qq
q q qq q q1

where ai and cq (ai
† and cq

†) annihilate (create) an excitation i
and an electron in state q, respectively. The label i runs over all
possible modes in the system, including plasmons, excitons,
phonons, and photons in the radiation field. The details of the
interaction are fully contained in the coupling coefficients Viqq′.
Within the linear response approximation and assuming the
sample to be initially prepared in thermal equilibrium at
temperature T, we can write the transition rate between q and
q′ electron states using the Fermi golden rule as

i

k
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where ωT = kBT/ℏ is the thermal frequency, {ni} describes the
initial state of the system through the occupation numbers ni of
modes i having energies ℏωi; the sum in {n′i} runs over all
possible final occupations; we introduce the partition function

ω ω≡ ∑ −∑ = ∏ ∑ ω ω
{ }

−Z nexp( / ) en i i i T i n
n /

i i

i i T , which allows

us to weigh each initial configuration {ni} by Z−1 ×
exp(−∑iniωi/ωT) (its statistical probability at temperature
T); and the electron initial and final energies are denoted ℏεq
and ℏεq′, respectively. Now, given the linear dependence of ̂

1
on the operators ai and ai

†, the initial and final occupation
numbers within each term of the sum in Pq′q must differ only
for a single i, with ni′ = ni ± 1. We can factor out the rest of the
i’s and separate the rate in energy loss (ni′ = ni + 1) and gain

(ni′ = ni − 1) contributions to write ∫ ω ω=′
∞

′P d P ( )q q q q0
,

where

ω ω ω ω ω= +′
+

′
+ −

′
−P N P N P( ) ( ) ( ) ( ) ( )q q q q q q,0 ,0 (41)

is the spectrally resolved transition rate,
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are temperature-independent loss (+) and gain (−) rates, and
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In the derivation of these expressions, we have adopted the
nonrecoil approximation for the electron energy difference (eq
20) and assumed the condition ∑i|Viqq′|

2δ(ω − ωi) =
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∑i|Viq′q|
2δ(ω − ωi) for each partial sum restricted to

degenerate modes i sharing a common frequency ω. This
condition, which is satisfied in reciprocal media, also renders

ω∑ ′ ′
−P ( )q q q,0 = ω∑ ′ ′

+P ( )q q q,0 after summing over final states q′.
Finally, we obtain the EELS probability ΓEELS by dividing the
rates P by the electron current.
For bosonic excitations (e.g., photons, phonons, and

plasmons), we have |⟨ + | + | ⟩| = +†n a a n n1 1i i i i i
2 and

|⟨ − | + | ⟩| =†n a a n n1i i i i i
2 , which allow us to carry out the ni

sums to find N+(ω) = nT(ω) + 1 and N−(ω) = nT(ω), where

ω =
−ω ωn ( )

1
e 1T / T (43)

is the Bose−Einstein distribution function. Using these
elements in combination with eqs 41 and 42, we directly
obtain eq 5 for the relation between the finite- and zero-
temperature EELS probabilities.
For Fermionic excitations (e.g., two-level atoms), ni can take

the values 0 or 1, so we have instead N+(ω) = 1 − nT
F(ω) and

N−(ω) = nT
F(ω), where nT

F(ω) = 1/(eω/ωT + 1) is the Fermi−
Dirac distribution function for zero chemical potential. The
loss and gain probabilities are then given by eq 5, but with
nT(ω) substituted by −nTF(ω).
Derivation of Equation 9. For a free electron prepared in

an initial monochromatic state ψi(r)e
−iεit of energy ℏεi, the

inelastic scattering probability can be decomposed in
contributions arising from transitions to specific final states
ψf(r)e

−iεf t. Working within first-order perturbation theory, we
consider the transition matrix element

∫υ ψ ψ⟨ | ̂ | ⟩ = * ⟨ | ̂ | ⟩fn i
e
c

n Ar r r r0 d ( ) ( ) ( ) 0f i z1
3

for electron-sample transitions driven by the interaction
Hamiltonian in eq 37. From here, Fermi’s golden rule yields

the transition probability ∫ ω ωΓ = Γ
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where L is the quantization length along the e-beam direction
and we have multiplied by the interaction time L/υ to
transform the rate into a probability. Incidentally, this quantity
is related to the EELS probability through ΓEELS(ω) =
∑f Γf i(ω). Now, expanding the squared modulus in eq 44
and using eq 39, we find
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Finally, eq 9 is derived from eq 45 by factorizing the incident
and fina l e l ec t ron wave func t ions as ψ | r( )i f ∝

ψ | ⊥
| LR( )e /i f

q zi i f z, , summing over final longitudinal wave

vectors by means of the prescr ipt ion ∑ q j , z
→

∫π
−∞

∞
L q( /2 ) d f z, , and using the δ function in combination

with the nonrecoil approximation εf − εi ≈ (qf,z − qi,z)υ (eq
20).

Derivation of Equation 21. We calculate the excitation
probability of a sample mode n by tracing out over all final
electron states as
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where the rightmost expression is obtained by using eq 19. We
now apply the prescription ∑q → V∫ d3q/(2π)3 to convert
electron wave vector sums into integrals, adopt the nonrecoil
approximation (eq 20), and express the electron part of the
matrix element in eq 46 as a real-space integral, using the
representation ⟨ | ⟩ = − ·Vr q e q r1/2 i for the electron momentum
states. Then, taking the electron velocity vector v along z,̂ we

obtain ∫⟨ | ̂ | ′ ⟩ = ̂− ′− ·n V nq q r r0 d e ( ) 0q q r
1

1 3 i( )
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here
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We can use the δ function to perform the qz′ integral and then
change the integration variable from qz to qz + ωn0/υ, so Γn

0

becomes
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where we adopt the notation r = (R, z) and q = (q⊥, qz) with R
and q⊥ standing for real-space and wave-vector coordinate
components in the plane perpendicular to the beam direction.
This expression can be simplified using the relation
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Finally, using the identity
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we find the result
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which reduces to eq 21 with ψ0(r) and β ̃ R( )n defined by eqs 22
and 23.
Derivation of Equations 24−26. A direct extension of

the general formalism used in the previous paragraph allows us
to deal with N free independent electrons prepared in initial
states (before interaction with the sample) described by their
wave function coefficients α q

j with j = 0, ..., N − 1. The wave
function of the combined system formed by the sample and the
electrons can be written as

∑ψ α| ⟩ = |{ } ⟩ε ω

{ }
{ }

− ∑ +t t nq( ) ( )e
n

n
t

q
q

i( )j j nq 0

where {q} denotes the ensemble of wave vectors qj. Given the
large size of the electron configuration space in a microscope,
we consider that it is safe to disregard spin degrees of freedom
and the Pauli exclusion principle (i.e., we consider distinguish-
able electrons). We further neglect electron−electron
Coulomb interaction in the beam. Additionally, we work in
the weak coupling regime, under the assumption that the
sample is excited once at most by the passage of the N
electrons, which is a good approximation for ≪ ΓN 1/ n

0 (we

note that typical excitation probabilities are Γ ≲ −10n
0 5 per

electron for single sample modes n). This allows us to integrate
the Schrödinger equation to find the wave function coefficients
after interaction as a generalization of eq 19:
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where ε ε ε= −′ ′q q q qj j j j
. Now, each of the terms in the real-

space representation of the interaction Hamiltonian
̂ = ∑ ̂r r( ) ( )j j1 1 depends on just one of the electron

coordinates, and thus, because of the orthogonality of the
electron momentum states, {q} and {q′} in eq 48 differ by no
more than one of the electron wave vectors. This allows us to
recast eq 48 as

∏ ∑∑α π α δ ω ε

α α

∞ = −
ℏ
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The excitation probability of sample mode n is obtained by
tracing out the final electron states as

∑ αΓ = | ∞ |
{ }

{ } ( )n n
q

q
total 2

(50)

which, in combination with eq 49 and the normalization
condition of the initial states α∑ | | = 1j

q q
2 , leads to (eq 24)
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′*Q Qn
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n
j

j j
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(51)

where

∑ ∑π δ ε ω αΓ =
ℏ

+ ⟨ | ̂ | ′ ⟩
′

′ ′nq q
(2 )

( ) 0n
j

n j j
j

q q
q q q

2

2 0 1

2

j j

j j j

(52)

and

∑π δ ε ω α α=
ℏ
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*Q nq q

2
( ) 0n

j
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(53)

Noticing that eq 52 is just like eq 46 with αq′
0 substituted by α ′

j
q j

we can write from eq 47

∫ ψ βΓ = ̃r r Rd ( ) ( )n
j j

n
3 2 2

(54)

with

∫ψ
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α= ·Vr
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3

3
i

(55)

Now, using the nonrecoil approximation ε υ= − ′′ q q( )jz jzq qj j
,

transforming wave vector sums into integrals, expressing matrix
elements as real-space integrals, and proceeding in a similar
way as in the derivation of eq 47, we can rearrange eq 53 as
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(56)

which reduces to eq 25 with β ̃ R( )n defined in eq 23, whereas
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becomes eq 26, the Fourier transform of the electron
probability density in the incident electron wave function j.

Derivation of Equations 31 and 32. We consider
electron wave functions constructed in terms of normalized
Gaussian wavepackets of the form

ψ ψ π= Δ⊥
− Δr R( ) ( )e /G

z /2 1/4 1/22 2

where we factorize the transverse dependence in ψ⊥(R). For
simplicity, we approximate |ψ⊥(R)|

2 ≈ δ(R) under the
assumption that the transverse width w is small compared
with the characteristic length of variation of the electric field
associated with the excited mode n, or equivalently,

β∇ ̃ ≪ wR( ) 1/nR . The configurations discussed in Figures 5
and 6 involve electron wave functions of the general form
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∑ψ γ ψ= −−Nr r r( ) ( )j
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G s
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(57)

where we assume the same longitudinal wavepacket width Δ
for all components, and γ γ= ∑ ′ ′

*
′N I( )j ss s
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is a normal-
ization constant that depends on the overlap integrals
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Plugging eq 57 into eqs 54 and 25, we readily find
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where

= ω υ− ΔS e /2n0
2 2 2

The rightmost approximations in eqs 58a and 58b correspond
to the nonoverlapping wavepacket limit (i.e., |zs − zs′| ≫ Δ for
s ≠ s′ and Rs = Rs′), which yields Iss′ = δs,s′. Now, we adopt this
limit and specify eqs 51, 58a, and 58b for the beams studied in
Figures 5 and 6:
• Figure 5b. (1) We consider two Gaussian wavepackets s =

0, 1 with longitudinal coordinates z0 = 0 and z1 = a, where a≫
Δ is the wavepacket separation, and the same lateral
coordinates Rs = b, so β β̃ = ̃R b( ) ( )n s n is independent of s
and factors out in eqs 58a and 58b; in particular, eq 58a
reduces to βΓ = | ̃ |b( )n

j
n

2. (2) For two electrons j = 0, 1, each of
them fully contained in one of the two wavepackets, we have
γ δ| | =s

j
s j

2
, , s o e q 5 8 b g i v e s β= ̃Q S b( )n n

0 a n d

β= ̃ ω υQ S b( )en n
a1 i /n0 ; inserting these expressions in eq 51,

we find β ω υΓ = | ̃ | [ + ]S ab2 ( ) 1 cos( / )n n n
total 2

0 (i.e., eq 31 with
the + sign; incidentally, this result remains unchanged even
when the wavepackets overlap). (3) If each of the two
electrons is equally shared among the two wavepackets, we
have γ| |s

j 2 = 1/2; evaluating eq 58b with these coefficients, we

find Qn
0 = Qn

1 = β ̃ + ω υS b( )(1 e )/2n
ai /n0 , which together with

e q 5 1 l e a d t o t h e r e s u l t Γn
total =

β ω υ| ̃ | [ + ]S ab2 ( ) 1 cos ( /2 )n n
2 2

0 (i.e., eq 32).
• Figure 5c. (1) We consider two wavepackets s = 0, 1 with

R0 = −R1 = b, z0 = 0, and z1 = a; because β| ̃ |R( )n s is also
independent of s (see below), we can factor it out in eq 58a,
thus leading again to βΓ = | ̃ |b( )n

j
n

2. (2) To describe two
electrons, each of them separated in different wavepackets, we
take γ δ| | =s

j
s j

2
, , so eq 58b yields β= ̃Q S b( )n n

0 and

β= − ̃ ω υQ S b( )en n
a1 i /n0 , where we have used the property

β β̃ − = − ̃b b( ) ( )n n for the coefficient of coupling to an
excitation with the transition dipole oriented as shown in
Figure 5; we thus find from eq 51 the result Γn

total =
β ω υ| ̃ | [ − ]S ab2 ( ) 1 cos( / )n n

2
0 (i.e., eq 31 with the − sign).

(3) Proceeding as above for the configuration in which each of
the two electrons is equally shared among the two wave-

packets, we find β= = ̃ − ω υQ Q S b( )(1 e )/2n n n
a0 1 i /n0 , which

now results in β ω υΓ = | ̃ | [ + ]S ab2 ( ) 1 sin ( /2 )n n n
total 2 2

0 (i.e., eq
32 with cos replaced by sin).
• Figure 6. In this configuration, the coupling coefficient has

the same spatial periodicity as the excited mode (i.e.,
β β̃ = ̃ ·R( ) (0)en s n

k Ri n s picks up the mode propagation phase
at the region of electron−sample interaction). With the same
choice of wave function coefficients as in the above analysis of
Figure 5c and considering a lateral separation b = R0 − R1
between the two wavepackets, we straightforwardly find the
same expressions for the excitation probability as in Figure 5b,
but with ωn0a/υ replaced by ωn0a/υ − kn·b.
In the main text, we also discuss a generalization of Figure

5b to a beam consisting of N electrons (j = 0, ..., N − 1), each
of them distributed among L periodically arranged wave-
packets (s = 0, ..., L − 1) with longitudinal spacing a and the
same lateral position Rs = b for all. Proceeding in a similar way
as in the above analysis of Figure 5b, we take γ| | = 1s

j 2 and find

from eqs 58a and 58b the results βΓ = | ̃ |b( )n
j

n
2 and

β= | ̃ | ∑ ω υQ S Lb( ) (1/ ) en
j

n s
s a2 i /n0 , which, combined with eq

51, leads to eq 33.
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Reed, B.; Barwick, B.; Carbone, F. Simultaneous Observation of the
Quantization and the Interference Pattern of a Plasmonic Near-Field.
Nat. Commun. 2015, 6, 6407.
(97) Lummen, T. T. A.; Lamb, R. J.; Berruto, G.; LaGrange, T.;
Negro, L. D.; García de Abajo, F. J.; McGrouther, D.; Barwick, B.;
Carbone, F. Imaging and Controlling Plasmonic Interference Fields at
Buried Interfaces. Nat. Commun. 2016, 7, 13156.
(98) Echternkamp, K. E.; Feist, A.; Schäfer, S.; Ropers, C. Ramsey-
Type Phase Control of Free-Electron Beams. Nat. Phys. 2016, 12,
1000−1004.
(99) Kealhofer, C.; Schneider, W.; Ehberger, D.; Ryabov, A.; Krausz,
F.; Baum, P. All-Optical Control and Metrology of Electron Pulses.
Science 2016, 352, 429−433.
(100) Ryabov, A.; Baum, P. Electron Microscopy of Electromagnetic
Waveforms. Science 2016, 353, 374−377.
(101) Vanacore, G. M.; Fitzpatrick, A. W. P.; Zewail, A. H. Four-
Dimensional Electron Microscopy: Ultrafast Imaging, Diffraction and
Spectroscopy in Materials Science and Biology. Nano Today 2016, 11,
228−249.

(102) García de Abajo, F. J.; Barwick, B.; Carbone, F. Electron
Diffraction by Plasmon Waves. Phys. Rev. B 2016, 94, 041404.
(103) Kozák, M.; McNeur, J.; Leedle, K. J.; Deng, H.;
Schönenberger, N.; Ruehl, A.; Hartl, I.; Harris, J. S.; Byer, R. L.;
Hommelhoff, P. Optical Gating and Streaking of Free Electrons with
Sub-Optical Cycle Precision. Nat. Commun. 2017, 8, 14342.
(104) Feist, A.; Bach, N.; Rubiano da Silva, N.; Danz, T.; Moller, M.;
Priebe, K. E.; Domrose, T.; Gatzmann, J. G.; Rost, S.; Schauss, J.;
Strauch, S.; Bormann, R.; Sivis, M.; Schafer, S.; Ropers, C. Ultrafast
Transmission Electron Microscopy Using a Laser-Driven Field
Emitter: Femtosecond Resolution with a High Coherence Electron
Beam. Ultramicroscopy 2017, 176, 63−73.
(105) Cai, W.; Reinhardt, O.; Kaminer, I.; García de Abajo, F. J.
Efficient Orbital Angular Momentum Transfer between Plasmons and
Free Electrons. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 98,
045424.
(106) Morimoto, Y.; Baum, P. Attosecond Control of Electron
Beams at Dielectric and Absorbing Membranes. Phys. Rev. A: At., Mol.,
Opt. Phys. 2018, 97, 033815.
(107) Morimoto, Y.; Baum, P. Diffraction and Microscopy with
Attosecond Electron Pulse Trains. Nat. Phys. 2018, 14, 252−256.
(108) Kfir, O. Entanglements of Electrons and Cavity Photons in the
Strong-Coupling Regime. Phys. Rev. Lett. 2019, 123, 103602.
(109) Reinhardt, O.; Mechel, C.; Lynch, M.; Kaminer, I. Free-
Electron Qubits. Ann. Phys. 2021, 533, 2000254.
(110) Pan, Y.; Zhang, B.; Gover, A. Anomalous Photon-Induced
Near-Field Electron Microscopy. Phys. Rev. Lett. 2019, 122, 183204.
(111) Di Giulio, V.; Kociak, M.; García de Abajo, F. J. Probing
Quantum Optical Excitations with Fast Electrons. Optica 2019, 6,
1524−1534.
(112) Kfir, O.; Lourenco̧-Martins, H.; Storeck, G.; Sivis, M.; Harvey,
T. R.; Kippenberg, T. J.; Feist, A.; Ropers, C. Controlling Free
Electrons with Optical Whispering-Gallery Modes. Nature 2020, 582,
46−49.
(113) Reinhardt, O.; Kaminer, I. Theory of Shaping Electron
Wavepackets with Light. ACS Photonics 2020, 7, 2859−2870.
(114) Madan, I.; Vanacore, G. M.; Gargiulo, S.; LaGrange, T.;
Carbone, F. The Quantum Future of Microscopy: Wave Function
Engineering of Electrons, Ions, and Nuclei. Appl. Phys. Lett. 2020,
116, 230502.
(115) Di Giulio, V.; García de Abajo, F. J. Free-Electron Shaping
Using Quantum Light. Optica 2020, 7, 1820−1830.
(116) Vanacore, G. M.; Madan, I.; Carbone, F. Spatio-Temporal
Shaping of a Free-Electron Wave Function Via Coherent Light-
Electron Interaction. Riv. Nuovo Cimento Soc. Ital. Fis. 2020, 43, 567−
597.
(117) Feist, A.; Yalunin, S. V.; Schäfer, S.; Ropers, C. High-Purity
Free-Electron Momentum States Prepared by Three-Dimensional
Optical Phase Modulation. Phys. Rev. Res. 2020, 2, 043227.
(118) Bendaña, X. M.; Polman, A.; García de Abajo, F. J. Single-
Photon Generation by Electron Beams. Nano Lett. 2011, 11, 5099−
5103.
(119) Talebi, N. Strong Interaction of Slow Electrons with Near-
Field Light Visited from First Principles. Phys. Rev. Lett. 2020, 125,
080401.
(120) Dab̧rowski, M.; Dai, Y.; Petek, H. Ultrafast Photoemission
Electron Microscopy: Imaging Plasmons in Space and Time. Chem.
Rev. 2020, 120, 2859−2870.
(121) Kubo, A.; Onda, K.; Petek, H.; Sun, Z.; Jung, Y. S.; Kim, H. K.
Femtosecond Imaging of Surface Plasmon Dynamics in a Nano-
structured Silver Film. Nano Lett. 2005, 5, 1123−1127.
(122) Kubo, A.; Pontius, N.; Petek, H. Femtosecond Microscopy of
Surface Plasmon Polariton Wave Packet Evolution at the Silver/
Vacuum Interface. Nano Lett. 2007, 7, 470−475.
(123) Spektor, G.; Kilbane, D.; Mahro, A. K.; Frank, B.; Ristok, S.;
Gal, L.; Kahl, P.; Podbiel, D.; Mathias, S.; Giessen, H.; Meyer zu
Heringdorf, F.-J.; Orenstein, M.; Aeschlimann, M. Revealing the
Subfemtosecond Dynamics of Orbital Angular Momentum in
Nanoplasmonic Vortices. Science 2017, 355, 1187−1191.

ACS Photonics pubs.acs.org/journal/apchd5 Perspective

https://dx.doi.org/10.1021/acsphotonics.0c01950
ACS Photonics 2021, 8, 945−974

971

https://dx.doi.org/10.1016/j.ultramic.2018.12.011
https://dx.doi.org/10.1016/j.ultramic.2018.12.011
https://dx.doi.org/10.1021/nn405367e
https://dx.doi.org/10.1021/nn405367e
https://dx.doi.org/10.1038/s41467-018-05021-x
https://dx.doi.org/10.1038/s41467-018-05021-x
https://dx.doi.org/10.1088/1367-2630/10/7/073035
https://dx.doi.org/10.1088/1367-2630/10/7/073035
https://dx.doi.org/10.1017/S1431927609090254
https://dx.doi.org/10.1017/S1431927609090254
https://dx.doi.org/10.1021/nl100613s
https://dx.doi.org/10.1021/nl100613s
https://dx.doi.org/10.1038/nature14463
https://dx.doi.org/10.1038/nature14463
https://dx.doi.org/10.1038/s41567-020-01042-w
https://dx.doi.org/10.1038/s41567-020-01042-w
https://dx.doi.org/10.1038/s41563-019-0336-1
https://dx.doi.org/10.1038/s41563-019-0336-1
https://dx.doi.org/10.1038/s41566-017-0045-8
https://dx.doi.org/10.1038/s41566-017-0045-8
https://dx.doi.org/10.1038/s41566-017-0045-8
https://dx.doi.org/10.1103/PhysRevLett.125.193202
https://dx.doi.org/10.1103/PhysRevLett.125.193202
https://dx.doi.org/10.1088/1367-2630/12/12/123028
https://dx.doi.org/10.1088/1367-2630/12/12/123028
https://dx.doi.org/10.1021/jp304534n
https://dx.doi.org/10.1021/jp304534n
https://dx.doi.org/10.1038/nphoton.2013.315
https://dx.doi.org/10.1038/nphoton.2013.315
https://dx.doi.org/10.1038/ncomms7407
https://dx.doi.org/10.1038/ncomms7407
https://dx.doi.org/10.1038/ncomms13156
https://dx.doi.org/10.1038/ncomms13156
https://dx.doi.org/10.1038/nphys3844
https://dx.doi.org/10.1038/nphys3844
https://dx.doi.org/10.1126/science.aae0003
https://dx.doi.org/10.1126/science.aaf8589
https://dx.doi.org/10.1126/science.aaf8589
https://dx.doi.org/10.1016/j.nantod.2016.04.009
https://dx.doi.org/10.1016/j.nantod.2016.04.009
https://dx.doi.org/10.1016/j.nantod.2016.04.009
https://dx.doi.org/10.1103/PhysRevB.94.041404
https://dx.doi.org/10.1103/PhysRevB.94.041404
https://dx.doi.org/10.1038/ncomms14342
https://dx.doi.org/10.1038/ncomms14342
https://dx.doi.org/10.1016/j.ultramic.2016.12.005
https://dx.doi.org/10.1016/j.ultramic.2016.12.005
https://dx.doi.org/10.1016/j.ultramic.2016.12.005
https://dx.doi.org/10.1016/j.ultramic.2016.12.005
https://dx.doi.org/10.1103/PhysRevB.98.045424
https://dx.doi.org/10.1103/PhysRevB.98.045424
https://dx.doi.org/10.1103/PhysRevA.97.033815
https://dx.doi.org/10.1103/PhysRevA.97.033815
https://dx.doi.org/10.1038/s41567-017-0007-6
https://dx.doi.org/10.1038/s41567-017-0007-6
https://dx.doi.org/10.1103/PhysRevLett.123.103602
https://dx.doi.org/10.1103/PhysRevLett.123.103602
https://dx.doi.org/10.1002/andp.202000254
https://dx.doi.org/10.1002/andp.202000254
https://dx.doi.org/10.1103/PhysRevLett.122.183204
https://dx.doi.org/10.1103/PhysRevLett.122.183204
https://dx.doi.org/10.1364/OPTICA.6.001524
https://dx.doi.org/10.1364/OPTICA.6.001524
https://dx.doi.org/10.1038/s41586-020-2320-y
https://dx.doi.org/10.1038/s41586-020-2320-y
https://dx.doi.org/10.1021/acsphotonics.0c01133
https://dx.doi.org/10.1021/acsphotonics.0c01133
https://dx.doi.org/10.1063/1.5143008
https://dx.doi.org/10.1063/1.5143008
https://dx.doi.org/10.1364/OPTICA.404598
https://dx.doi.org/10.1364/OPTICA.404598
https://dx.doi.org/10.1007/s40766-020-00012-5
https://dx.doi.org/10.1007/s40766-020-00012-5
https://dx.doi.org/10.1007/s40766-020-00012-5
https://dx.doi.org/10.1103/PhysRevResearch.2.043227
https://dx.doi.org/10.1103/PhysRevResearch.2.043227
https://dx.doi.org/10.1103/PhysRevResearch.2.043227
https://dx.doi.org/10.1021/nl1034732
https://dx.doi.org/10.1021/nl1034732
https://dx.doi.org/10.1103/PhysRevLett.125.080401
https://dx.doi.org/10.1103/PhysRevLett.125.080401
https://dx.doi.org/10.1021/nl0506655
https://dx.doi.org/10.1021/nl0506655
https://dx.doi.org/10.1021/nl0627846
https://dx.doi.org/10.1021/nl0627846
https://dx.doi.org/10.1021/nl0627846
https://dx.doi.org/10.1126/science.aaj1699
https://dx.doi.org/10.1126/science.aaj1699
https://dx.doi.org/10.1126/science.aaj1699
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c01950?ref=pdf


(124) Dai, Y.; Zhou, Z.; Ghosh, A.; Mong, R. S. K.; Kubo, A.;
Huang, C.-B.; Petek, H. Plasmonic Topological Quasiparticle on the
Nanometre and Femtosecond Scales. Nature 2020, 588, 616−619.
(125) Baum, P.; Zewail, A. H. Attosecond Electron Pulses for 4d
Diffraction and Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2007, 104,
18409−18414.
(126) Sears, C. M. S.; Colby, E.; Ischebeck, R.; McGuinness, C.;
Nelson, J.; Noble, R.; Siemann, R. H.; Spencer, J.; Walz, D.; Plettner,
T.; Byer, R. L. Production and Characterization of Attosecond
Electron Bunch Trains. Phys. Rev. Spec. Top.–Accel. Beams 2008, 11,
061301.
(127) Kozák, M.; Eckstein, T.; Schönenberger, N.; Hommelhoff, P.
Inelastic Ponderomotive Scattering of Electrons at a High-Intensity
Optical Travelling Wave in Vacuum. Nat. Phys. 2018, 14, 121−125.
(128) Kozák, M.; Schönenberger, N.; Hommelhoff, P. Ponder-
omotive Generation and Detection of Attosecond Free-Electron Pulse
Trains. Phys. Rev. Lett. 2018, 120, 103203.
(129) Schönenberger, N.; Mittelbach, A.; Yousefi, P.; McNeur, J.;
Niedermayer, U.; Hommelhoff, P. Generation and Characterization of
Attosecond Microbunched Electron Pulse Trains Via Dielectric Laser
Acceleration. Phys. Rev. Lett. 2019, 123, 264803.
(130) Ryabov, A.; Thurner, J. W.; Nabben, D.; Tsarev, M. V.; Baum,
P. Attosecond Metrology in a Continuous-Beam Transmission
Electron Microscope. Sci. Adv. 2020, 6, No. eabb1393.
(131) Wolter, B.; Pullen, M. G.; Le, A.-T.; Baudisch, M.; Doblhoff-
Dier, K.; Senftleben, A.; Hemmer, M.; Schröter, C. D.; Ullrich, J.;
Pfeifer, T.; Moshammer, R.; Gräfe, S.; Vendrell, O.; Lin, C. D.;
Biegert, J. Ultrafast Electron Diffraction Imaging of Bond Breaking in
Di-Ionized Acetylene. Science 2016, 354, 308−312.
(132) Amini, K.; et al. Imaging the Renner-Teller Effect Using Laser-
Induced Electron Diffraction. Proc. Natl. Acad. Sci. U. S. A. 2019, 116,
8173−8177.
(133) Vogelgesang, S.; Storeck, G.; Horstmann, J. G.; Diekmann, T.;
Sivis, M.; Schramm, S.; Rossnagel, K.; Schäfer, S.; Ropers, C. Phase
Ordering of Charge Density Waves Traced by Ultrafast Low-Energy
Electron Diffraction. Nat. Phys. 2018, 14, 184−190.
(134) Kuhnke, K.; Groβe, C.; Merino, P.; Kern, K. Atomic-Scale
Imaging and Spectroscopy of Electroluminescence at Molecular
Interfaces. Chem. Rev. 2017, 117, 5174−5222.
(135) Leon, C. C.; Gunnarsson, O.; de Oteyza, D. G.; Roslawska, A.;
Merino, P.; Grewal, A.; Kuhnke, K.; Kern, K. Single Photon Emission
from a Plasmonic Light Source Driven by a Local Field-Induced
Coulomb Blockade. ACS Nano 2020, 14, 4216−4223.
(136) Schuler, B.; Cochrane, K. A.; Kastl, C.; Barnard, E. S.; Wong,
E.; Borys, N. J.; Schwartzberg, A. M.; Ogletree, D. F.; García de Abajo,
F. J.; Weber-Bargioni, A. Electrically Driven Photon Emission from
Individual Atomic Defects in Monolayer WS2. Sci. Adv. 2020, 6,
No. eabb5988.
(137) Merschdorf, M.; Pfeiffer, W.; Thon, A.; Gerber, G. Hot
Electron Tunneling in Femtosecond Laser-Assisted Scanning
Tunneling Microscopy. Appl. Phys. Lett. 2002, 81, 286−288.
(138) Dolocan, A.; Acharya, D. P.; Zahl, P.; Sutter, P.; Camillone, N.
Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy. J.
Phys. Chem. C 2011, 115, 10033−10043.
(139) Egerton, R. F. Limits to the Spatial, Energy and Momentum
Resolution of Electron Energy-Loss Spectroscopy. Ultramicroscopy
2007, 107, 575−586.
(140) Di Giulio, V.; García de Abajo, F. J. Electron Diffraction by
Vacuum Fluctuations. New J. Phys. 2020, 22, 103057.
(141) García de Abajo, F. J.; Howie, A. Relativistic Electron Energy
Loss and Electron-Induced Photon Emission in Inhomogeneous
Dielectrics. Phys. Rev. Lett. 1998, 80, 5180−5183.
(142) García de Abajo, F. J.; Howie, A. Retarded Field Calculation
of Electron Energy Loss in Inhomogeneous Dielectrics. Phys. Rev. B:
Condens. Matter Mater. Phys. 2002, 65, 115418.
(143) Hohenester, U.; Krenn, J. Surface Plasmon Resonances of
Single and Coupled Metallic Nanoparticles: A Boundary Integral
Method Approach. Phys. Rev. B: Condens. Matter Mater. Phys. 2005,
72, 195429.

(144) Hohenester, U.; Ditlbacher, H.; Krenn, J. R. Electron-Energy-
Loss Spectra of Plasmonic Nanoparticles. Phys. Rev. Lett. 2009, 103,
106801.
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