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Improving statistical power for genome-wide association studies (GWAS) in admixed 

populations is imperative since more and larger genomic studies in admixed populations 

are desperately needed to accelerate genomic medicine and reduce health inequities1. 

Recently, Atkinson et al.2 introduced a statistical framework (Tractor) for GWAS in 

admixed populations (for example, African Americans) that corrects for population structure 

through the use of local ancestry and concluded that GWAS in admixed populations 

increases discovery power over traditional GWAS only in the presence of allelic effect 

size heterogeneity by ancestry; a decrease in power is expected when allelic effects at 

tested variants are similar across ancestries. However, the conclusion reached by Atkinson 

et al.2 is specific to their particular choice of statistical association test, which prioritizes 

allelic effect size heterogeneity by ancestry and does not hold for other existing tests 

for GWAS in admixed populations. Existing association tests attain increased power over 

traditional GWAS in admixed populations, even when the causal variant has similar allelic 

effects across ancestries3–5. Therefore GWAS in admixed populations increase the power for 

✉ Correspondence and requests for materials should be addressed to Bogdan Pasaniuc. pasaniuc@ucla.edu.
Author contributions
K.H. and B.P. conceived and designed the experiments. K.H. performed the experiments and statistical analyses. K.H., K.S.B., R.M. 
and A.B. collected and managed the data. K.H., K.S.B., R.M., A.B. and B.P. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41588-021-00953-5.

Peer review information Nature Genetics thanks Loïc Yengo and the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2022 March 22.

Published in final edited form as:
Nat Genet. 2021 December ; 53(12): 1631–1633. doi:10.1038/s41588-021-00953-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


discovery over homogeneous populations in either scenario—similar or different ancestry-

specific allelic effects.

Powerful GWAS in admixed populations when the causal variant has similar allelic effects 

across ancestries are performed either through explicit modeling of the relationships 

between allelic and local ancestry effects5–8 or implicit inclusion of the admixture signal 

in tests that do not correct for local ancestry3,9. In all approaches, population structure 

is appropriately controlled by correcting for global ancestry3. The gain in power stems 

from the differentiation of causal allele frequencies by ancestry that induces heterogeneity 

in the standardized ancestry-specific effects, which in turn induces a local ancestry effect 

on the trait. Therefore, larger power gains over traditional GWAS are expected for causal 

variants with higher degrees of frequency differentiation between ancestral populations3,5. 

Most importantly, by using such tests, GWAS in individuals with African American ancestry 

attain superior power relative to GWAS in ancestrally homogeneous populations, such as 

Europeans or Africans3–5. Therefore, when allelic effects are similar across ancestries, 

correcting for local ancestry is expected to impair statistical power for GWAS discovery 

compared to global ancestry adjustment9 and is more useful as a localization tool in post-

GWAS fine-mapping3.

We used simulations to compare the test proposed by Atkinson et al.2 (Tractor) to existing 

methods for GWAS in admixed populations when the causal allelic effects are similar 

across ancestries4. Starting from 1000 Genomes Project genotypes10, we simulated 40,000 

admixed individuals assuming admixture fractions of 80% African and 20% European 

followed by 7 generations of random mating (Fig. 1a). We simulated a phenotype with 

10% prevalence under the Tractor logistic model with a single causal variant with the same 

allelic effect across ancestries2; variability in causal variant frequencies across ancestries 

induces heterogeneity by ancestry in the marginal standardized effects. We compared 

the following tests for disease mapping in admixed populations: Cochran–Armitage trend 

test with correction for global ancestry (ATT); logistic regression with genotypic effects 

only (ATT-logit)–this test is similar to that used by the Population Architecture using 

Genomics and Epidemiology (PAGE) study9; case-only admixture mapping (ADM); case–

control admixture mapping (ADM-logit), similar to the M1 model of Atkinson et al.2; 

SNP1 (association conditioned on local ancestry; similar to the M2 model referred to 

as ‘traditional GWAS’ in Atkinson et al.2); combined case-only admixture and SNP case–

control association (MIX)5; sum of case–control SNP association and case-only admixture 

association (SUM); and Tractor (logistic regression assuming independent effects across 

ancestries with correction for local ancestry)2. All tests correct for global ancestry; SUM and 

Tractor are two d.f. tests while all others are one d.f. tests.

First, we found that all tests appropriately controlled false positive rates under the null 

hypothesis (Supplementary Fig. 1). Second, as reported previously, we found that one d.f. 

methods that only correct for global ancestry (ATT, ATT-logit, MIX) attained superior 

power over methods that correct for both global and local ancestry (SNP1/Tractor-M2). As 

expected, a larger gain in power was observed at SNPs with higher frequency differentiation 

by ancestry. Since SNP1 and Tractor-M2 are analogous to disease mapping in ancestrally 

homogeneous populations3,5, it follows that admixed populations can offer increased power 
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for disease mapping compared to ancestrally homogeneous populations. For example, when 

the odds ratio (OR) = 1.2 for a causal variant uniformly drawn from the genome, in 

a GWAS of 4,000 cases and 4,000 controls, ATT and MIX yielded approximately 27% 

power compared to 25% for SNP1/ Tractor-M2 and 20% for Tractor (Fig.1a). A larger 

gain in power was observed at causal variants with frequency differentiation >0.2 between 

ancestries (28% of all variants), where we observed a power of 43% for MIX, 33% for 

SNP1/Tractor-M2 and 26% for Tractor (Fig. 1a). Tractor had reduced power in these 

simulations because it requires some degree of heterogeneity in allelic effects to improve 

power (for example, >60% difference in allelic effects when frequency is fixed across 

ancestries2). Similar results were observed at other effect sizes or when the causal variant 

was untyped and missing from the data, thus confirming that GWAS in admixed populations 

outperform traditional GWAS when the causal variant has similar allelic effects across 

ancestries (Fig. 1a and Supplementary Figs. 2 and 3).

Next we analyzed the GWAS data of real lipid phenotypes–total cholesterol and low-density 

lipoprotein (LDL)–in individuals of African–European ancestries within the UK Biobank (n 
= 4,327). We focused on four well-known regions containing GWAS signals for lipid traits 

(APOE, LDLR, PCSK9, SORT1). Like the simulations, we observed that the association 

with correction for genome-wide ancestry-only (ATT) yielded the strongest signal, followed 

by tests that correct for both local and global ancestry (SNP1). Tractor, which also models 

heterogeneous effects, yielded the weakest association signal (Table 1). For example, at the 

LDLR region ATT attained P = 2.3 × 10-10 followed by 2.76 × 10-10 for SNP1 and 1.64 

× 10-9 for Tractor (Fig. 1b). Notably, averaging across the four regions, Tractor yielded 

approximately 11% decreased effective sample size compared to ATT. For an extensive 

evaluation of admixture-aware tests at risk regions under strong admixture peaks, we refer 

the reader to Pasaniuc et al.5.

In conclusion, GWAS in admixed populations attain improved power for discovery over 

homogeneous populations in either scenario—similar or different ancestry-specific allelic 

effects—thus further supporting the need for larger genomic studies in such populations. 

In this study, we showed that disease mapping in admixed populations is well powered 

when allelic effects are similar across ancestries, whereas Atkinson et al.2 showcased the 

power gains from two d.f. tests in the presence of effect size heterogeneity by ancestry2,3,5. 

Since the true extent of heterogeneity in causal allelic effects across ancestries is currently 

unknown11–15, we recommend careful consideration of the balance between expected allelic 

effect size heterogeneity across ancestries and association power when selecting a statistical 

test for GWAS in admixed populations. A further consideration should be given to linkage 

disequilibrium-induced heterogeneity at tagging variants, which can occur even when causal 

allelic effects are similar across ancestries2,3,5; in this scenario, there is an expected loss of 

power due to imperfect tagging, although preliminary results suggest that the loss in power 

is small, particularly when genotype imputation is employed (Supplementary Fig. 3 and refs. 
3,5). Properly aligned statistical tests will enable new discoveries in admixed populations that 

have long been understudied and underserved.
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Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-021-00953-5.

Methods

For Fig. 1a, 3,000 causal SNPs with a frequency >1% in individuals with both European and 

African ancestry in the 1000 Genomes Project were randomly sampled from chromosome 2. 

Each causal SNP had the same allelic effect size in both ancestral populations. Phenotypes 

were simulated under the logistic model of Atkinson et al.2 assuming 10% prevalence and 

no global ancestry effect. We defined power as the proportion of causal SNPs with an 

association P < 5 × 10-8 (for all tests except ADM and Tractor-M1) or P < 1 × 10-5 (for 

ADM and Tractor-M1) (ref. 4). We compared results for the GWAS of 4,000 cases/4,000 

controls and 4,000 cases/10,000 controls.

Data availability

This research was conducted using the UK Biobank Resource under application 

33297. We thank the participants of UK Biobank for making this work possible. The 

UK Biobank genotype and phenotype data are available by application from https://

www.ukbiobank.ac.uk/. Extended results can be accessed at our Zenodo repository https://

doi.org/10.5281/zenodo.5308562.

Code availability

Software and extended results, including an implementation of the Tractor association 

models, can be found at our Zenodo repository. (The Tractor software currently does not 

include logistic models for association; https://github.com/eatkinson/Tractor accessed 22 

February 2021.)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. 
a, Comparison of the power of GWAS tests in admixed populations in simulations. ‘All’ 

represents distributions of power estimates from 50 simulation replicates and 3,000 causal 

SNPs uniformly drawn from the set of all SNPs, while ‘Differentiated’ distributions are 

restricted to the subset of SNPs (904 out of 3,000) with an absolute allele frequency 

difference >0.2 between Europeans and Africans (50 points per box plot). For box plots, the 

central lines correspond to the medians. The boxes represent the first and third quartiles of 

the points. The whiskers represent the minimum and maximum points located within 1.5× 

interquartile range from the first and third quartiles, respectively. In this study, we present 

results for an OR of 1.2; additional results, including null simulations, can be found in 

Supplementary Fig. 2. b, −log10(P) of SNP associations with LDL in the LDLR locus. The 

SNP with the strongest Tractor association P value has been framed and enlarged. Results at 

other considered GWAS regions for lipids (APOE, PCSK9, SORT1) showed similar patterns 

(Table 1).
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Table 1 |

−log10(P) association statistics for the top Tractor SNP at known risk loci

trait Locus ATT SNP1 Tractor

Total cholesterol APOE 30.6 30.3 (−1.0%) 28.9 (−5.6%)

LDL APOE 50 49.8 (−0.5%) 47.5 (−5.1%)

Total cholesterol LDLR 8.3 8.2 (−0.9%) 7.6 (−8.4%)

LDL LDLR 9.6 9.6 (−0.8%) 8.8 (−8.9%)

Total cholesterol PCSK9 9.4 8.5 (−9.9%) 7.7 (−18.3%)

LDL PCSK9 9.6 9.4 (−1.3%) 8.5 (−10.9%)

Total cholesterol SORT1 5.1 5.0 (−0.9%) 4.3 (−15.7%)

LDL SORT1 7.1 7.1 (−0.5%) 6.3 (−11.7%)

Average relative difference −2.0% −10.6%

We considered three GWAS tests with correction for global ancestry (ATT), global and local ancestry (SNP1) and global and local ancestry while 
allowing for heterogeneous effects (Tractor). The index SNP was selected based on the strongest Tractor association P value. Relative differences to 
the ATT score are shown in parentheses and in the last row.
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